Problem 1
Consider an $SU(N)$ gauge theory and show the validity of the Bianchi identity
\[D_\mu F_{\nu \rho} + D_\nu F_{\rho \mu} + D_\rho F_{\mu \nu} = 0 \] (0.1)

Problem 2
Consider an $SU(N)$ gauge theory with a fermion in the fundamental. In the BRST approach one introduces extra fields c, \bar{c} and B. We say, by definition, that c has ghost number 1 and \bar{c} has ghost number -1.

a) Use the gauge fixing function $\partial_\mu A_\mu$ (Lorentz gauge) and compute the dimensions of the different fields (including B).

b) Consider the Lagrangian density to be a BRST, Lorentz, and global $SU(N)$ invariant polynomial in the fields. Show that a BRST variation preserves the number $N_B + N_{\bar{c}}$, where N_B is the number of fields B in a given term, and the same for $N_{\bar{c}}$. Notice that the operator that counts this number can be written as
\[N_B + N_{\bar{c}} = B \frac{\delta}{\delta B} + \bar{c} \frac{\delta}{\delta \bar{c}} \] (0.2)

c) Show that, if a function L of the fields is BRST invariant then
\[\delta_{BRST} \left[\left(\bar{c} \frac{\delta}{\delta B} \right) L \right] = (N_B + N_{\bar{c}})L \] (0.3)

Hint: Use that the BRST variation can be written as $\delta_{BRST} = B \frac{\delta}{\delta B} + \tilde{\delta}$ where $\tilde{\delta}$ does not involve B or \bar{c}.

d) Conclude that any BRST invariant Lagrangian of ghost number zero can be written as the usual Yang-Mills Lagrangian plus the BRST variation of another function Ψ

e) Using that the dimension of all the vertices in the Lagrangian is 4 or less, write the most general function Ψ and the corresponding Lagrangian.