Problem 1
The Lagrangian (density) for a Dirac fermion
\[\mathcal{L} = \bar{\psi}(i\partial - m)\psi \] (0.1)
is invariant under the transformation
\[\psi(x) \rightarrow e^{i\alpha^\alpha} \psi(x) \] (0.2)
a) Compute the corresponding conserved current (electromagnetic current).
b) Write the current in terms of oscillators and check that electron and positron have opposite charges.
c) Consider the transformation \(\psi(x) \rightarrow e^{i\alpha^5} \psi(x) \). Check that this is a symmetry of the Lagrangian when \(m = 0 \) but not if \(m \neq 0 \). Write the corresponding conserved current and compute its divergence in the \(m \neq 0 \) case using the Dirac equation.

Problem 2
A Dirac field transforms in the \((\frac{1}{2}, 0) \oplus (0, \frac{1}{2})\) representation of the Lorentz group. In the chiral representation\(^1\) the Dirac spinor can be written as
\[\psi = \begin{pmatrix} \xi_L \\ \xi_R \end{pmatrix} \] (0.3)
where \(\xi_{L,R} \) are two component spinors such that \(\xi_L \) is in the \((\frac{1}{2}, 0)\) and \(\xi_R \) in the \((0, \frac{1}{2})\).
a) Show that the Dirac equation mixes both components.
b) Show that of \(m = 0 \) one can set e.g. \(\xi_R = 0 \) and still satisfy the Dirac equation (Weyl spinor).

\(^1\)This is the representation used in class where \(\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), \(\gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \).
c) Show that ξ_L^* (conjugate) transforms (after an appropriate change of basis) in the $(0, \frac{1}{2})$ representation and therefore can be identified with ξ_R.

d) Using the result of c) write a massive Dirac equation for just ξ_L (Majorana fermion). Show that this equation is not invariant under the charge symmetry $\xi_L \rightarrow e^{iqs} \xi_L$ of problem 1) and therefore this fermion has no charge ($q = 0$).