Problem 1
The Lagrangian (density) for a Dirac fermion
\[\mathcal{L} = \bar{\psi}(i\partial - m)\psi \] (0.1)
is invariant under the transformation
\[\psi(x) \to e^{i\eta\alpha}\psi(x) \] (0.2)

a) Compute the corresponding conserved current (electromagnetic current).

b) Write the current in terms of oscillators and check that electron and positron have opposite charges.

c) Consider the transformation \(\psi(x) \to e^{i\alpha\gamma^5}\psi(x) \). Check that this is a symmetry of the Lagrangian when \(m = 0 \) but not if \(m \neq 0 \). Write the corresponding conserved current and compute its divergence in the \(m \neq 0 \) case using the Dirac equation.

Problem 2
In the chiral representation\(^1\) a Dirac spinor can be written as
\[\psi = \begin{pmatrix} \xi_L \\ \xi_R \end{pmatrix} \] (0.3)

where \(\xi_{L,R} \) are two component spinors that do not mix under Lorentz transformations.

a) Show that the Dirac equation mixes both components.

b) Show that if \(m = 0 \) one can set \(e.g. \xi_R = 0 \) and still satisfy the Dirac equation (Weyl spinor).

\(^1\)This is the representation used in class where \(\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), \(\gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \).
c) Show that ξ^*_L (conjugate) transforms (after an appropriate change of basis) as ξ_R and therefore it can be identified with ξ_R (Majorana fermion).

d) Using the result of c) write a massive Dirac equation for just ξ_L (Majorana fermion). Show that this equation is not invariant under the charge symmetry $\xi_L \rightarrow e^{iq\alpha} \xi_L$ of problem 1) and therefore this fermion has no charge ($q = 0$).

Problem 3

Consider solutions to the Dirac equation of the form $\psi(x) = u(p)e^{-ipx}$ with $p^2 = m^2$ where $u(p)$ solves the algebraic equation

$$(\gamma^\mu p_\mu - m)u(p) = 0 \quad (0.4)$$

If \hat{p} is a unit vector along \vec{p}, define the helicity operator as

$$h = \hat{p}.\vec{S} = \frac{1}{2} \begin{pmatrix} \hat{p}.\vec{\sigma} & 0 \\ 0 & \hat{p}.\vec{\sigma} \end{pmatrix} \quad (0.5)$$

where $\hat{p}.\vec{\sigma} = \hat{p}_i\sigma^i$.

a) Find the two linearly independent solutions $u^{1,2}$ that are also eigenvectors of the helicity operator and normalize them such that

$$\bar{u}^r(p)u^s(p) = 2m\delta^{rs}, \quad \bar{u} = u^\dagger\gamma^0 \quad \text{(0.6)}$$

b) Repeat the same for solutions of the form $\psi(x) = v(p)e^{ipx}$ but normalize them now as

$$\bar{v}^r(p)v^s(p) = -2m\delta^{rs}, \quad \text{(0.7)}$$

c) Check the identities

$$\bar{u}^r(p)v^s(p) = 0 \quad \text{(0.8)}$$

$$\sum_{s=1,2} u^s(p)\bar{u}^s(p) = \gamma^\mu p_\mu + m \quad \text{(0.9)}$$

$$\sum_{s=1,2} v^s(p)\bar{v}^s(p) = \gamma^\mu p_\mu - m \quad \text{(0.10)}$$