Spiky Strings and Giant Magnons on S^5

M. Kruczenski

Purdue University

Based on: hep-th/0607044
(Russo, Tseytlin, M.K.)
Summary

- **Introduction**

 String / gauge theory duality (AdS/CFT)

 Classical strings and field theory operators:
 - folded strings and spin waves in spin chains
 - folded strings and twist two operators

- **Spiky strings and higher twist operators** (M.K.)

 Classical strings moving in AdS and their field theory interpretation
• **Spiky strings on a sphere and giant magnon limit**
 (Ryang, Hofman-Maldacena)

• **Spin chain interpretation of the giant magnon**
 (Hofman-Maldacena)

• **More generic solutions:**
 Spiky strings and giant magnons on S^5
 (Russo, Tseytlin, M.K.)

• **Other solutions on S^2** (work in prog. w/ R.Ishizeki)

• **Conclusions**
String/gauge theory duality: Large N limit (‘t Hooft)

String picture \rightarrow Fund. strings

(Susy, 10d, Q.G.)

Mesons

π, ρ, \ldots

Quark model

$q \bar{q}$

QCD [SU(3)]

Large N-limit [SU(N)]

Effective strings

Strong coupling

More precisely: $N \rightarrow \infty$, $\lambda = g_{YM}^2 N$ fixed (‘t Hooft coupl.)

Lowest order: sum of planar diagrams (infinite number)
AdS/CFT correspondence (Maldacena)

Gives a precise example of the relation between strings and gauge theory.

Gauge theory

\[\mathcal{N} = 4 \text{ SYM } \text{SU}(N) \text{ on } \mathbb{R}^4 \]

\[A_\mu, \Phi^i, \Psi^a \]

Operators w/ conf. dim. \(\Delta \)

\[g_s = g_{YM}^2 ; \quad R / l_s = (g_{YM}^2 N)^{1/4} \]

\[N \to \infty, \quad \lambda = g_{YM}^2 N \quad \text{fixed} \]

\[\lambda \text{ large } \rightarrow \text{ string th.} \]

\[\lambda \text{ small } \rightarrow \text{ field th.} \]
Can we make the map between string and gauge theory precise?

It can be done in particular cases.

Take two scalars $X = \Phi_1 + i \Phi_2$; $Y = \Phi_3 + i \Phi_4$

$O = \text{Tr}(XX...Y..Y...X)$, J_1 X’s, J_2 Y’s, $J_1 + J_2$ large

Compute 1-loop conformal dimension of O, or equiv. compute energy of a bound state of J_1 particles of type X and J_2 of type Y (but on a three sphere)
Large number of ops. (or states). All permutations of Xs and Ys mix so we have to diag. a huge matrix.

Nice idea (Minahan-Zarembo). Relate to a phys. system

\[\text{Tr}(X X \ldots Y X X Y) \]

operator

mixing matrix

\[| \uparrow \uparrow \uparrow \ldots \downarrow \uparrow \uparrow \downarrow \uparrow \downarrow > \]

conf. of spin chain

op. on spin chain

\[H = \frac{\lambda}{4\pi^2} \sum_{j=1}^{J} \left(\frac{1}{4} - \vec{S}_j \cdot \vec{S}_{j+1} \right) \]

Ferromagnetic Heisenberg model!
Ground state \((s) \)

\[
|\uparrow\uparrow\uparrow\ldots\uparrow\uparrow\uparrow\uparrow\uparrow\rangle \quad \longleftrightarrow \quad \text{Tr}(X X \ldots X X X X X)
\]

\[
|\downarrow\downarrow\downarrow\ldots\downarrow\downarrow\downarrow\downarrow\downarrow\rangle \quad \longleftrightarrow \quad \text{Tr}(Y Y \ldots Y Y Y Y Y)
\]

First excited states

\[
|k\rangle = \sum_{l} e^{ikl} |\uparrow\uparrow\ldots\downarrow\ldots\uparrow\uparrow\rangle, \quad k = \frac{2\pi n}{J}; (J = J_1 + J_2)
\]

\[
\varepsilon(k) = \frac{\lambda}{4\pi^2} \left(1 - \cos k\right) \xrightarrow{k \to 0} \frac{\lambda n^2}{2J^2} \quad \text{(BMN)}
\]

More generic (low energy) states: Spin waves

(FT, BFST, MK, \ldots)
Spin waves of long wave-length have low energy and are described by an effective action in terms of two angles θ, φ: direction in which the spin points.

\[
S_{\text{eff.}} = J \left\{ -\frac{1}{2} \int d\sigma d\tau \left[\cos \theta \partial_\tau \phi - \frac{\lambda}{32\pi J^2} \left[(\partial_\sigma \theta)^2 + \sin^2 \theta (\partial_\sigma \phi)^2 \right] \right] \right\}
\]

Taking J large with λ/J^2 fixed: classical solutions. Moreover, this action agrees with the action of a string moving fast on S^5. What about the case $k \sim 1$?
Since \((\theta, \varphi)\) is interpreted as the position of the string we get the shape of the string from \(\langle \vec{S} \rangle(\sigma)\).

Examples

| \[\uparrow\uparrow\uparrow \ldots \uparrow\uparrow\uparrow \uparrow \uparrow \rangle | \text{point-like} |
|---|

\((\theta, \varphi) \)

Folded string
Rotation in AdS_5? (Gubser, Klebanov, Polyakov)

\[Y_1^2 + Y_2^2 + Y_3^2 + Y_4^2 - Y_5^2 - Y_6^2 = -R^2 \]

\[\sinh^2 \rho; \Omega_{[3]} \quad \cosh^2 \rho; t \]

\[ds^2 = -\cosh^2 \rho \, dt^2 + d\rho^2 + \sinh^2 \rho \, d\Omega_{[3]}^2 \]

\[E \equiv S + \frac{\sqrt{\lambda}}{2\pi} \ln S, \quad (S \to \infty) \]

\[O = Tr(\Phi \nabla^S_+ \Phi), \quad x_+ = z + t \]

\[\theta = \omega t \]
Verification using Wilson loops (MK, Makeenko)

The anomalous dimensions of twist two operators can also be computed by using the cusp anomaly of light-like Wilson loops (Korchemsky and Marchesini).

In AdS/CFT Wilson loops can be computed using surfaces of minimal area in AdS$_5$ (Maldacena, Rey, Yee)

The result agrees with the rotating string calculation.
Generalization to higher twist operators \((\text{MK})\)

\[
O_{[2]} = Tr \left(\Phi \nabla^S \Phi \right) \quad \rightarrow \quad O_{[n]} = Tr \left(\nabla^S \Phi \nabla^S \Phi \nabla^S \Phi \cdots \nabla^S \Phi \right)
\]

In flat space such solutions are easily found in conf. gaug

\[
x = A \cos[(n-1)\sigma_+] + A(n-1) \cos[\sigma_-] \\
y = A \sin[(n-1)\sigma_+] + A(n-1) \sin[\sigma_-]
\]
Spiky strings in AdS:

\[E \equiv S + \left(\frac{n}{2} \right) \frac{\sqrt{\lambda}}{2\pi} \ln S, \quad (S \to \infty) \]

\[O = Tr \left(\nabla_{+}^{S/n} \Phi \nabla_{+}^{S/n} \Phi \nabla_{+}^{S/n} \Phi \ldots \nabla_{+}^{S/n} \Phi \right) \]

\[S = \frac{\sqrt{\lambda}}{2\pi} \int dt \sum_{j} (\cosh 2\rho_{j} - 1) \dot{\theta}_{j} - \frac{\sqrt{\lambda}}{8\pi} \int dt \sum_{j} \left\{ 4\rho_{j} + \ln \left(\sin^{2} \left(\frac{\theta_{j+1} - \theta_{j}}{2} \right) \right) \right\} \]
Spiky strings on a sphere: (Ryang)

Similar solutions exist for strings rotating on a sphere:

The metric is:

\[ds^2 = -dt^2 + d\theta^2 + \sin^2 \theta \, d\phi^2 \]

We use the ansatz:

\[t = \kappa \tau, \quad \varphi = \omega \tau + \sigma, \quad \theta = \theta(\sigma) \]

And solve for \(\theta(\sigma) \). Field theory interpretation?
Special limit: (Hofman-Maldacena)

\[
\frac{d\theta}{d\sigma} = \frac{\kappa \sin \theta}{A} \sqrt{\frac{\kappa^2 \sin^2 \theta - A^2}{\kappa^2 - \omega^2 \sin^2 \theta}}
\]

\[\omega = \kappa\]

\[
\frac{d\theta}{d\sigma} = \frac{\sin \theta}{A \cos \theta} \sqrt{\kappa^2 \sin^2 \theta - A^2}
\]

\[
\sin \theta = \frac{A}{\kappa \sin \sigma}
\]

(top view)

giant magnon
The energy and angular momentum of the giant magnon solution diverge. However their difference is finite:

\[E - J = \frac{\sqrt{\lambda}}{2\pi} \frac{A}{\kappa} \int \frac{d\sigma}{\sin^2 \sigma} = \frac{\sqrt{\lambda}}{\pi} \sin \frac{\Delta \phi}{2} \]

\[\cos \frac{\Delta \phi}{2} = \frac{A}{\kappa}, \quad \Delta \phi = \text{Angular distance between spikes} \]

Interpolating expression:

\[E - J = \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{\Delta \phi}{2}} \approx \begin{cases}
\frac{\sqrt{\lambda}}{\pi} \sin \frac{\Delta \phi}{2}, & \lambda \gg 1 \\
1 + \frac{\lambda}{2\pi^2} \sin^2 \frac{\Delta \phi}{2}, & \lambda \ll 1
\end{cases} \]
Field theory interpretation: (Hofman-Maldacena)

\[H = \frac{\lambda}{4\pi^2} \sum_{j=1}^{J} \left(\frac{1}{4} - \vec{S}_j \cdot \vec{S}_{j+1} \right) \]

\[|k\rangle = \sum e^{ikl} |\uparrow \uparrow \downarrow \ldots \uparrow \uparrow\rangle, \quad k = \frac{2\pi n}{J}; (J = J_1 + J_2) \]

\[\mathcal{E}(k) = \frac{\lambda}{4\pi^2} \left(1 - \cos k\right) = \frac{\lambda}{2\pi^2} \sin^2 \frac{k}{2} \]

States with one spin flip and \(k \sim 1 \) are giant magnons
More spin flips: (Dorey, Chen-Dorey-Okamura)

In the string side there are solutions with another angular momentum J_2. The energy is given by:

$$E - J_1 = \sqrt{J_2^2 + \frac{\lambda}{\pi^2}} \sin^2 \frac{\Delta \varphi}{2} \approx J_2 + \frac{\lambda}{2J_2 \pi^2} \sin^2 \frac{\Delta \varphi}{2}, \, \lambda \ll 1$$

Justifies interpolating formula for $J_2=1$

In the spin chain, if we flip a number J_2 of spins there is a bound state with energy:

$$\varepsilon(k) = \frac{\lambda}{2J_2 \pi^2} \sin^2 \frac{k}{2}$$

$k \rightarrow \Delta \varphi$

(J_2 is absorbed in J)
More general solutions: (Russo, Tseytlin, MK)

Strategy: We generalize the spiky string solution and then take the giant magnon limit.

In flat space:

\[x = A \cos[(n-1)\sigma_+] + A(n-1) \cos[\sigma_-] \]
\[y = A \sin[(n-1)\sigma_+] + A(n-1) \sin[\sigma_-] \]

namely:

\[x + iy = X = x(\xi)e^{i\omega \tau}, \quad \xi = \alpha \sigma + \beta \tau \]

Consider \(txS^5 \):

\[ds^2 = -dt^2 + \sum_{a=1}^{3} dX_a d\bar{X}_a, \quad \sum_{a=1}^{3} X_a \bar{X}_a = 1 \]

Use similar ansatz:

\[X_a = x_a(\xi)e^{i\omega_a \tau} = r_a(\xi)e^{i\mu_a(\xi) + i\omega_a \tau} \]
The reduced e.o.m. follow from the lagrangian:

\[L = (\alpha^2 - \beta^2) x'_a \bar{x}'_a + i \beta \omega_a (x'_a \bar{x}_a - \bar{x}'_a x_a) - \omega_a^2 x_a \bar{x}_a + \Lambda (x_a \bar{x}_a - 1) \]

If we interpret \(\xi \) as time this is particle in a sphere subject to a quadratic potential and a magnetic field. The trajectory is the shape of the string. The particle is attracted to the axis but the magnetic field curves the trajectory.
Using the polar parameterization we get:

\[
L = (\alpha^2 - \beta^2) r_a^2 - \frac{1}{(\alpha^2 - \beta^2)} \frac{C_a^2}{r_a^2} - \frac{\alpha^2}{(\alpha^2 - \beta^2)} \omega_a^2 r_a^2 + \Lambda (r_a^2 - 1)
\]

\[
\mu_a' = \frac{1}{(\alpha^2 - \beta^2)} \left[\frac{C_a^2}{r_a^2} + \beta \omega_a \right], \quad x_a = r_a e^{i\mu_a}
\]

Constraints: \(\omega_a C_a + \beta \kappa^2 = 0 \), \(H = \frac{\alpha^2 + \beta^2}{\alpha^2 - \beta^2} \kappa^2 \)

Three ang. momenta: \(J_a = \int d\xi \left(\frac{\beta C_a}{\alpha (\alpha^2 - \beta^2)} + \frac{\alpha}{(\alpha^2 - \beta^2)} \omega_a r_a^2 \right) \)

Corresponding to phase rotations of \(\chi_{1,2,3} \)
Solutions:

- One angular momentum:
 \[x_3 = 0, \quad x_2 \text{ real (} \mu_2 = 0\text{)}, \quad r_1^2 + r_2^2 = 1, \quad \text{one variable.} \]

- Two angular momenta:
 \[x_3 = 0, \quad r_1^2 + r_2^2 = 1, \quad \text{one variable} \]

Since only one variable we solve them using conservation of H. Reproduced Ryang, Hofman-Maldacena and Chen-Dorey-Okamura

- Three angular momenta: \(r_1^2 + r_2^2 + r_3^2 = 1, \quad r_1, r_2 \)
Therefore the three angular momenta case is the first “non-trivial” and requires more effort. It turns that this system is integrable as shown long ago by Neumann, Rosochatius and more recently by Moser.

Can be solved by doing a change of variables to ζ_+, ζ_-

$$r_a^2 = \frac{(\zeta_+ - \omega_a^2)(\zeta_- - \omega_a^2)}{\prod_{a \neq b} (\omega_a^2 - \omega_b^2)}$$
In the new variables, the system separates if we use the Hamilton-Jacobi method:

Compute the Hamiltonian: \(H(p_\pm, \zeta_\pm) \)

Find \(W(\zeta_\pm) \) such that \(H\left(p_\pm = \frac{\partial W}{\partial \zeta_\pm}, \zeta_\pm\right) = E = \text{const.} \)

In this case we try the ansatz: \(W = W(\zeta_+) + W(\zeta_-) \) and it works! Variables separate!

A lengthy calculation gives a solution for \(\zeta_+, \zeta_- \) which can then be translated into a solution for \(r_a \)
The resulting equations are still complicated but simplify in the giant magnon limit in which \(J_1 \to \infty \)

We get for \(r_a \):

\[
r_a^2 = \frac{(\omega_2^2 - \omega_3^2)}{(\omega_1^2 - \omega_2^2)} s^2 \frac{1 - A_2^2}{(s_3 A_3 - s_2 A_2)^2}
\]

\[
r_3^2 = \frac{(\omega_2^2 - \omega_3^2)}{(\omega_1^2 - \omega_3^2)} s^2 \frac{A_3^2 - 1}{(s_3 A_3 - s_2 A_2)^2}
\]

with \(A_2 = \tanh \left(-\frac{s_2 \xi}{1 - \beta^2} + B_2 \right), \quad A_3 = \coth \left(-\frac{s_3 \xi}{1 - \beta^2} + B_3 \right) \)

We have \(r_a \) explicitly in terms of \(\xi \) and integration const.
We can compute the energy and angular extension of the giant graviton obtaining:

\[
E - J_1 = E_2 + E_3 = \sqrt{J_2^2 + \frac{\lambda}{\pi^2} \sin^2 \frac{\varphi_2}{2}} + \sqrt{J_3^2 + \frac{\lambda}{\pi^2} \sin^2 \frac{\varphi_3}{2}}
\]

\[
\Delta \varphi = \varphi_2 + \varphi_3
\]

We get two superposed magnons. However there is a relation: same group velocity.

\[
v_2 = v_3, \quad v_j = \frac{\partial E_j}{\partial \varphi_j}
\]
In the spin chain side we need to use more fields to have more angular momenta. We consider therefore operators of the form:

$$\text{Tr}(\ldots XXXYYYZYYYZZZYYXXYZZZXXXXXXXXXXX\ldots)$$

Where $X = \Phi_1 + i \Phi_2$, $Y = \Phi_3 + i \Phi_4$, $Z = \Phi_5 + i \Phi_6$

The J_2 Y’s form a bound state and the J_3 Z’s another, both superposed to a “background” of J_1 X’s ($J_1 \to \infty$)

$$E - J_1 \approx J_2 + J_3 + \frac{\lambda}{2J_2\pi^2} \sin^2 \frac{\varphi_2}{2} + \frac{\lambda}{2J_3\pi^2} \sin^2 \frac{\varphi_3}{2}, \quad \lambda \ll 1$$

The condition of equal velocity appears because in the string side we use a rigid ansatz which does not allow relative motion of the two lumps.
Some examples of solutions.

\[r_{1,2,3}(\xi) \]
Other solutions on S^2: (Work in progr. w/ R. Ishizeki)

It turns out that looking at rigid strings rotating on a two-sphere one can find other class of solutions and in particular another limiting solution:

Antiferromagnetic magnon? (see Roiban, Tirziu, Tseytlin)

(Goes around infinite times)
Conclusions:
Classical string solutions are a powerful tool to study the duality between string and gauge theory.

We saw several examples:

- folded strings rotating on S^5
- spiky strings rotating in AdS$_5$ and S^5
- giant magnons on S^2 and S^3
- giant magnons with three angular momenta
- work in progress on other sol. on S^2