Project Management, Structure, & Communication: Art
This section could be better described as a set of suggestions rather than guidelines for project management. We will explain the processes used in the case of Leon Gets Medieval (Tech519g, Fall 2003, Purdue University) as well as offer alternative suggestions that may suit different projects more appropriately.

Project Management

At the beginning of the project, it is important to decide on a management structure. This lays the groundwork of who will be responsible for what. In Leon Gets Medieval (referred to as Leon hereafter), our group consisted of 17 undergrad and graduate students. We decided to create the roles of ‘Project Director’, ‘Lead Artist’, ‘Lead Programmer’, and ‘Technical Director’.

· The Project Director would lead meetings, facilitate communication, and keep the project on track.

· The Lead Artist would coordinate other artists and attempt to unify all of the art so it would flow aesthetically.

· The Lead Programmer would coordinate the other programmers and combine all the individual bits of code into the final game.

· The Technical Director would head up the task of getting art assets to the programmers in the correct form, as well as lead other tasks that don’t fit well under art or programming (sound, motion capture, asset management).

It should be noted that these were not exclusive tasks. Each of these four individuals worked “down in the trenches” with the other group members as well.

Once these positions were decided on, the entire class met and elected individuals to fill each position. From there, the class was broken up into groups that would fall under each position. This ended up being primarily Art and Programming. Other tasks ended up being distributed to anyone who had expertise or time to devote. In the case of Leon there was an individual who had a small recording studio at their apartment, so they became the head sound technician. There were also two students who had done quite a bit of work with motion capture, so they led that effort. In this fashion, roles were distributed among the class members.

Once game production began, the four directors would meet once a week to evaluate the project’s progression and figure out how to deal with problems that have arisen. These meetings usually took place on Monday mornings. Work would get done during the week, and then when the group would meet in class on Thursday evenings. This worked out well, setting a course of action at the beginning of the week and then checking the status on Thursday nights. Thursday would be used to discuss the project’s progression with the class and then the weekend would be used to complete any unfinished work before the next Monday meeting.

Depending on the project, the four director roles may not be necessary. For instance, if the group consists of only a few individuals, it might be more appropriate to only appoint a project leader who would loosely direct the path of the project. On the other end of the spectrum, if the group is much larger (25+) it could be more beneficial to stick to the director roles more strictly. This would mean less trench work, but more management from the director. While this management work may not seem as challenging as some of the other tasks involved in game production, bad or no management structure can quickly lead to many miscommunications and big problems with the game’s development.

Structure

The structure of a project varies quite a bit depending on the project specifics. In Leon, it was known that the game would require several things (which were laid out in the treatment).

· There were going to be 3 levels (Graveyard, Castle, and Dungeon). Each level needed to be designed, modeled, textured, and exported.

· There would be 7 characters (Leon, Zombie, Werewolf, Werewolf Boss, Dark Knight, Vampire Drone, and Vampire Queen). Each character would need to be modeled, textured, rigged, animated, exported, and placed inside the levels.

· There would need to be specific props used throughout the game such as weapons and power-ups (shotgun, crossbow, leg-o-werewolf, etc.). All the props would need to be modeled, textured, exported, and placed in the levels.

· There would be cut-scenes placed before, between, and after levels. These needed to be designed, have dialogue scripted, and coded into the game.

· Leon would need certain abilities (run, jump, attack enemies, receive damage from enemies, pick up weapons, etc.)

· The enemies would need certain abilities (run, jump, attack Leon, receive damage from Leon, artificial intelligence to decide when to attack and where to run to, etc.)

All of these aspects needed to come into consideration before any actual work took place. Once considered, the first step was to choose a method of constructing the game. For Leon, the decision was made to use an already constructed game engine. Several engines were evaluated and the final decision was to use Torque (developed by Garage Games).

Depending on the goals and scope of a project, other choices could be made instead of using an already existing game engine. A team could use software such as Macromedia’s Director or Director 3D to script a game. A team could write their own game engine from scratch. It would also be possible to simply mod an existing commercial game. All of these choices have their own advantages and drawbacks. One thing that should be considered first is the amount of time to be spent on the project. It takes far less time to mod an existing game than to write an engine from scratch. Available skills are also a big factor. Writing a game engine probably wouldn’t be an easy task for a group with no programming experience. In the TECH519g class, there was a decent mix of programmers and artists, but there was an 8-week time constraint so the best choice seemed to be to use an existing engine that ended up working out well.

Once the choice was made to use Torque, the next task was to set up a schedule and project structure. These depended on each other so they were created at the same time. The game deadline was set by the course instructors and coincided with the end of the semester so the management team started there and worked their way back in time to their present location. Creating the schedule in this backwards fashion allowed them start with the final product and partition it into smaller sections as they worked their way back to the starting date. The schedule was done with an excel spreadsheet which provided enough structure to categorize tasks and divide up workflow. More complex scheduling software could have been used and would have been beneficial for assigning task due dates to individuals, but this method ended up working well enough.

[image: image92.png]N 21X

Type the name of a program, older, docurent, or
Internet resource, and Windows wil open t For you.

Open: | C:lLeon|unMessDTS.exe player.dts player.dts
coce | o

A section of the project schedule for Leon Gets Medieval.

When setting the initial schedule, it is important to work logically. Place the project deadline at the end of the schedule. When working backwards, tasks can be divided up many ways, but all tasks need to reach the atomic level by the schedule’s beginning. As an example, here is one possible branch of a schedule working backwards.
· Game Deadline (week8)

· Character’s running around shooting each other in the engine (week7)
· Characters loaded in the engine (week6)
· Characters done (week5)
· Characters rigged & exported (week4)
· Characters textured (week3)
· Characters modeled (week2)
· Character design done (week1)
In this example, the timeline for characters is followed back from the game deadline to the most atomic level of character design. Often, some of the tasks that fall between these levels can be grouped together (put characters modeled and characters textured together in week 3, then move the other tasks ahead 1 week earlier). While this creates more work earlier in the schedule, it gives the schedule some needed flexibility.

The amount of flexibility that is built into a schedule can make or break a game. It is not uncommon to run into problems that weren’t expected which can cause delays in production. In Leon, there was a major problem with exporting characters correctly so that they would load into Torque properly. Luckily, the schedule had allotted time toward the project’s end specifically for debugging and refining artwork. This allowed the team to stay on track for game completion even though they had lost over a week trying to figure out this one problem. It would be good practice to expect the unexpected when creating a schedule. While this may seem to be putting unnecessary stress at the beginning of the project, it can easily be a lifesaver later on.

Communication

Since Leon was done as a class project, the only time the group was guaranteed to meet face to face was during class, which only met once a week. Often, several individuals would get together to work on the game, but aside from that most communication was done electronically.

Initially, someone took the time to enter everyone’s e-mail address into an e-mail that was sent out to the entire class. Class members would then “reply to all” whenever they needed to communicate with some or all of the class. While this served its purpose, it led to a huge amount of e-mails that often didn’t apply to everyone.

The class then began to use an online forum for much of its communication. The CGT student council hosts such a forum and was willing to create a separate section specifically for the TECH519g class (forum located at http://cgsc.tech.purdue.edu). This turned out to be a very useful way to communicate ideas to the class. Not only would class members post text, but they could also post their actual work on the forum for class members to view and make suggestions/critiques.
[image: image2.jpg]Purdue Computer Graphics Discussion Forum

@ Home 2] Help) search ¥ members Bl Login

Register

Welcome, Guest. Please Login or Register. | Dec 17th, 2003, 1:52am

‘S purdue Computer Graphics Discussion Forum
43 Class Boards.

5 TeCH 5196 (same Development) (MOTETALOT: xelpresidente)

Discuss elements of TECH 519G here.

4| |Asset Locations

Started by

67 startnew topic @l create pol

Replies

s Last post

Dec 10™, 2003,

XelPresidente| 22 |18612:40am
«Pages12» by yourmother
Art Nov 19, 2003,
g XelPresidente| 35 |631|3:31am
«Pages123» by HomeBrewT]
Nov 7, 2003,
|3 |Tech XelPresidente| 6 |117 |1:00pm
by XelPresidente
i oct 26, 2003,
|5 |Programming XelPresidente| 8 |103|5:07pm

by simonsj

L T

 [image: image3.jpg]Raziel Re: Art
LEe « Reply #10 on: Oct 21%, 2003, 4:38pm »

Hey Everyone,

Here are the final sketches of all the characters. Jim should have emailed
everyone in the art group with the larger files, so don't use these ones as
your reference.

Planning my escape Zombie

route...
A& N

Gender: o

Posts: 23

Real Name: Chad Y\
Bemhard /
Senior |

 The TECH 519G section of the forum
 Initial character work posted on the forum
The forum worked out well for posting various drafts of artwork and also stirred up some excitement from individuals not even in the class who were able to see how the project was progressing.

In addition to this, the class instructors were able to get a centralized storage space for project files through the CGT department (called the nas). This proved extremely valuable. Rather than needing to attach large files to e-mail messages, team members were able to place files on the nas and just e-mail the file location to individuals who needed the files. This allowed for quick changes and updates of various assets to be made available to both artists and programmers.

For the artists and programmers, communication consisted mostly of collaboration and letting others know the location of assets. For the project managers, communication often focused on making sure individuals knew what tasks they needed to be working on as well as redirecting e-mails concerning problems to those who were able to fix them.

Regardless of the project size, good communication is a MUST. It is important that people know what they need to be doing. In a large group, a phenomenon called “social loafing” can occur. In social loafing, individuals who normally might do very good work tend to get less accomplished. This stems from assumption that “if I don’t get this done, someone else will”. Whether it’s a big group or a small one, never leave a meeting without making sure each individual knows exactly what they are responsible for getting done. Without this assigned responsibility, tasks end up falling through the cracks. In Leon, each weekly meeting began with individuals making a brief informal presentation of the work they’d accomplished in the past week. Since each person needed to “show” something to the class, responsibilities were easy to define. If someone didn’t show something, it meant that it wasn’t done. When this happened, the schedule would need to be referred to and possibly revised to ensure that future deadlines could be met.

[image: image4.jpg]| @search | Eyroiders |5 53 X |

Adress [Reference mages

Folders

S o190
=20 Art Assets
=1 Character Models
21 Final_dts.
Qo
= Leon
2 o
/' Reference Images
Q3 rorures
23 Undead
Q3 vanprs boss
Q3 vampre drone
Q3 vanprs orons
Q3 werewol
2 werewolf boss.
O teves
Q0 pros
Qu
Q2 ampes
{21 teon_tnstaller

b

Reference Images

This Falder is Online,

leantexport.ipg
PEG Image

Modied: 11/4/2003 1:14 M
Size: 664 KB

Attrbutes: (normal)

B

Leon_IP_side_100.jpg

[1 object(s) selected

221 programming Assets _
£ et o Inport A |
® mntemet 7

Part of the directory structure set up on the nas (central file storage for Leon).

While e-mail is good for quick communication between individuals, mass communication methods like the online forum seem to work better for some communications to the entire class. Some form of central location to store files is also extremely important. This allows individuals to work on the project from different locations at different times and generally makes it much more convenient to work on the project. In the case of Leon, specific files were usually only worked on by one individual (one person doing all the work on a werewolf, another working on the music files, etc.). If a project requires that multiple people be working on the same files, some sort of version control software would be extremely beneficial to ensure that someone’s work isn’t being overwritten by another’s.

In Summary

· Setup a management structure (dependent on the group size)

· Create a schedule (try to add flexibility and plan for unexpected problems)

· Assign specific tasks to individuals (micromanagement gets stuff done)

· Establish a method of communication (meetings, e-mail, forums, whatever works)

· Create a file structure (preferably on some sort of central storage)

· Follow the schedule

· Communicate with each other

Project Management, Structure, & Communication: Programming

For managing a group of programmers, it is very important that everyone has a clear idea of what they are supposed to do, and how their project fits into the overall concept and design. Also, it is important to know how their individual project communicates with other projects, but with the flexible design of the Torque engine, this was not a big issue. Naturally, it is important to assign specific tasks based upon skill, though one should also consider what people like to or would like to do. Generally, this isn’t a big issue, but assigning someone to a new area will broaden their skills, though it may take them a little longer. Also, keeping everyone happy and productive is also a key requirement. Assigning too much to someone can lead to serious problems, though it is important to know how loyal people are to their tasks, especially in an environment when people can come or go fairly easy.

Since I only had a couple programmers, the structure was pretty simple. I told people what to do, and they did it. The general plan, however, was the certain people would be in charge of getting certain areas of the game done, such as sound, levels, or AI. If someone needed more help, then they would contact me and I would see who had the least on his or her plate, and tell them to get in contact with the lead, or just tell them what to do if it was independent. My programmers never really asked for help, however. Then again, illness and the loss of one of my programmers kept everyone pretty busy keeping things going smoothly. It was very difficult as well due to our problems getting actual content from the artists into the game.

Communication, naturally, is extremely vital and important to getting a game built. The different areas of production have to keep in constant communication to make sure things are proceeding on schedule and to see if anyone needs anything from anyone else. The administration team, consisting of the director and the various leads, ended up meeting every week outside class to check up on things and see how everything was progressing and what problems people were having. We used this as an opportunity to deal with any problems that people were having as well, such as all the wonderful exporting difficulties that we ran into, asking the artists for simple temp stuff that we could use in the meantime and that.

It is also very wise to have communication in-group as well. I asked for weekly status reports from my programmers so that no unexpected surprises occurred when it came time for class and we had to demo our progress to our instructors. It also helped me keep tab on things, and to help if any problems were encountered. It is also important for programmers to keep their lead informed, for the reasons mentioned above. Having everyone work together smoothly on complicated technical projects can be very difficult.

“Leon Goes Medieval” Treatment

Intro Story

The desolate abandoned basement smells like 3 week old cat poo. Leon sits ignoring the smell and ponders silently why it is he doesn’t have more “employees,” in his empire. He does his best to feel funky leaning the chair as far back as the molded out rotted chair will allow… about three inches. He looks up in frustration, the rafters looking much worse than the chair. He wonders how this building still stands. The wires hang bare out of the ceiling. The only light coming from a single bulb hanging thinly from another bare wired nailed haphazardly to the central rafter. No man could have any sense of power here especially a pimp. How was he supposed to intimidate anyone when he called this place, this room, this crap hole, his headquarters? He need to escalate to a better place, but in order to move to a more appropriate setting, he needed more power, and in order to get more power he needed more money, and in order to gain money, he needed “employees” and most of all he needed these “employees” to fear him.
It was a damn shame that he had to work so hard, the world was against him. He thought on, sometimes cursing quietly and not so quietly to the empty musty air around him. He spoke out into the darkness, “I wish there was some kind of pimp juice that would solve all my problems.” His thoughts continued on for a few moments before a piece of paper blowing across the floor caught his attention. He watched it move gently, its travel progressing slowly in front of him. He had just gone back to thinking of his horrid world of destitution when he snapped back out of his thoughts. There were no windows in this basement, and there was of course no fan. Where was the air coming from? As if in response to his silent questions a heavy wind almost blew his hat off. The wind quickly became a gale forth, blowing boxes and trash all throughout the room. Leon had a hard time staying seating and more than anything was getting really pissed off. Just as the gale reached its pinnacle ferocity, everything stopped and went quiet. Leon looked around bewildered for a moment, “Well….DAMN!!” Joyous that whatever it was, had ended, he leaned back once more and started to laugh. His laughter was cut short when a pool of radiant glowing blue liquid appeared from nowhere at his feet. He looked at the swirling pond in front of him and his smile turned back into a frown. The pool was calling to him. “To find your pimp juice, you must conquer a challenge like none other, defeat the vampires, find that which you are seeking, and when you return all your woes will be vanquished!” Leon, looked at the pool in disbelief, after a moment he shook his head coming back to his senses, “I’m not listening to no damn pool, what you know about this anyway?” The water in the pool began to swirl furiously, “Fine sucka will do it my way.” An enormous gust of wind knocked Leon off of his chair and into the pool. Then everything, the pool of blue water, the wind, the voice, and Leon all disappeared.

Environment Description

Setting:
Levels will be designed in a non photorealistic manner. They will have a surrealistic feel based on exaggerated skews and curves that contain very few 90 degree angles. The settings will appear somewhat gloomy, and horizons will appear to converge in strange places.

The Intro:
You see a hint of what Leon is like in modern times and then see him shipped back into time to hunt for his Pimpin’ style by fighting off the undead and evil bloodthirsty vampires. You see the inside of a desolate, skanky-looking basement in an abandoned building in the middle of the Urban American ghetto. Moss and fungus hang on all of the bricks, broken pipes and wires hang from rafters unseen. In the middle of the empty room is a rusted out nearly broken chair that Leon is perched on seemingly distraught about something: he’s pondering his lack of hoes. A single light bulb hangs over his head from a thin wire running straight into the rafters. Soon, a bright blue portal is opened in the floor, a large amount of wind picks up blowing boxes around and he is sucked into the swirling void, hearing the words, “To find your pimp juice, you must conquer a challenge like none other, defeat the vampires, find that which you are seeking, and when you return all of your woes will be vanquished!” Then as suddenly as it appeared, the wind stops, the portal closes, and the room is quiet. The camera stays in the quiet room for a few moments before fading to black.

The “Outside of the Castle” Level:
Leon falls a fairly large distance into a dark and dreary meadow outside of a castle. He hits the ground hard and lies still for a few moments. You see many trees off in the distance and a large dark, ominous looking castle. There is a thick fog that conceals the horizon. The terrain is partially grassy with a lot of bare ground. There are many tombstones lying about randomly on the ground. It seems he has fallen into a graveyard outside of the castle. Leon utters “Ain’t that a bitch,” and picks himself off the ground. As you walk to the castle, the undead rise quickly out of the ground and attack. The main elements of this section are the tombstones, the ground plane, and the backdrops which will be renderings of a dark forest, the castle, and a grey dreary sky.

Weapons Used: Pistols

Weapons Found: Shotgun, Tommy-Gun

Objects Found: Colt 49 (health regen)

*** weapons & objects still subject to change ***

The Castle Level:
When you reach the castle, you enter through a large wooden double door. One of the doors opens slightly as you approach, allowing you to enter. Once in the castle, there is a maze of hallways made from grey limestone. Each of these hallways is also lined with the occasional torch. Werewolves wait for you in these corridors. The hallways are skewed, curved, and have a false perspective. The corners are dark, and spider webs hang everywhere. Old torn, faded portraits are found along the hallways watching those who pass through. There are a couple larger rooms that are more like a dining hall, with old gothic chandeliers and tables with high backed wooden chairs laying around in ruin. Another will be a ballroom also containing chandeliers, but will have a wide open space with round tables on the edges. The final room will be one of the larger rooms (probably a ballroom) containing the Werewolf Boss who stands in the middle along with some of his minions. There is a door behind him leading to the dungeon and Leon’s ability to progress in the game.

Weapons Used: Pistols

Weapons Found: Silver Cane

Objects Found: Colt 49 (health regen)

*** weapons & objects still subject to change ***

The Dungeon Level:
This will be darker than previous levels. It will have a similar feel to the castle, except it will be quite dirty and the walls will be harder to distinguish. It will also be full of cell rooms where the vampires will be hiding. The cells fall into darkness so you never know which ones hold vampires until they are already coming at you. Some of the doors will be locked, binding a few of the vampires, which adds to the confusion. There will be lots of iron bar doors blocking your path. There will be fewer torches but still enough to see by. You will enter the level through a winding circular staircase that ends at an iron barred door. Lots of moss and spider webs will be hanging from the ceiling. Bones and garbage will litter the floors. As Leon gets to the bottom of the stairway and enters the level, he looks at the mud and filth on the ground, “Damn, I better not get my kicks dirty or someone will pay.”

Weapons Used: Pistols

Weapons Found: Brass “Super-Pimp” Knuckles

Objects Found: Colt 49 (health regen)

*** weapons & objects still subject to change ***

The Final Boss:
The final boss will be at the end of this level. There will be on large room, which will be the torture room. In the room will be all kinds of torture equipment, from the rack to hot iron pokers. In the room will be the “pimps and hoes” that he has to save, as well as the sacred “Pimp Juice.” This will be on an altar bathed in its own light. The altar will of course be on the side of the room that is behind the “enemies.” The boss will be huge taking up most of the 2 story size room. The room itself will be brighter and cleaner than the rest of the level, like it is used more. There will still be a few spider webs and moss, growing in the corners. Once you beat the boss, then another portal will appear and you will take your hoes and the “Pimp Juice” back to your time. When you arrive the basement has turned into a swinging pimp pad, and it seems all is looking up for the world… or has it?

Gameplay Mechanics

Controls

Movement – Leon’s movement is controlled by the WASD buttons.

· w: walk forward

· s: walk backwards

· a: strafe left

· d: strafe right

Look/Aim – Mouse movement controls the direction Leon is looking and aiming.

Cycle Thru Weapons – cycle thru the weapons you have

· MousewheelUp, e: next weapon

· MousewheelDown, q: previous weapon

Weapon Order – Bind weapons to number keys

1) Pimp Slap

2) Pimp Cane

3) Pistol

4) Pistol w/ silver ammo

5) Shotgun

6) Shotgun w/ silver ammo

7) Wooden Stake

8) Crossbow

Jump – a short jump

· Spacebar

Weapons
Pimp Slap – Leon reaches back and delivers a nasty pimp slap

· Unlimited use

· Damage can be upgraded by finding brass knuckles

· Damage: 2

· Damage with knuckles: 3

· Speed: medium

Pimp Cane – Leon don’t limp, but he always carries his pimp stick.

· Unlimited use

· Silver plated(damages werewolves effectively)

· Damage: 2

· Speed: quick

Pistol – Leon’s pearl handled revolver.

· Uses bullets

· Damage: 4

· Speed: medium

Pistol w/ silver ammo – Best used on werewolves.

· One shot uses one silver round

· Same speed and damage as pistol with normal ammo

Shotgun – Leon’s sawed-off street sweeper.

· Uses shells

· Damage is distributed over an area

· Damage: 8

· Speed: slow

Shotgun w/ silver ammo – Best used on werewolves.

· One shot uses 2 silver rounds

· Same speed and damage as shotgun with normal ammo

Wooden Stake – Vampires hate ‘em.

· Uses stakes

· This weapon has no effect on other monsters besides vampires

· Kill vampire on successful hit. This uses up the stake.

· Speed: medium

Crossbow – Best used on vampires.

· Damage: 4

· Speed: medium

Items

Olde Transylvanian 800 [malt liquor] – It’s off tha hizzle fo shizzle

· Used on pickup. Leon gains 25% health.

· Rarity: uncommon

Leg-O-Werewolf – “Tastes like chicken!”

· Used on pickup. Leon gains 40% health.

· Rarity: rare

Ammo

Bullets

· Add 10 bullets to Leon’s supply

· Rarity: common

Shells

· Add 6 shotgun shells to Leon’s supply

· Rarity: uncommon

Silver Rounds

· Add 10 rounds to Leon’s supply

· Rarity: uncommon

Wooden Stakes

· Add a single stake to Leon’s supply

· Rarity: rare

Wooden Crossbow bolts

· Add 8 bolts to Leon’s supply

· Rarity: common

Enemies

Undead – Zombies, skeletons, ghouls; whatever you like.

· 8 health points

· Melee attack: claw – 5 damage

· Ranged attack: none

· Speed: medium

Werewolves – Fully transformed into a wolfman

· 8 health points

· Take only half damage from non-silver sources

· Melee attack: claw or bite – 5 damage

· Ranged attack: none

· Speed: quick

Vampires –

· 14 health points

· Take only half damage from non-wooden sources

· Melee attack: claw, bite, or punch – 8 damage

· Ranged attack: thowing daggers – 4 damage

· Speed: medium

Leon

Health – As Leon is damaged he loses health points.

· Leon starts at 60 health points

· He dies when these reach zero

Character Sketches

[image: image5.jpg]

[image: image6.jpg]

[image: image7.jpg]

 [image: image8.jpg]

[image: image9.jpg]

[image: image10.png]

[image: image11.jpg]

[image: image12.jpg]

[image: image13.jpg]

[image: image14.jpg]

Environment Sketches

[image: image15.jpg]

[image: image16.jpg]

[image: image17.jpg]- T T e e e N W v v vy vV v '
L

[image: image18.jpg]

Miscellaneous Items [image: image19.jpg]

[image: image20.jpg]. ')'\CA)‘]'}\ P&uﬁ& wé ?

[image: image21.jpg]SUPER PIMP
KNVCKLE S

[image: image22.jpg]\Jnvou.’
Roonds: S0 caLinér x §

1
Yoo wanr 4 prece oF Leon 2"

[image: image23.jpg]

[image: image24.jpg]e . . R . . A A . . A 4

[image: image25.jpg]

[image: image26.jpg]

[image: image27.jpg]«Po wek /STee6TH Power-u0
’IW:M\BIL;TV,,?

[image: image28.jpg]- W W v v S T - =

Modeling for a game environment

Modeling for a video game environment is different than modeling for an animated scene. The models in video games have to look good on the screen while maintaining a low polycount so the game can run at a decent frame rate. The game engines nowadays can handle more and more polygons while maintaining a good gameplay, but for your game, the models should be kept at around 2500 for the secondary characters and around 4000 to 5000 for the main character. These are a good number to be used in the game when use Torque as the game engine.
So, how to create a low polygon model and still have it look good on screen. The main thing to know here is where to put the polygons and where you can leave it off. The face is the more important part of the model. It is the most looked at part of the model, so a large number of polygons should be devoted to the face.

[image: image29.jpg]

The above screen shot is the start of a face model. There’s not that much details because this is going to be a secondary character. More details can be added if the model gets more face time, but the amount of details shown is enough.
Other areas where there should be a larger number of polygons are the joints. From the top, the joints are the shoulder, elbow, wrist, knee, ankle, and the very top of the leg. Joints need more polygons so the animations of the character will look correct. If there are not enough polygons in the joint area, when the adjoining bones move, the joint will look very jagged and strange. The easiest way of giving the joints enough polygons to work correctly is the Cut tool. You can cut the existing polygons to create more faces in the areas you need. The following screen shots show how the knee and elbow and shoulder looks on the models used.

[image: image30.jpg]

[image: image31.jpg]

The main part of the limbs, such as upper arm or the thighs, actually do not need a lot of details since a lot of the details will be added with the application of textures on the model. The detail on the hands depends on how much there are going to be used. If they are not going to bend and flex, then not a lot of detail need to go in to the creation of the hands. A lot of times you can just create the hands to look like a mitten. All the fingers are together and the thumb is separate. If the finger comes into play in the game play, you’ll have to actually model the fingers and give enough details at the joints of the finger so they can bend.
One thing to remember, not just for low polygon modeling, is that the edges of the polygons should follow the natural contour of the shape. They should be flowing in the right direction. The model will behave better this way. If you have any problems, just take a look at how your muscles look. You’ll get a better idea of how to arrange the polygons on the model. The following screen shot shows the whole model and how the edges on the model flowed.

[image: image32.jpg]

One thing of interest is how to model the feet of the character. The above character is intended to be floating, so the feet are pointing straight down. If the characters are grounded, modeling the feet point down will cause some problems. So when you are modeling your character, take heed the character development.

UVW Mapping and Texturing
(See the video help files located on the CD: UVWMappingTutorial)

This tutorial assumes you have an intermediate level of knowledge of 3D Studio Max 5.1 and Adobe Photoshop 7.0.

Texturing refers to the act of “coloring” your mesh via a 2D program, such as Photoshop. The texturing process for characters, especially characters created for 3D games, begins with “laying out” the mapping coordinates or UVWs. This technique is called “skinning” of a character. There are many ways to do this using 3D Studio Max. However, this tutorial will describe only one way to do it.

The first step is to assign different Material IDs to different parts of your mesh. The character that will be used as an example is a “seamless” character. This means that the entire character consist of one object; it is not broken into separate meshes, such as the head, torso and legs.

Here is a screen capture of the model that is all ready to be skinned and textured.
[image: image33.png]191 Vampire_Female_500.max - 3ds max 5 - Stand-alone License

Botiom Ferspeciive 7 2@

Right

Front

Now we have to decide how we are going to break down our character into pieces that will make adding a UVW modified easier. The technique used is to breakdown the mesh is to use different Material IDs. First, let us find out how to view and edit the Material IDs. Selected your character and go into the face sub-object mode. With this sub-object mode selected open the “Surface Properties” rollout. Located inside this menu there is a selection textbox and a “Select by ID” button.
[image: image1.jpg]£ Microsoft Excel - hours

log.xls

@)t Ed on Irsert Farmet Lods Dote indow o

=18 x|
=181

JDEH\Q&Q’)\%%E\{M\

arial

SR =

cu-lmz

EHs %, 98/0-0-A-2

MGMT Structure

=
ee 0-230

Rough Character Models Done
Basic Level Models

Sorme Prop Models

Sirnple Models for Loading

@ |~ o o e [|~

9
10
1"
12
13

14
15
15
17
18]
K
pi]
21
2
23
24
E3
%
27
]
2
El

Start Creating File Structure
Start Working on Model Export/mport

Story Dane
[Game play Done

[
ee 0-30-0
Character Texture Started
Level Texturing Started
Meain Character Modeling Done

Level Madels Dane

Character Rigging Started

Mo-Cap Stated
Sounds Ambient Noises

E
eek 4 06-0
Main Characters Textured
Environment Textures Done
Props Done

Ul started

Export one level for testing

Meain Character Rigging Starte
Applying Animation Started

Red tape stuff n progress

Sheet? / shests

31
[4¥TH\Sheet1
Ready

F G
ee 0 eek 6 2
Figure out character export User Interface Don
Figure out level export
Props export with Collision Done

Ul rough done

Texture Refinemen
Model Refinement

d Rigging in progress Rigging Done

Voice Recordings
Docurnentation Up

Clicking on this button (Select by ID) brings up a small window where you can select which ID you want to display. The entire mesh should be defaulted to the first material ID, so type in “1” and click “ok”.

The entire character Mesh should now be highlighted.

[image: image34.png]nd-alone Lic

mpire_Femal

19 500.ma EIEX|

File Edt Tools Group Views Create Modifiers Animation GraphEdtors Rendering Customize MAXScript Help Ilustrate!
D RN% I > O A 4| w2 Ve TR X Y Z|x

Objects Shapes Compounds | Lights & Cameras| Particles Helpers | SpaceWaps | Modiiers Modeling Rendeiing SkinTal |

a1 =

o
o

Maciod Macrod

| 7| £ @
oy

Modfer List E

B Editable Mesh <
Vertex
Edge
Polgon
Element

a1 8

to @ Obiects € Elements

Remave lsolated Vetces

ViewAlgn | Gid Alin

Make Planar | Collanse

VMBS NR|Y RE =R

Normas:
Fip Uniy
Fip Norm Mods
Malerial

DT 3] SelectByID

Smoothing Groups:
5|8 7[8
910]11]12[12)14[15[16
17|12 19] 20[21 22] 23] 20
25 28] 27| 28] 23|30 71| 32
SelectBySG| Clexal

Auto Smooth| [55 2

Z Edit Vertex Colors-
(e __~—X . —

— Huminatore]

Apha [T000 3

e b

s @ & 0w s @ s M s @ s W s 0 !
1 Dbject Selected 2 Blx v 2] Grid = 0.254m oy | AttoKes[Selcted <] e [F] e [oe | Q BB

Cick o1 clck-and-drag to select objects Add Time Tag SetKey| KeyFiers i o B > b

[image: image72.jpg]

Now it is time to change this into nice separate pieces for our UVW map.

Setting Up the Material Library

The first step to skinning your character is to setup your Material Library. Click on the icon in top toolbar or hit “m” on the keyboard to bring up the Material Library.

The window the pops up should look like the image on the left.

[image: image73.png]1% 18 [[@ [4 [%[0} [T
B —

5% 8 o e 00|

E Shader Bt Paraeers

" wie I 25ided
I FaceMap [Faceted

Birn =

E Tl et Parmeters

- Sellumination

= Anbiet o [|

— Diffuse:
Dot j Opact: [T 2| |

- Specular Highlghts

SpecularLevel: [T 3| |
Glossiness [10 3 |
Soter: [07 2

i Evended Paranelers
& Supersanping
& eps

D Dymaies Propeties

Now, create 12 default textures/materials with different colors – changing the diffuse color channel for each material is all you need to do. All of these materials may not be used. Here is what your Material Library should look like after you have all the textures/materials setup. (See image to the left)

After all your materials are ready it is time to start assigning material IDs to your mesh. This is done in the sub-object face mode with your mesh highlighted. Now start selecting faces that you wish to have a different material ID. The image below shows the selection of the front side of the legs that should be assigned a separate material ID.
[image: image35.png]191 Vampire_Female_500.max - 3ds max 5 - Stand-alone License

5 o Jespecive
o '/

- o
v

+ Dyramics Properte:

[image: image74.png]022 |% X |@ |4 % o)|® |[iT

& & w i 6]0 [

9
3

I

E Shader Bt Paraeers

" wie I 25ided
I FaceMap [Faceted

Birn =

E Tl et Parmeters

- Sellumination

= Anbiet o [|

— Diffuse:
E

Opact: [T 2| |

[~ SpecularHighights
Specular Level: [T 2] _|
Glossness: [0 2| _|

Softr: [T7 2]

— |
-

i Evended Paranelers
& Supersanping
& eps

D Dymaies Propeties

Once you have all those faces selected you want to assign one of the materials that you created to just that selection. Click and Drag whatever material you wish onto the selected faces from the Material Library. Now you have a second material ID. Deselect the faces and make sure that the selection you made is a different color from the rest of the object. Make sure that you do NOT use the same material twice. Another cool trick that you can do to make sure you get all the faces of your mesh is “hide” the faces once you have made a Material ID. You can do this from the very top of the menu where your Material ID selection menu is – see image to the left...

Continue selecting faces, adding different materials to the selection, and hiding the faces until you end up with all the faces assigned to a specific Material ID. The image below shows all of my Material IDs. If you want to add faces to a Material ID make sure you have the faces that you want to add and the rest of the ID all highlighted and then assign the same texture to the entire selection.

[image: image36.png]191 Vampire_Female_504.max - 3ds max 5 - Stand-alone License

2] 1o Material Editor - 11

ki

—

Notice that more important aspects of the mesh are split into their own material IDs’. The torso usually has to be two separate IDs, but the boots were split into two different pieces, because laces will be added. To do this, highlight the faces where the laces should be and give them their own ID.

[image: image75.png]PrLe®T

Export
‘Whole Shape

Sequences
Test Descrpion
General
Renumber selecton

Embed Shape

Fiegiter Detais

1| ™V S|
([Pameles |
[EvorConiel ;|
([3__Dump File Contral___J;|

Load Defaul Config
Save As Defaul Carfig
Load Contig

Save Config

Now that we have the mesh split into nice separate pieces we can now add an “Unwrap UVW” modifier to the mesh (the modifier is located in the modifier list). After the modifier is added, click on the “Edit” button in the Parameters menu. (See image to the left)

[image: image76.png]o3

¥ Clear Selection

Cancel

After clicking on the “Edit” button the “Edit UVWs” window will pop-up and you should have something like the image on the right. What a mess! The first thing that needs to be done is to break all the UVWs from the different Material IDs. Using the drop-down ID menu (located at the bottom of the window – in the middle of the menu bar) select each of you Material IDs separately. Make sure that you are in sub-object face, selection mode and highlight all the faces in each ID, then right click on the selection and “detach the edge vertices”. (See image on next page)

[image: image37.png]191 Edit UVWs

D]

Seastions
Oispiar
Fiip

With the faces still selected – go to your modifier stack and click on “select face” under the “Unwrap UVW” modifier. Under the parameters menu in the "Sub-Object Params" rollout there is a list of the different coordinates, click on “Y” and then the “Planar Map” button. This makes your selection a “Y” coordinate map and is now much easier to work with. Assign a “Y” coordinate planar map to each Material ID. Remember to use the drop-down menu to select each material ID individual and then break the IDs before you add the planar mapping to the selection.

You don’t have to add a planar map to all the IDs. Check out the Mapping menu at the top of the window for more mapping options. The only different mapping option used was “front/back” mapping for the arms. When it was time to do the face no planar maps were added to the selection – just detach the vertices on the edge. After all that is complete you should end up with something like the image on the next page.

[image: image77.jpg]Caemo
I ByVeten
T lonore Backiacing
T fcnoreVisbl Edes

Pl Thies =0 2]
I~ Show Normals.
—TT
L hie Myice e
e A

Lo Peste

0Faces Selected

([F___Soitselection
([EdiGeonety]

Marmals:

Fiip Unify

Fip Nomal Mode

Wt
D 2| Selectbyid

- Smooting Groups:

1[2]3]4[s]5]7]s]
O TIE
e e
| e

| Elw QB 5
ol

It is still a big mess, but we are getting there. The next step is to move each individual Material ID into its own spot around the square, just make sure that no group of IDs’ overlaps another.

Now comes once of the most time consuming parts of skinning a character. Every single one of the Material IDs has to go inside that little square that is in the middle of the window. But first, the Material IDs have to be “cleaned up”. This is done by selecting each UV and moving it into a better location. When moving vertices make sure that you are first in that selection mode.

[image: image78.jpg]7|3 |e T
I

|9 B UnwepUw T
EEpe

B EdiablMesh

Vet

£

Fae

Polygon

Flement L]
w8 @

&l [=]

I Ignore Backfacing
T~ Select By Element

I~ Plonarnge [T50 3/
Selectitat | [T 2

SelectsE | [T 3
T~

Edt.

s | s

Load.

Charmet——————
Pa Map Charnel: [T 2]

 Vertex Color Channel

The image to the left shows my material IDs all spread out and not on top of each other.

[image: image79.png]=)

191 Edit UVWs

=]

o=\ /g
— : 2

This image to the left shows what the front of the torso looks like after the vertices are moved around.

When you start tweaking the arms and legs you can chose to stitch one of the sides together. This is easily done by using the target weld function.

When a UV is highlighted in the Edit UVWs window another UV is highlight a different color. Sometimes it is very hard to see the other vertex, but keep looking it is there – the UV that you highlight should be red and the “other” UV would highlight blue if you are using the default interface. These two UVs are in a way the same vertex in the viewport. With this in mind you already know what UVs to weld together! When debating on what to weld, make logical decisions. To save space in the little square you can put same parts of the mesh on top of each other. For example, we know that both of the arm textures, hands, boots, boot laces, and each side of the hair were going to be the same on each side, so just line up those selections right on top of the other. Here is the final UVW map, with everything welded together in its nice little square. A few of the parts that are a little confusing are labeled because they have been tweaked so much. A cap and collar were also added to the mesh. An image can be seen on the next page.

[image: image38.jpg]Leg 4

Leg 2]

Qaliss

Boots front and Back

Backlof Torgo

(e o
A
e

%

G\
= AR NI
e NATRES (
:mggmmgv‘m

e

Arms

One final step to do before we can start texturing is to use a plug-in for 3D Studio Max called Texporter – it is a free plug-in and can be download from a lot of different websites. Using this plug-in you can generate an image based off of your UVW map. In the Texporter parameters rollout make sure that your options match the ones from the screen capture below. Now save the image – click the little icon in the upper left hand corner – you are now ready to texture!!!

[image: image39.jpg]|

/
% Image Size [piels)

widh: [0

Height: [T022

olefe @ X [FeEARha -

UVW Channet
® Map Chanrel: [T 3

Vertex Color Charnel

Pick Dbiect

Display
¥ Ploygon Fil
V Edges
@ Edges Only
Allines
Wiap Around
Backface Cul

Only Selected
onpiD [T 3
Mark Overeps [

Colaize by:
W Smocth Colors

Consart: [

xz
@ Face Nomals
W Mapping deptt]
Selection
Materia ID
Face Area

Vertex Color

5 & Mmoo 7 R !
i dfefimun c[aa-0zmn | wakey[sdkeed] v i [B] e [on1 [Q B 5
Add Time Tag Setkey| KeFiers. o B> e 6

FINALLY!!!

The skinning portion of your character is now complete. The next step is to take the UVW image that you made using the Texporter plug-in into your favorite 2D texturing tool. This tutorial will roughly show how I created my texture using Adobe Photoshop. This is not a tutorial on how to use Photoshop. This is just an explanation of the process used to make the texture for the character using the template that was created from Texporter.

First make a new Photoshop file that is the same size as the image saved from Texporter. Then duplicate the layer and make the new layer 50% opacity – this layer will always be on top of every other layer so that it can be turned off and on to use it as a reference to were different parts of my texture will go.
[image: image40.png]Adobe Photoshop,

X
Do bt Insge Laer seect Fiter Wew Wndow tep

a@n

T n
Uments 3nd Settings|Chad Bernhard|Deskiop| TECH 5150{Femals Vampire|Femalevampire_TextureMsp_{32.p5d @ 66.7% (Layer 36, RGB)|
AT

LL_Q Layer O cony

Layer 6 I Character __Paragraph
5]

.
N

1€ Franin Gotric | Mdu
AT et | & [Gute)
A e v AY

IT [1o0% T

o Gaor

=7 el
0H AONN

cw
RS

TT TTETT

L‘J

Engien: US| 3 Streng

maiampire_Texture

B poc: sm/345m B Drav election from center or subdract from existing elction.

A good way to texture a character is to use free images taken off of the web – there are websites out there that offer free use of their pictures, but be carefully because there are also a lot of websites that require you to pay to download and use their images. However the majority of the images are from scans that are made from material that I have already purchased. A lot of people do not use scans and make unique work all the time – the process is up to you.

Once all of the image assets are together, start putting them inside the Photoshop document and start using the Smudge tool and Rubber Stamp (being one of the best tools in Photoshop for creating textures) along with many other filters.

Here is a screenshot of the “leather” layers of my character.

[image: image41.png]1€ Adobe Photoshop.
Fle Edt Inage Lover Selet Fiter Vew Mindow Hep

HRPIE | reatrer: o5 St | sty [Rormat] v Height e

Cotor st

E

emaleVampire_TextureMap. ® 66.7% (Layer 36, R [Layers \(_cromes C pans

Lo O @ o foox
_— 2

Il R e

L [Character ~C_Faragragn
) RO | =T

£
AT

T Frankin Gothie | 11260

ATUAY
AORN

=7
05,

Tl 9] & o

Ay [wetrsv| AY

IT [1o0% T

o Gaor

¢@
£

TT TTETT

e Ush v Ba[steng v

i

maiampire_Texture

Swatches

B poc: sm/345m B Drav election from center or subdract from existing elction.

At this point add the texture to the character in Max. First save the Photoshop file as a PNG file, then reopen 3D Studio Max and open the Material Library. Then select a material that was not being used and apply the PNG image as the diffuse color. The reason why this was done is because now both Photoshop and 3D Studio Max are open, so every update made to the texture in Photoshop can be resaved over the PNG image that you made and see how it looks in 3D Studio Max. Continue to edit your texture until you are done!
Here is the final texture in Photoshop.
[image: image42.png]1€ A

Ble

dol
Edt

%nﬂ.é

5 AN 0R AT

Glle 7 e Qe

AORNINAT

Photoshop.

Inage Layer

FeLa

& Female)
o

0

Select

Feathar: [0 styte

Fiter

Vew Window Help

Hormal 52

mpire_TextureMap_132.psd @ 66.

E

Brushes

I Layers " Chamels paths

1] Cotor " Styis

Layer 0.copy

o] opsty: o0 > e &
Dok a ool Ll -
g A amy m—

E T E : %

5

B Doc: /345

B Drav election from center or subdract from existing elction.

[CiiDacuments and Settings|Chad Bernhard\Desktop TECH 515g1Female VamprelFemale\Vampire_Textureiiap_132.p5d @ 66.7% (Layer 36, RGE)|

Layer 16

Layers

Layer 33 copy.

Layer 33

Layer 19 copy.

Layer 14 copy.

;
LY
T

Layer 32

Layer 3t

N [Laverzeony

Layer 2t

Layer 19

*|iyeres

Layer 1 cony 2

Layer 1 copy

Layert

Layer 34

Layer 3 copy

g Layer 23

¥

Layer 35

Character _Farsarsgh

ITC Frankin Gotic

AT 149t | & [Gute)

| e

Ay v [

IT [1o0% T

o Gaor

TT TTETT T¥%

e Ush v Ba[steng v

Tl Presets

maiampire_Texture

Character Setup
In this lesson attention to detail is very important.

Every name in quotes is “CaSe-SenSitive”.

You may also want to refer to the video tutorials and the file pack provided.

The torque engine treats one unit in 3D Studio MAX as one meter. To ensure that you are working at the proper scale set your system units and display units to meters in the Units Setup.

NOTE: make sure you change display units AND system units to meters!
Once your character is completely modeled, the Torque specific setup may begin:

First, the character must be facing the positive direction of the Y axis. If you go to Front view in 3DSMAX, you should be looking at the character's backside and his feet should be at the origin.

For the purposes of this lesson and the ease of transition between 3D Studio MAX and the Torque engine, the character should be approximately 2.4 meters tall.

Next, create a box which encompasses your entire mesh and name it "Bounds". The box must be large enough to encompass to most extreme of character deformations and animations based on a biped that will be created later. Make sure the pivot of the bounding box is in the correct location (origin: 0,0,0) and orientation:
In the hierarchy panel, select Pivot and Affect Pivot Only. The pivot should be moved to the origin with the blue arrow facing up, the green arrow facing in the positive Y axis, and the red arrow pointing from the center or the character to the character's right(in the top view).

Finally, link your box to the biped node: Bip01.

Tip: To make the box wireframe & allow you to see-through it, open up the display panel and check “Display as Box.”

Video: CharSetup_bounds.avi
You must now make sure your character mesh transforms are reset. To do this, make a box, put it at the origin and then collapse the box so that it becomes an editable mesh. Go into the modifier panel and click on the "attach" button, then click on your character mesh to attach it to the box that you just created. The character should now be a part of Box01. Select the box shape by Element in the modifier panel and delete it. Your mesh now has a new transform and should now be renamed "bodymesh". Move and orient your pivot to the same specifications as the bounding box.

Video: CharSetup_trans.avi
To export a main character from 3D Studio MAX into the Torque Game engine you will need a few plug-ins and macro scripts. These files can be found in the Max2torque file pack. Keep in mind the steps prior to this stage of the character setup are essential for a proper export of your character.
Create a skeleton for your character. For the purposes of this lesson, a character studio biped will be used. At this point it would be prudent to refer to the Character Skinning and Rigging lesson...

Once your character is rigged, pose your character in a rest pose. This should be the standing pose for your character at rest in the game. Also, you should key frame the biped joint rotations in the first frame to retain the position. If you toggle between the figure mode and biped mode, your character position should snap back and forth between the originally skinned pose and you newly positioned pose.
The next step is setting up all of the dummy objects torque needs for a main character. You should refer to the Leon.max file in the file pack to reference the parent-child relationships, pivot location and orientation, and dummy object positioning with respect to your model. Pay special attention to the pivot orientation of the “Unlink” dummy object, the “Cam” object and the “Mount0” object.

Tip: A big time saver would be to merge all of the dummy objects from the Leon.max file into your scene. Do not merge any geometry or any of the objects ending in “Nub”. Choose Yes To All in the Merge File dialogue.

[image: image43.png]St
T @ Alphabeical
BT L Toet =
BipOT A ToeONub, € ByTope
BipD1 Headub By Color
e
Biplt L Fingerhub [a—
BipO1 L Finger1hub I Geomety Al
BipO L Finger2Nub —
Bip01 R FingerNub ¥ Shapes Mone
Bipll i FingeriNub
BIpl1 : Finger2hiu ¥ Lights Invert
IV Cameras
¥ Helpers
IV Space Warps
IV Grougs/Assemblies
¥ Bone Dbiects
Al Nore Invett

¥ Disply Sublies. I™ Case Sensiive oK Cancel

I Select Subties

[image: image44.png]e of the objects being mergedt

£
isparened o the olowig objctinth orgine soene
801 Head

i bject wilh the same name exists nthe cutent scene.

Do you wanit o reparent Eye to Bipd1 Head inthe curtent
scene?

 Video: CharSetup_merge.avi
At this point you will create your levels of detail. Select your bodymesh and take a single frame snapshot at frame 0 and choose mesh in the dialogue box. This will create an exact duplicate of your bodymesh. Change the name of the new mesh to “MultiRes::bodymesh”. It is case sensitive. In the modifier panel choose MultiRes and click Generate. Link this new mesh to your original bodymesh.

Video: CharSetup_multires.avi
[image: image45.png]-Srapshat
© Singe € Range
From [T 2]
TefT0 2

Copies T 3|

- Clone Method

© Copy C Reference

© Instance © Mesh

*IMPORTANT: If you are using 3D Studio Max 5.0 or newer, you must replace the Multires.dlm file in your Max standard plugins (stdplugs) with the Multires.dlm (136 KB) provided in the file pack. If you have to replace the file you must restart Max.

With MultiRes::bodymesh still selected you must now dip back into the file pack. There is a macroscript called AdjustLODs.mcr you must run to set the Levels of Detail for the Torque engine to process the levels of detail. Open the maxscript, select every line of the script except the first line and drag it into the shelf. It will create a button that you must click.

[image: image46.png]ntitled - 3ds max 5 Education:

‘ot for Commercial Use - Network License

Bl Edt Toos Goup Views Creste Modfiers Character Animation GraphEdtors Rendering Customize I

[e %% &N E R T+ 140 aE@

[image: image47.png]=lolx|

Apply Setings
Gt Settings

e [0
[w %3
(o 53
E
(o 023
o o
[6
[37

o far (60 o> [0

et
2|

(This dialogue will pop up and you must choose all of these exact settings. Make sure you click each of the buttons in the LOD Settings, set the proper values, and Apply Settings.

Next, Right-click the “MultiRes::bodymesh” mesh and select “Properties.”

Under the User Defined tab copy the two lines and paste them into the “bodymesh” user defined properties.

[image: image48.png]Gened | Adv Uihing | mentarsy | UserDelied |

User Defined Praparties:

MULTIRES:DETAILS
MULTIRES:SIZE:

007606405029013007.005
4580 6030,18126.3

Now your character should be ready to export to the DTS file format which Torque will recognize as you player. This is where we implement the player.cfg file and the max2dtsExporter.dle files. You must copy the max2dtsExporter.dle file to your Max plugins folder and copy the player.cfg and texture file (anything.PNG) file into the same folder as your character max file and restart Max.

You can access the exporter by going to Utilities panel > More…, and select “DTS Exporter Utility.”

Now, edit your player.cfg file in notepad or your favorite text editor. There are several online resources explaining what the cfg file does, however for the purposes of this lesson the cfg file used to export Leon will be used.

Tip: You can comment out lines of code using: //

You must AlwaysExport Eye, Cam, and Mount0 for the file dts file to work in Torque.

AlwaysExport:

Eye

Cam

Mount0

Mount1

Mount2

//jetnozzle0

NeverExport:

Bip01

//Bip01 L Finger*

//Bip01 R Finger*

Dummy*

//Bip01 L Toe*

//Bip01 R Toe*

start01

mountpoint

Bip01 R Toe0Nub

Bip01 L Toe0Nub

Bip01 HeadNub

Bip01 PonytailNub

Bip01 L finger0Nub

Bip01 L finger1Nub

Bip01 L finger2Nub

Bip01 R finger0Nub

Bip01 R finger1Nub

Bip01 R finger2Nub

Bip01 TailNub

DELETE*

//Ski0

//Ski1

//Light0

//Light1

//Mount1

//Mount2

+Error::AllowEmptySubtrees

+Error::AllowCrossedDetails

+Error::AllowUnusedMeshes

-Error::AllowOldSequences

-Error::RequireViconNode

-Param::CollapseTransforms

-Param::findMergeIndices

-Param::computeScreenError

=Params::T2AutoDetail 0

Once you are finished editing your cfg file save it and load it using the DTS Exporter Utility in the Utilities Panel.

[image: image80.png]EEX
19\ Edit UVWs

L < [|ANIDs ~

Expand Configuration Control and Load Config…

Make sure you deselect any geometry or dummy objects in your scene.

This is where you load the “player.cfg” file you just saved.

Once you load the file it should change some of the Error and Dump file controls, as well as the parameters. Double check the Parameters and make sure “Collapse Transforms” is NOT checked.

Next, click Register Details and Export: Whole Shape.

Save your file as “player.dts” in the same folder as your “player.cfg” file.

Video: CharSetup_export.avi

It should take a few minutes and in some cases it can take as long as an hour, so be patient. If you’ve followed all of the steps you should not have a problem.

NOTE: If you get an error such as cannot delete Bip01 because it is a bone or something similar to that it means you skinned your Bip01 node to your mesh. To fix this edit the weight table of your bodymesh. You can access the weight table in the Modifier panel. Change all of the vertex weights that are painted to the Bip01 node to the Pelvis node, then Remove Bip01 from your Skin list. Also your Footsteps should not be skinned either.

Once the hour glass disappears, your character should have exported. If properly exported there should be no dialogue boxes to inform you.

You should now have a “player.dts” file in your character folder.

Dip back into the torque file pack and copy “unMessDTS.exe” into the same folder as your “player.dts” file. You must then run the file using Run… from the Start Menu in Windows. “UnMessDTS.exe” must be followed by “player.dts player.dts” Essentially this is telling the UnMessDTS program to change the original “player.dts” file to “player.dts” that works in Torque. You can name the second “player.dts” anything you’d like but I recommend leaving it as “player.dts” which will replace the original.

[image: image81.png]P

e

LRIk

Program
 Input Output

unMessDTS.exe player.dts player.dts
Now you should have a playable main character named player.dts. The texture file should always stay with the dts file.

Good luck and have fun!

Mo-Cap

To create the animation for the torque engine we decided to go with the use of a motion capture system. Due to the time constraints of the project and the availability of a motion capture system the team thought this would be a faster more productive way to get our own animations into the system.

To create these animations we sat down and planned out what the minimum number of animations that were going to be needed to create working characters in the game. We came across five main animations per enemy and thirteen animations for the main character Leon. The Art Director who was in charge of the overall look of the game, the tech director who was in charge of things like capturing the animations, and the director sat down and discussed the look of the animations. They came up with the overall style of each character and how many animations we were looking for.

After the animations were laid out, the team then planned the motion capture session. The first thing was to set up the actor in the motion capture suit. In this case we used one of our group as the actor. Setting up the actor involves several steps.

- Measuring the actor

- Putting the suit on the actor

- Calibration of the system

Step 1:

In this step the people working with the suit needed to measure the person and input their measurements into the computer to get the Gypsy 3.0 system set up correctly to match the actor.

Step 2:

The group has to put the suit on the actor. In this step they will line up all the potentiometers described in the Gypsy on the major joints of the body. During this step it is important that the suit fits correctly to get as accurate of data as you can.

Step 3:

At this point the actor and the person running the system has to put the suit through a calibration process where the recording process is lined up with the information coming from the suit. This is a long process detailed in the documentation with the Gypsy suit.

After the actor is set up then it was time to record and save out the information from the suit. The animations were run through several times to get the timing correct. After that one or two examples of each animation was recorded in each take for variety. These were saved out for import into Kaydara’s Motionbuilder.

Clean-Up

Once the animations are saved out of the gypsy system they can be imported into

Kaydara’s Motionbuilder. Once into Motionbuilder, the animator has to clean and trim up the animation. The animator can use the built in tools of Motionbuilder to edit the animation. Provided are tools to cut out unnecessary frames, smooth out the curves of the animation and retime the animation.

[image: image49.jpg]Leekint| BvHZios =l & & cFE

= Kright

right

Knight

tattackL bvh

¥ krightattack1. fox

tattackireworked bvh

worked_Take_001.bvh

(= Krightattackarewarke]
[EkrightDamage.bvh
|5 KrightDamageRework|

tAttack Ireworked_KnightAttackLbvh |3 KnightStandingPose.bl

KnightswordDraw. bvh|
KnightswordDrawrew

File name:

[Kghinaciztnn

Files st iypet | 1 Supported Formts (“byh ht* ame s 38 Cancel

In motion builder, the animator will select all of the bvh architecture. After this is done, then they can begin to edit the data for the structure. This is done by going to the filters tab. Here the animator has several options. The first one that should be selected is key reducing. Select this, change the value to somewhere between .5 and .75 and then hit apply. After seeing the changes then they should hit accept to accept the changes. This works the same for all filters applied. The next filter is the smoothing filter. Apply and accept a smoothing filter.

[image: image50.jpg]

Once the animation is cleaned up, then you can begin to resize the data. Select all of the animation and play through it to see what parts are needed. Once this is done, delete all keyframes that lie outside the timeframe of interest. At this point use a time shift and scale filter to move the animation to start at frame 0. When the animation is edited to a clean appearance then export as a bvh file and move onto the next animation file.

[image: image51.jpg]

(See Camtasia File as reference)

Applying Animation

The next step in the process was to bring the animations into 3D Studio Max v5.1. To do this a biped needs to be created in Max. From here the animator can open a motion capture file onto the biped. Apply the bvh file to the biped. During the loading process make sure that key reduction is on. Doing this allows max to use the smallest number of keyframes, and makes it much easier to modify. After this process is complete, the animator can scub through the animation and check it for intersections or weird data. At this point it can be modified to what the animator needs. After this is complete the animator needs to save this file out as a bip file.

[image: image52.jpg]

[image: image53.jpg]MoknCpoa [t S R Do VAT
oo et
N e | —
L
N e | (e e
s e i —
Soacc PO el o
S o N ot
Eacton Tokwarice: Pebis FT_cr_:®
StraDaee e o
e e [T 3| |
Lot o |
F Dy Emir: Fight Ao | o | E—r
Tomaren LetLeg. oot e 4
Fanziont [ot
e i Fir—dF

—
= —
e || 2
= i o

s

e

Pose Adusment: |

e e T

The next step is to aquire the models with the rigged character from the modelers. When this is done, open the file, and delete the two body meshes that should be found there. Now all that’s left is a new biped structure with all of the bounding boxes and dummy nodes that were used to export the character. Keep these; they are needed in the export. Once this is done, begin opening the saved bip files one at a time onto your biped that was set up for the character. This will not change the size of the biped or anything. Now you can begin to export them one at a time.

[image: image54.jpg]

(See Camtasia File)

Exporting

To export the animations out of max, there needs to be a sequence object in the scene to tell the export when to start and stop. Once this is created go into the track editor for the sequence object and key the Sequence Begin/End node under the Object node. Put a keyframe at the beginning and end of the animation that is being exported. This tells the exporter what frames to export. Next go to the dts exportation utility. This is under the utility panel in the more button. Now load the cfg file used to export the character. It is important that the same cfg file is used b/c if the same nodes aren’t exported from the animations then they will not work on the character. After this is complete then go to file>export> and export a dsq file. This is the animation sequence file.

[image: image55.jpg]

[image: image56.jpg]SV R WY EERST He [MFES w— 3|

(See Camtasia file)

Once the file is exported then a .cs file needs to be created to control what animations are used on the character. There is an example provided with the torque engine. Use this to create the cs file and save it out with a new name. Make sure in the file, that the character model is referenced like so: baseShape = "./Leon.dts";. Next add your animation into the .cs file at the end by adding new sequences like sequence41 = "./player_leonstrafe.dsq strafeleon"; to list to make the animations active. The sequence number is the list of animations. The next part is where the file is located and its name. And the last part is the name assigned toe the file that will be referenced by the engine.

[image: image57.jpg]

(See Camtasia file)

In-Game

The last part is to test the character in the model viewer. Put all of the .dsq files into the proper folder in the game structure. Load up the Modelviewer.cmd file that was included with torque. This will be a default viewer to check the animations and the models in. Once in this package, load the character into the viewer. The animations should already be loaded onto the character thanks to the .cs file. This can be checked in the thread control.

[image: image58.jpg]

Level Construction
(See the video help files located on the CD: Level Export.zip)
Introduction
This section of the Game Developers Handbook will deal with the construction of the levels and how they are exported into a game engine. In this case the final goal is to get the level imported to the Torque game engine. This unfortunately is a fairly complicated process. There are early signs that the process pipeline is taking a less complex direction, however those paths are still a bit unstable.

Getting Started
When constructing levels for a game it is important to understand that there are two main different types of levels, Interior and Exterior, and depending on which types of these levels needed to be constructed, the steps to completion can be quite different. Exterior levels are aptly named because they are exterior or outside. This type of level is usually a terrain and all sorts of objects (i.e. trees, small buildings, weapons, items,...etc) placed on the terrain to give it a more realistic feel. An interior level is a level that takes place inside (dungeon, castle, building, etc…) and therefore the character is surrounding by walls and a ceiling and separate lighting from the sun. These two types of levels have very different approaches.
The exterior levels have a fairly straightforward approach. The terrain is already setup in torque, and is just in need of modification. After that anything that isn’t the groundplane/terrain is just imported as an object or “prop.” This process will be discussed in another part of the handbook.

The interior levels unfortunately are a much more complicated process to get into torque. While there are many different process’s available, this class was only able to get one pipeline working. Lets start briefly with the options that did not work.

Obviously for those computer graphics people who want to start building video game assets, it is exponentially more efficient to be able to create those assets using software that is already known. (i.e. Max, Maya, Lightwave,…etc) Since, this option had the potential to be the easiest, it was tried first. All three levels (two interior and one exterior) were constructed in Discreet’s 3ds Max.

Quark

Quark has a fairly complicated install and setup process. Luckily the garage games website has complete documentation available. The installation portion can be found at: http://www.garagegames.com/docs/torque.sdk/tools/quark/chapter2.html
The setup portion of the quark install can be found at: http://www.garagegames.com/docs/torque.sdk/tools/quark/chapter3.html
These websites have step-by-step instructions and if they are followed, quark will be setup and the creation process can begin.

[image: image82.png]121 Edit Uy
Fle Edt .
rring G

< O B

o \/\A‘IIIDs)

 The image to the left shows the basic UI for Quark. At the bottom left is all the objects that have been created and their names. More information on this is available later. In the top left is the creation icons that you use to create walls and lights and etc.

[image: image83.jpg]B T 50 *405 %000 oA BNV D
5588w
oo

tHittitt

To create walls, floors and ceilings within Quark, just click on the New polyhedrons icon on the top left side, click on Basic polyhedrons, then you have a choice over cube, platform, and two walls. The two different choices for the walls are just walls that are facing in vertically or horizontally.

[image: image84.jpg]File Layout Edit Tookoxes Search Commands Selection Torque Tookbars Options 2

Faoon DRSSO

T

rerere g

|»0ep e»a@i

@ossi pobhecions.
@ Complex pobhechons 1
R
@shepevuicers ¥ @wal
@ Game spectc »
@rock »
PGP

PoOD

—

Before you begin to create objects in quark, you may want to lower the grid size. (See image at left) A grid size of 4 is large enough to snap objects together direction but small enough to get detail. Once a wall is selected and created in the scene you will notice small boxes at each side. These allow the wall to grow from any direction. One great option to remember is duplication using Ctrl+D. Rooms/walls/anything can be duplicated and moved to some other part of the level. This will take an extremely large amount of time out of the interior level creation.

Lights can be created by clicking on the Torque entities icon. (Shown left) Then click on light entities then choose any light you need.

[image: image85.jpg]16 lights

Fie Layout Edt Toobo>

[image: image86.jpg]File Layout Edt Tooboxes Search Commands Select

e Mon DDRAS B O]

@ | @Prustbased enties >

lohe ertiies K] &iih_emiter_point

@pecia entiies ¥ Eliht_emitter_spot
Sloht_omni
Sloht_spot
Slight_strobe
Slght_pulse
Slight_puise2
Slioht ficker

St runway

Exporting

There are several exporting options available. A DIF file is the only one needed for Torque. However the option that exports both a map file and a DIF file will work out any errors that are in the file. I would also suggest a High Detail DIF file. The torque engine can definetly deal with it.

Errors that can occur during level creation in Quark

A variety of different errors can occur in Quark that will keep your levels or objects from being exported. The problems listed below are some of the things that occurred while the levels for this game were being created.

1. Rotating walls and/or objects: In quark you are able to select multiple objects and rotate them around to different orientations. While this is a useful tool it will randomly cause and exporting error and is very difficult to get rid of.

2. Texture in square sizes: The textures for quark don’t have nearly as many limitations as Torque does. However, since Torque is your final goal it is wise to follow their restrictions. This calls for not only square sized textures (300*300, 1024*1024) but also calls for it to be a power of 2. (256*256, 512*512). The maximum size allowable is (1024*1024) Its important to know this going in so you can create your textures to suit this and not have to go back and crop them later.

3. Use JPG or PNG: Jpg or Png image files are useable in both Torque and Quark.

4. Renaming the objects from “poly” will not save: In Quark, almost any object you create is labeled as “poly.” These can be renamed to suit your needs, however on restart the names will go back to “poly.” I am not sure why this happens or how to get around it but it’s a bit of an annoyance.

5. Scaling textures in Quark will result in an export error: Quark also allows you to scale or tile the textures so that they appear smaller in the game. Every time I tried this however, the exportation resulted in an error. I would suggest doing any and all tiling in Photoshop or some other image editing software.

6. Changing Symmetry: Another feature of quark is the ability to change the symmetry of objects created in quark alolng the x,y,and z axis. This also can result in error. Not always but most of the time. If it does, just set the object back to its original symmetry and the error will go away.

Level Exporting (From Quark)

[image: image87.jpg]T
n | Torque, Toobars Optians 7

ExporthapFile only B g

=

Prepare used textures
Buld DIF orly
Export220MapjBuild High Detai DIF

Export220MapBuid Low Detai DIF

Export220Map/Buid Naveraph
Export220Map/Extrusion Test
Exportz20Mapiioisy EnarfStatistcs
Export220Map]Include Preview Bimap

Export3MapiBuld DIF

Customize menu.

e

Torque Import

Once everything is perfect in quark or whatever level builder you choose that has a .dif exporting ability. You are ready to import the level into torque and test it out. Start off by opening up a compiled version of any torque game engine with some test levels.

[image: image88.jpg]Torque Game Engine SDK

Davelopment Test Appiication

Garageames.com

Select one of the test levels.

(Shown on left)

[image: image89.jpg]Garageames.com

Once in torque, you have a large amount of options available to you. By hitting F11 you are accessing the all of the editable options available in Torque.

Then, to bring in your exported level you can either hit F4 or click on Window on the top menu options then click World Editor Creator.
You can then browse to where your exported level is located. The levels should be located in the torque/examples/fps/data/interiors/(one of the test level locations). Depending on what program you exported from and what your settings are, you may have to copy the levels to that directory.

[image: image90.jpg]Torque Game Engine
Fle Edt Camera Werld Window

(1) 1354: MisionArea - Missionarea
(1) 1355: Shy - Sy
(1) 1358: - 3un
(1) 1357: Tenain- TerainBlock
E31358: PlaverDiopPoints - SimGroup
1300: Water - WaterBlack
1301: - nterarnstance
1302 nterarnetance

hapes
[statc Shapes
9 ission Gbiects

Move the file into environment where its easily accessible.
Walk through the level to check for errors

World Craft Inspector

Change Sun values to aid in lighting

Alt + L to relight scene

Level Setup within Torque

The Mission Editor is the in-game tool for creating and editing landscapes and placing objects in the 3D world. The mission editor is part of the basic engine infrastructure provided by the engine and is usable by all games and mods which use this infrastructure.

Press the F11 key while in the game to toggle the Mission Editor on and off. The mission editor will start editing the currently loaded mission.

The Mission Editor is composed of the several sub-tools, selectable from the Window menu inluding a world editor, mission area editor, terrain editor, terrain terraformer editor and terrain texture editor. All these tools share a common set of functions, menu and camera controls as described in the following sections:

Basic Movement
The normal movement keys can be used to control both the player and the camera. The right mouse button is used to rotate the camera or adjust the player's view.

File Menu
	New Mission...
	Creates a new empty mission with a default terrain and sky

	Open Mission...
	Opens an existing mission for editing

	Save Mission
	Saves changes to the current mission to disk

	Save Mission As...
	Saves the current mission under a new name

	Import Terraform Data...
	Imports terraform rules from an existing terrain file

	Import Texture Data...
	Imports terrain texture rules from an existing terrain file

	Export Terraform Bitmap...
	Only active from the Terrain Terraform Editor - exports the current terraform map to a bitmap

Edit Menu
	Undo
	Undoes the last action in terrain or world editing. Not all actions can be undone

	Redo
	Redoes the last undone action

	Cut
	Cuts the selected objects in the world editor from the mission to the clipboard

	Copy
	Copys the selected objects in the world editor to the clipboard

	Paste
	Pastes the current clipboard contents into the mission

	Select All
	Selects all mission objects in the world editor

	Select None
	Clears the current selection in the world and terrain editors

	Relight Scene
	Recomputes mission static lighting

	World Editor Settings...
	Accesses the settings dialog for the World Editor

	Terrain Editor Settings...
	Accesses the settings dialog for the Terrain Editor

Camera Menu
	Drop Camera At Player
	Moves the camera object to the location of the player, and sets the mode to camera movement mode

	Drop Player At Camera
	Moves the player object to the location of the movable camera, and sets the mode to player movement mode

	Toggle Camera
	Toggles between player and camera movement mode

	Slowest...Fastest
	Adjusts the speed of the camera

World Editor
The World Editor main view is a view of the 3D world. Objects in this view (interiors, shapes, markers, etc) can be manipulated with the mouse and keyboard.

The World Editor has three separate "windows" in the Mission Editor:

World Editor Tree

The World Editor tree view is displayed in the upper right screen quadrant in both the World Editor Inspector and the World Editor Creator. This tree displays the hierarchy of the mission data file. Objects selected in the tree will also be selected in the main view. There is a special group selection call the Instant Group. This group is where objects that are pasted are placed, as well as where objects created from the World Editor Creator are placed. In the World Editor tree view the instant group is displayed with a grey highlight. To change the current instant group, Alt-click on a group in the tree view.

World Editor Inspector

The World Editor Inspector allows the user to specify properties of mission objects. When an object is selected in Inspector mode, that object's properties will be displayed in the lower right quadrant of the screen. Once properties are edited, clicking the apply button will set those properties into the object. Dynamic properties can be assigned to objects with the Dynamic Fields Add button. Dynamic fields are accessible through the scripting language and are used to add game-specific properties to mission objects.

World Editor Creator

The World Editor Creator displays a tree view in the lower left corner of the screen. This tree contains all objects that can be created in a mission. Selecting an object from this list creates it and drops it at the center of the screen.

The World Menu contains world editor specific options for controlling properties of the current selection, as well as choosing where new objects are dropped. The following list describes the world menu options:
	Lock Selection
	Locks the current selection so that it cannot be manipulated from the world editor view

	Unlock Selection
	Unlocks a locked selection

	Hide Selection
	Hides the current selection to reduce clutter while editing

	Show Selection
	Shows hidden objects in the selection

	Delete Selection
	Deletes the currently selected objects

	Camera To Selection
	Moves the camera to the selected objects

	Reset Transforms
	Resets the rotation and scale on the selected objects

	Drop Selection
	Re-drops the selected objects into the mission according to the drop rule (see below)

	Drop at Origin
	New objects will be created at the origin

	Drop at Camera
	New objects will be created at the camera's location

	Drop at Camera w/Rot
	New objects will be created at the camera's location with the camera's current orientation

	Drop below Camera
	New objects will be created below the camera's location

	Drop at Screen Center
	New objects will be created in the world where the view direction hits an object

	Drop at Centroid
	New objects will be created in the world at the center of the selection

	Drop to Ground
	New objects will be dropped at the terrain ground level

Mouse & Keyboard
The following mouse and keyboard functions exist:

	Clicking on an unselected object
	deselects all currently selected objects and selects the clicked object

	Clicking in empty space
	click-drags a box around objects, and selects all objects in the box

	Shift-clicking on an object
	toggles selection of the clicked object

	Mouse dragging a selected object
	moves the selected objects, either on a horizontal plane, or sticking to the terrain, depending on the setting of the "Planar Movement" checkbox in the World Editor Settings dialog

	Control-clicking and drag
	moves the selected objects vertically

	Alt-clicking and drag
	rotates the selected objects about the vertical axis

	Alt-control-clicking and drag
	scales the selected object by a face on the bounding box

If gizmos are enabled in the World Editor Settings dialog, they can also be clicked and dragged:

	click-drag gizmo axis
	move selection along that axis

	alt-click-drag gizmo axis
	rotate selection on that axis

	alt-control-click-drag gizmo axis
	scale along that axis

Mission Area Editor
The Mission Area Editor displays an overhead height map in the upper right corner of the screen, with markers for mission objects, a box for the mission area and a pair of lines denoting the current field of view. Clicking anywhere on the display will move the current view object (either camera or player) to that location in the mission.

To edit the mission area, click on the "Edit Area" checkbox. This will display 8 resizing knobs on the mission area box, that can be dragged with the mouse.

The "Center" button will cause the terrain file data to be repositioned and centered at 0,0 in the center of the mission area box.

To mirror the terrain, click on the Mirror button. This will put the mission area editor in mirror mode. The left and right arrow buttons adjust the mirror plane angle to one of 8 different angles (2 axis aligned, 2 45-degree splits), and the Apply button will mirror the terrain across the mirror plane.

Terrain Editor
The terrain editor is used to manually modify the terrain height map and square properties. Terrain editing is accomplished using the brush. The brush is a selection of terrain points or squares centered around the mouse cursor. The brush is either a circle or square area, and can be one of several size selected from the brush menu. The brush can also be either a hard brush - where the affect on the terrain is the same across the surface of the brush - or a soft brush - where the brush's influence on terrain diminishes towards the edges of the brush. The Terrain Editor Settings dialog filter view controls the falloff of the soft brush.
The following terrain editing action modes can be selected from the Action menu:

	Select
	Painting with the brush selects grid points

	Adjust Selection
	The currently selected grid points can be raised or lowered as a group

	Add Dirt
	"Dirt" is added at the center of the brush

	Excavate
	"Dirt" is removed from the center of the brush

	Ajust Height
	The brush selection can be dragged to raise or lower it

	Flatten
	The brush surface is set to a flat plane height

	Smooth
	Rough areas are made more smooth in the bounds of the brush

	Set Height
	The terrain within the brush is set to a constant height (configurable in the Terrain Editor Settings)

	Set Empty
	The squares covered by the brush are made into holes in the terrain

	Clear Empty
	The squares covered by the brush are made solid

	Paint Material
	The current terrain texture material will be painted with the brush

Terrain Terraformer Editor
The Terrain Terraform Editor is used to algorithmically generate terrain heightfields. Heightfield operations are arranged in a stack, with some operations using the results of previous operations to produce new heightfields. The results of the last operation on the stack can be applied to the terrain using the Apply button.

The Terraform Editor has two panes - the top pane displays information about the currently selected operation, and the bottom pane shows the current operation stack. Between the two is a pull down menu for the creation of new operations. The first operation in the stack is always the General operation (which can't be deleted).
The following operations are supported in the editor:

	fBm Fractal
	Fractal for creating bumpy hills

	Rigid Multifractal
	Fractal for creating ridges and sweeping valleys

	Canyon Fractal
	Fractal for creating vertical canyon ridges

	Sinus
	Overlapping sine wave patterns with different frequencies useful for creating rolling hills

	Bitmap
	Used to import an existing 256x256 bitmap as a heightfield

	Turbulence
	perturbs another operation on the stack

	Smoothing
	smooths another operation on the stack

	Smooth Water
	smooths water

	Smooth Ridges/valleys
	smooths an existing operation on edge boundaries

	Filter
	filters an existing operation based on a curve

	Thermal Erosion
	erodes an existing operation using a thermal erosion algorithm

	Hydraulic Erosion
	erodes an existing operation using a hydraulic erosion algorithm

	Blend
	blends two existing operations acording to a scale factor and mathmatical operator

	Terrain File
	loads an existing terrain file onto the stack

Terrain Texture Editor
The Terrain Texture Editor is used to algorithmically place terrain texture based on the heightfield at the bottom of the terraformer heightfield stack. The texture editor has three main interface elements on the right side of the screen - from top to bottom they are the operation inspector pane, the material list, and the placement operation list.

Essentially, terrain materials (textures) are added with the "Add Material" button. This will look for any texture (.png or .jpg) in a subdirectory of any directory named "terrains". Once a material is added to the terrain, the user can select one of several placement operations that govern where that material will be placed on the terrain - they are:
	Place by Fractal
	Places the terrain texture randomly across the terrain based on a Brownian motion fractal.

	Place by Height
	Places the texture based on an elevation filter

	Place by Slope
	Places the texture based on a slope filter

	Place by Water Level
	Places the texture based on the water level parameter in the terraform editor

Pressing the "Apply" button applies the current texture operation list to the terrain file.

Transition from one level to the next

1. Open up Trigger.cs, in server/scripts.
Add the following right at the top:

datablock TriggerData(ExitTrigger)
{
tickPeriodMS = 100;
};

function ExitTrigger::onEnterTrigger(%data, %obj, %colObj)
{
%client = %colObj.client;
if (%client) {
commandToClient(%client, 'ExitMap');
} else {
echo ("Not a client");
}

}

function ExitTrigger::onLeaveTrigger(%data, %obj, %colObj)
{
echo ("Left Map Trigger");
}

function ExitTrigger::onTickTrigger(%data, %obj)
{
}

Ok, save and exec that in game.cs

2. Now, in client/scripts, make a new cs file called mapexit.cs and add this to it:

function clientCmdExitMap()
{

endGame();
$Game::Schedule = schedule($Game::EndGamePause, 0, "onCyclePauseEnd");
}
Save, exec that in client/init.cs

3. Now when you load up a map , you have to create a trigger.
Press f11
Then at the top of your screen click on Window and then World Editor Creator
Over to the right click on the + in front of Mission Objects and then the + in front of Mission and then click on trigger.
You will then see a popup, in the space for Object Name, type in: exit.
Then in the dropdown next to Data Block select: ExitTrigger
Then click OK, and it will be done.

4. Of course you will want to have something to mark where your exit is, a door, bush, hole, anything will do.

Exporting: DTS files from 3DSMax for weapons, ammunition and props

1. Before starting Max, ensure that you have copied the max5_2dtsExporter.dle file into your 3dsmax/plugins directory.

2. Open your file to be exported. Click the ‘select by name’ button or hit ‘h’ to bring up the object browser.

[image: image59.jpg]Fie €8 Took Grag Ve Gave Madien Crauie Aresin GrghEdhs Rendery s MSopt Heb.

A 8% gl IR doanl AW x v oz x i F e IER
B Q@2

3. If there is more than one object present in the scene, you will need to collapse all objects to editable meshes and attach them into a single mesh object. Do this by selecting all of your objects, right clicking on them and going to convert to > convert to editable mesh. Once this is done, select any single object, going into the modifier panel, and click the attach list button. Select all objects in the list and click attach.

4. Now your file should have one single object as shown below

[image: image60.jpg]5 § Virsion - Hetni L5 o] 2lalx]
Tl €8 Tk o, Vs G s O At G o G WA Wb

N %P EF AR o~ AW x v 2[x T & IER
- Q@2

5. Now we will ensure that the object is sized correctly for the game. Click on the utilities panel and click on the measure button. Using the scale tool, scale the object to make sure that it is the proper size in the selected units.

6. Select the object and click on the hierarchy panel. Click the Affect Pivot Only button. Now click the Center to Object and then the Align to World buttons. Now exit affect pivot mode by clicking Affect Pivot Only once more. This will ensure that the center of the object is properly centered and facing correctly.

7. Now with the object selected click on the move button and then right click on the move button, bringing up the transform type-in dialog box. Ensure that you are working in world space coordinates and then enter 0 in the absolute translations fields in the type-in box.

[image: image61.jpg]

8. Now we will define the boundaries of the object. In the create panel, click on the box button, creating a box that completely encloses the object. Name this object ‘bounds’ without the quotes.

9. Center the pivot of the bounds as we did with the object by going to hierarchy, clicking affect pivot only, center to object and align to world. Click Affect Pivot Only once more to turn it off. Then center the box itself bringing up the transform type-in and entering all 0’s in world space.

** If the box does not entirely enclose the object, you will get errors when exporting. Enlarge the box to completely surround the object and repeat step 9.

10. Go to the utilities panel and click on More. Select the DTS export utility. Ensure that the object, not bounds, is selected. Click Renumber Selection. Enter ‘2’ without the quotes in the field and click OK.

** Renumbering the selection is useful for props that will use multiple resolutions at different distances from the camera. Because our props will most likely use the same ones all the time, we enter 2 as the default.

*** A shortcut to clicking the Renumber Selection button is to simply rename your object, adding a ‘2’, without quotes, at the end of your objects name. This completely eliminates step 10.

11. Now we will add torque specific dts object into the scene so that torque will know how to handle the scene. With your object still selected, click the Embed Shape button.

12. Click the select by name button bringing up the list of objects in the scene. You should something similar to the image below. You should see; base01, detail2, start01 and your objects name.

[image: image62.jpg]CH & P L e
[o o o T DRIy
| ooy T e (=D >ODE

** If instead of seeing ‘detail2’ you see ‘detail-01’ or anything else, something has gone wrong. Select everything but your object and delete them. Ensure that your object is renamed with a 2 at the end of it’s name. Ensure that your object’s name has no spaces and it something like ‘object2’. Repeat step 11.

13. Now we will add collision to the files to allow your player to interact with the objects in the game. Select your object and go to edit > clone. Create a copy of the object, naming it ‘Col-1’ without the quotes.

** If your game is going to be rather demanding on your system, you can reduce the load by applying a multires modifier to the Col-1 object and reducing the polygon count of that single object.

14. Now bring up the select by name dialog and select ‘detail2’. Go to edit > clone. Create a copy named ‘Collision-1’ without the quotes.

15. The last step before exporting our object is to reduce its size to ensure that it is not huge in torque. In the select by name dialog box, select everything in the scene. Select the scale tool. Right click on the scale button. With everything selected, enter the value ‘3’ into the Offset: World field and hit enter.

** The 3% scale can be adjusted depending on the scale of your environment and the proportions of your characters.

*** It would be a good idea to save a copy of your file now in a folder named ‘Ready for export’ or something similar so you do not have to set up the entire scene again.

16. The final step is to export the object as a dts file. Go to the utilities panel with the dts export utility open, click the Whole Shape button. Give the dts file a name and location to be saved and click Save. The process may take a while depending on the complexity of the object.

** Some objects have taken more than 10 or 15 minutes to export.

Possible Errors: ‘More than one bounds node found’

In a situation in which you receive this error when exporting, it is usually due to the fact that your scene has more than one bounds object. Using the select by name dialog, ensure that you have only one bounds. If there are two, delete the extra. If only one bounds is found, the extra bounds is most likely being hidden somewhere in the file. Follow the following procedure to eliminate the extra bounds.

1. Ensure that your scene was saved either as the original or the ready to export file.

2. Go to File > New. Select New All and click OK.

3. Go to File > Merge. Locate your object scene file that you just saved and click Open.

4. When the Merge Objects dialog pops up you should see something similar to the image below. You should see two bounds object. Select everything except for the second bounds object. Click OK.

[image: image63.jpg]5i21x|

~Sot
& plphaberical

BeselT € ByType
e € By Color
stat0]

chaiz - Listtypes

bounds ¥ Geomelry

bounds T 5rapes

¥ Lights

IV Cameras

¥ Helers

[V Space Warps

IV Grougs/Assemblies

[V Bone Objects

Al Hore

[V Display Sublree I~ Case Sensiive. oK Cancel

I Select Subtiee

5. Now your scene should be free of the extra bounds node. Continue on with step 16 of the exporting procedure to save your dts file.

6. If the export procedure completes successfully, it would be a good idea to overwrite your previous ready to export scene with the current scene that is free of the second bounds node.
Sound Design
Game Style

Before the sound design process can begin, it is important to gather information about the game’s style in order to produce quality and enjoyable sound. There are many specific things regarding the game’s style that must be dealt with. The vastness of topics that computer games offer tend to force the sound design process to be intuitive, however there are considerations to sound style that can be made in all cases.

Time period

The game’s time period should researched properly if an audio style is to fit seamlessly. For instance, if your game takes place in medieval times, it can be a benefit to discover what types of music was performed culturally during that day in age. Each period of time can offer references for your scenes in gaming, whether it be a dreary, spooky evening, or a bright, upbeat marketplace.

Game Speed

If there are sections of your game that are fast paced, the music should be constructed accordingly. There may be a scene that has a timer ticking down, and an objective that must be completed before it ends. The speed of your music must be considered in these cases as well. To contrast, venues in the game that are constructed more to the purpose of character exploration should offer a smoother tune in the background.

Balance

The balance of the game’s audio should be kept in mind at all times. The goal of sound design is to mold audio to fit the game precisely, and without a balance of audio, the game is less likely to feel complete when it is finished. The balance of audio refers to the proper levels and sound placement in a game. Without the consideration of balance, the user could quickly become irritated by offensive, loud, and repetitive sounds, and bored with gaps in music, and unrepresentative sounds. This will be discussed further in the ‘Mixing’ section.

Sound Effects

A good place to start when designing the game’s sound is with the sound effects. These can include, but are not limited to, sounds for weapons (discharge, clip loading, etc), character vocals, monster/ enemy vocals, and game atmospherics (weather, ambient environment noise, etc.) Refer to the game design and game play documents for a list of all the sound effects that will be necessary for the game. The internet can be a large asset when compiling a sound effects list. As the effects compile, be sure to keep the audio files in an organized fashion so they will be more accessible when it comes time to mix them.

Music

After the music style has been discussed and the creation process is underway, it is important to consider how the music will transfer when the audio file plays through to completion. An elegant solution to music transfer in game is music looping. Music looping is the process of creating a seamless measure between the beginning and the end of the sound file. To achieve this, it will be necessary to acquire an audio package that supports .wav editing (assuming you are working with .wavs) and that also supports looped playback. When looping audio seamlessly, attention must be paid to the music’s time code (represented in the audio editor, usually as a ruler.) The audio file must end at the appropriate time in order to simulate a seamless beat. Another solution to looping is cross fading. Cross fading involves fading in the audio’s initial wav signature, and fading out its end. While cross fading offers a smoother transition that unedited music, it will not have the appeal of looping seamlessly.

Recommended audio packages: FL (Fruity Loops) Studio (for seamless looping), Sound Forge (Sonic Foundry), Creative Labs Wav Studio, ProTools LE.

Mixing Sound Levels

A final step in sound design for your game is the mixing process. The mixing process is necessary to make each audio file playable in game at any time without being intrusive to other sound files that are playing along. Obviously it’s a bad idea to play to tracks over music over one another, however the mixing process affords constant volume levels throughout the game’s score. The following steps can be taken to achieve a well balanced audio set.

1. To begin, import all over you audio files into the audio editing software you’ve chosen.

2. Make sure that each sound file is listed on a separate audio track.

3. Mute every audio file expect one music track.

4. Find the “Parametric EQ” or “Graphical EQ” in the software and apply it to the unmated music track.

5. Play the sound. You should be hearing only one music track. If the software supports real time mixing, begin adjusting the frequency sliders within the EQ you’ve applied until you achieve the sound most befitting the game. The same process should be down with the tracks ‘gain,’ which will adjust it’s volume.

6. If your audio software does not support real time mixing, you will have to apply and EQ and Gain effect and set their parameters before playing the sound. In this case the mixing process will be trial and error. Many software mixing packages offer a “preview” option that may save you time. In this case, adjust your EQ frequencies, hit preview, hit stop, and repeat the process.

7. Once you have completed mixing this track to your liking, un-mute a second track (try a sound effects track) and play it along with the first, mixed track. Apply the EQ filter to the second track and mix it so that it sounds just as you would want it to in game. You’ll generally want your sound effects louder than the music to prevent them from sounding muffled.

8. After you have mixed all your tracks, save them out separately, or you will have one large, cumbersome audio file that is playing every sound in your game all at once. (ouch)

9. There may be scenes in your game that require additional audio effects. For example, your character may take a trip to the restroom and start talking to himself/herself, thus calling for an echo in their voice due to the surroundings. Many audio editing packages (such as the ones recommended) offer echo/chorus/reverb, and a slew of different effects that can be easily applied to an audio track in cases such as this. It is recommended to apply these effects after the initial mixing is completed.

Compiling Torque:
For compiling the initial torque engine, I used a good FAQ located at:

http://www.wazooenterprises.com/TGE/tutorial1/
However, I own MSVC .NET, while this covers the VC6 version. A few minor changes here and there and it worked with little to no problems. Initially, not all of the files were included, so make sure that you have everything in the projects. Also, additional files were added, but once the initial build works fine, this is a piece of cake and generally the tutorials tell you how to do this if there is any question.

Some of the things that I changed from the tutorial listed above:

· Did not do #10, adding the /Tp flag.

· I left the warning level as is.

· I did not do #14, adding additional debugging.

That was about it. I do not think that we are using the latest build of the torque engine, however, so some thing might have changed. Also I recommend learning .NET a bit as well, as some things have been moved between versions. There were some other problems that I cannot recall, but they were fairly minor, or involved incorrect paths.
Torque Engine overview

The most difficult part of programming with the engine is understanding its structure, where scripts are located, how and when they are executed. The following tutorials were extracted from the documentation published in the Garage Games site. I included only the basic aspects to understand how the engine works and how to start programming a game. I suggest you first take Tutorial 1: Scripting Basics, then Tutorial 2: Objects and Datablocks Overview and after that jump to Tutorial 6: Server-Client Communication

For more detail, refer to:

http://www.garagegames.com/docs/torque.sdk/
http://www.garagegames.com/index.php?sec=mg&mod=resource&page=view&qid=4574
Scripting Basics

The TGE Script language is a form of object-oriented C++ script that does not require the declaration of variables. Script files are .cs files.

Reserved Key Words

break, case, continue, datablock, default, else, false, function, if, for, new, or, package, return, switch, switch$, true, and while

Operators

Assignment operators

=
Assigns the value of the second operand to the first operand.

Mathematical Operators:

+
(Addition) Adds 2 numbers

 -
(subtraction) Subtracts the value of its argument.

*
(Multiplication) Multiplies 2 numbers.

/
(Division) Divides 2 numbers.

%
(Modulus) Computes the integer remainder of dividing 2 numbers.

+=
Adds 2 numbers and assigns the result to the first.

-=
Subtracts 2 numbers and assigns the result to the first.

*=
Multiplies 2 numbers and assigns the result to the first.

/=
Divides 2 numbers and assigns the result to the first.

%=
Computes the modulus of 2 numbers and assigns the result to the first.

++
(Increment) Adds one to a variable representing a number (returning either the new or old value of the variable)

--
(Decrement) Subtracts one from a variable representing a number (returning either the new or old value of the variable)

Bitwise Operators:

~
(Bitwise NOT) Flips the bits of its operand.

|
(Bitwise OR) Returns a one in a bit if bits of either operand is one.

&
(Bitwise AND) Returns a one in each bit position if bits of both operands are ones.

^
(Bitwise XOR) Returns a one in a bit position if bits of one but not both operands are one.

<<
(Left shift) Shifts its first operand in binary representation the number of bits to the left specified in the second operand, shifting in zeros from the right.

>>
(Sign-propagating right shift) Shifts the first operand in binary representation the number of bits to the right specified in the second operand, discarding bits shifted off.

|=
Performs a bitwise OR and assigns the result to the first operand.

&=
Performs a bitwise AND and assigns the result to the first operand.

^=
Performs a bitwise XOR and assigns the result to the first operand.

<<=
Performs a left shift and assigns the result to the first operand.

>>=
Performs a sign-propagating right shift and assigns the result to the first operand.

String operators:

@
Concatenates one or more values together to form a new value

NL
Concatenates one value together with a new line to form a new value

TAB
Concatenates one value together with a tab to form a new value

SPC
Concatenates one value together with a space to form a new value

Logical Operators:

!
evaluates the opposite of the value specified

&&
requires both values to be true for the result to be true.

||
requires only one value to be true for the result to be true.

Relational Operators:

 ==
value1 and value2 are equal

!=
value1 and value2 are not equal

<
value1 is less than value2

>
value1 is greater than value2

<=
value1 is less than or equal to value2

>=
value1 is greater than or equal to value2

String comparison Operators:

$=
string1 is equal to string2

!$=
string1 is not equal to string2

Basic Functions

Functions in TGE script are quite easy to declare. Here is a self explanatory example.

function displayBla ()

{

echo(“Bla”);

}

Functions can also accept data and return data back to previous code as in this example:

function getBlaValue (%inputBla)

{

%bla = %inputBla * 5;

return %bla;

}

%oldBla = 2;

%bla = getBlaValue(%oldBla);

echo(“Value of bla = “,%bla); - Output is Value of bla = 10

Declaring variables

Local variables are variables that only “survive” within the particular function that they are in. They do not need to be declared and can be of any type. A local variable is always prefixed by a %. Eg.

%bla = 5;

%newbla = “stupid”;

It is important to note that variable names, function names, etc are NOT case sensitive.

Global variables are variables that exist in all functions and all areas of TGE script. If the value of a global variable is altered in one function it will be altered everywhere. It is important to keep track of global variables and remember that global variables WILL NOT be cleaned up unless you specifically do so yourself. For this reason it is best to use local variables where you can and only use global variables where you really cannot use any other method

Global variables are prefixed by a $. Eg $bla

Eg.

function testGlobal (%bla)

{

$GlobalBla = %bla;

}

function outputGlobal()

{

echo(“globalbla = “,$GlobalBla);

}

function doBla()

{

testGlobal(5)

outputGlobal();

}

doBla();

It is important to note that some global variables can also be used/passed into engine C++

code. Some good examples of this is button triggers. If you press your left mouse button

the variable $trigger0 is set as 1 and is set at 0 on release.

Server-Client Communication

Sectional Scripting

This concept is extremely important when coding in TGE script. There are two types, or sections, of script in which we will be working. They are the server and the client. Those of you that are used to C++ code should forget everything you know about “ghosting” and “clients” at the door because that will only confuse this issue.

Each zone is responsible for their own particular things in script.

Client

· 2D sounds

· Controls and Keybinds

· Menu Systems

· GUI

Server

· Game Code

· Player, Vehicle and Game Object Abilities

· World and Object Physics

· 3D Sounds

· Model Animations

· Particle Effects

· Weapons

· Environmental Effects

· Lighting

· Just about anything else.

You should try and do nearly everything you can server side as this not only ensures that all clients get the same effects but that clients can not alter any game play elements through client side scripts and hence, make cheats.

There are occasions, however, when you want to communicate between the server and the client.

Objects and Datablocks

What is a Datablock?

A datablock is a object that can be declared either in C++ engine code or in script code. A datablock is declared with various properties that relate to that particular datablock. Each declared datablock can then be used as a “template” to create objects that are the same (or slightly different) as the datablock.

What is an Object?

An object is a game object that has been created from a datablock. It contains all the properties of the datablock at the time of creation. Thereafter though, it is a separate object and can be altered.

Object Hierarchy

Each object has a class hierarchy behind it. Ie. It is a child of certain parent classes. It should always be in the back of your mind that in most cases, a child of a class will generally have the same properties and functions as its parent class.

Eg. We might create a health kit, which is of the class item. An item is of the shapebase class, which is of the gamebase class so, therefore, that health kit would receive the properties of the gamebase class.

Declaring a Datablock

Datablocks can be declared in script relatively easily

datablock PlayerData (NewPlayerData)

{

bla = 5;

runspeed = 10;

};

Above we are declaring a playerdata class datablock called NewPlayerData. Datablocks

can also be declared as a child, and hence would inherit all that parent’s abilitys, like so:

datablock PlayerData (NewerPlayerData : NewPlayerData)

{

bla = 3;

walkspeed = 5;

};

In the example above, NewerPlayerData would have a runspeed of 10 as it inherits this

value from its parent NewPlayerData.

Creating an Object

Objects can be created from previously declared datablocks like so

%player = new Player() {

dataBlock = NewPlayerData;

};

MissionCleanup.add(%player);

There are two important things to note about the above code. The first is that the an object id of %player is output and the second that the %player object is added to a “group” called missionCleanup. For the moment we will just say that adding things to this group allows the server to delete them at when the server changes mission, etc.

Object Properties and Functions

Object properties and functions are abilities that only relate to that class of object and its

children.

function Player::isBla(%this)

{

%this.bla = 8;

echo(“player object is ”,%this,” and walkspeed = “,%this.walkspeed);

}

The example above shows us the basic structure of an object function, how to set object properties and how to return object property values. This function could be called by doing the following

%this = 1234;

%this.isBla();

The value of %this would get passed into the expression as the first variable

Player Object Basics

One of the most confusing aspect of the TGE script language for any new scripter to grasp is the concept of players, clients and playerdata. It is very important to recognize the distinction between these three objects.

· The client is the clients connection id. This is how the client communicates with the server. This is not an object in the game at all.

· The playerdata is a “template” of common properties that each player will be created with.

· The player is the actual physical player that runs around in the game that is controlled by the client.

The typical code when creating a player looks like this

function GameConnection::createPlayer(%this, %spawnPoint)

{

%player = new Player() {

dataBlock = NewPlayerData;

client = %this;

};

MissionCleanup.add(%player);

%this.player = %player;

}

In the function above, %this is the client id and when a player is created there are two properties set. One in the client object and one in the player object so that you can reference the other if you have one of them.

%player.client = %this;

%this.player = %player;

Artificial Intelligence (AI)
For the AI, I made use of scripts and tutorials that were already out there, as I was very pressed for time. I had to finish this project up after it had already been started by another of our programmers who became severely ill right before the deadline. Instead of trying to get the code my programmer had been working on and learning it, I had to find something that I could implement quickly and would work. Fortunately, I was lucky in this endeavor. I found a great tutorial on adding aiPlayer extensions located here:

http://www.garagegames.com/index.php?sec=mg&mod=resource&page=view&qid=3746

Simply put, I followed this tutorial and used the code. I ended up adding an accuracy modification to it, following the additional code supplied in the additional notes on the page. The main part was here:
void AIPlayer::setAimLocation(const Point3F &location)

{

MRandomLCG aimRand;

F32 xMod=(aimRand.randF()-0.5)*mAccuracy,

yMod=(aimRand.randF()-0.5)*mAccuracy,

zMod=(aimRand.randF()-0.5)*(mAccuracy/3.0f),

mAimObject = 0;

 mAimLocationSet = true;

 mAimLocation = Point3F(

 location.x+xMod,

 location.y+yMod,

 location.z+zMod);//location;

}
I just used the random functions supplied with the engine. It just takes the accuracy variable, where the higher the value the greater the error, and modifies the aiming location. I reduced the amount the in the z direction to make it look a little better.

Adding a basic weapon in Torque

1. Create a new folder in torque\example\fps\data\shapes\, and call it the name of you new weapon. And place your new weapon media in that folder.

2. Go to the torque\example\fps\client\config.cs file
The default rifle is listed as :
moveMap.bindCmd(keyboard, “1”, “commandToServer(\’use\’,\”Rifle\”);”, “”);

Copy the whole line and paste it with the following changes below the line

moveMap.bindCmd(keyboard, “3”, “commandToServer(\’use\’,\”revolver\”);”, “”);

(Revolver is the name of your new weapon. You can also replace the original line and change the keyboard parameter in the new line. For example, make the revolver keyboard, “1” and then make the rifle keyboard, "3")

3. Search for similar files having the word rifle and either change or replace it with the new weapon name.

The following files are to be changed.

fps\client\config.cs

fps\server\scripts\player.cs

fps\client\scripts\default.bind.cs

fps\server\scripts\game.cs

4. When you have gone through the files and replaced the words in the file, copy the rifle.cs (in torque\example\fps\server\scripts) by right clicking on it and clicking “copy”, then right click on an empty space in torque\example\fps\server\scripts and “paste” your copy of rifle.cs and rename it to your newweapon.cs .

5. When you have gone through the “results” list copy the rifle.cs (in torque\example\fps\server\scripts) by right clicking on it and clicking “copy”, then right click on an empty space in torque\example\fps\server\scripts and “paste” your copy of rifle.cs and rename it to your newweapon.cs .

6. Open it and use the find feature to search the page for rifle and rename all the “rifle’s” to your new weapon’s name. NOTE: It will vary on what you will change depending on what type of weapon you are adding and what you want it to do.

Adding sound to the game

1. Make sure you have OpenAL drivers for your sound card. You can obtain the latest drivers from your manufacturer if you need to.

2. Edit the /example/common/client/scripts/mission.cs file so that the sound player (alxPlay) is activated; in the parenthesis after alxPlay, specify the name you want to use for your mission files.

function clientCmdMissionStart(%seq)

{

 // The client receives a mission start right before being dropped into the game.

 alxPLay("Mission_Music"); //add this line

}

3. Add the following new AudioDescription to /fps/client/scripts/audioProfiles.cs. There is an AudioDefault there already, but it is not set to loop (isLooping = false). So create a new description called AudioDefaultLoop and set the isLooping parameter to "true".

new AudioDescription(AudioDefaultLoop)

{

 volume = 1.0;

 isLooping = true;

 is3D = false;

 type = $DefaultAudioType;

};

4. And finally, at the end of a mission file add this section to point to your WAV file. Notice the description points to the AudioDefaultLoop.

new AudioProfile(Mission_Music)

{

filename = "~/data/sound/music/cheesewrap22k.wav";

description = "AudioDefaultLoop";

preload = false;

};

5. In order to play both constant music and soundfx in the background, add a second alxPlay line in the clientCmdMissionStart function in /example/common/client/scripts/mission.cs. This time point it to "Mission_SoundFX".

function clientCmdMissionStart(%seq)

{

 // The client receives a mission start right before being dropped into the game.

 // add this line for music

 alxPLay("Mission_Music");

 // add this line for effects (i.e., wind, engine moise, etc.)

 alxPLay("Mission_SoundFX");

}

This player will also be using the AudioDefaultLoop description so there is no need to add anything to /fps/client/scripts/audioProfiles.cs.

Now you can add a second AudioProfile to your mission file; in this example, in addition to the "Mission_Music" AudioProfile added in Step 4 above, add a "Mission_SoundFX" AudioProfile that points to a looping wind WAV file in the /fps/data/sound/fx/environment directory.

new AudioProfile(Mission_SoundFX)

{

filename = "~/data/sound/fx/environment/evilwind_2a.wav";

description = "AudioDefaultLoop";

preload = false;

};

Adding sounds to the weapons in torque

1. **** Open the file example/fps/server/scripts/rifle.cs

2. **** In or near the top of the file add the following lines

datablock AudioProfile(RifleMountSound)
{
filename = "~/data/sound/buttonOver.wav";
description = AudioClosest3d;
preload = true;
};

datablock AudioProfile(RifleFireSound)
{
filename = "~/data/sound/testing.wav";
description = AudioDefault3d;
preload = true;
};
datablock AudioProfile(RifleDryFireSound)
{
filename = "~/data/sound/footfall.wav";
description = AudioClose3d;
preload = true;
};

Note: It is very important that these datablocks are defined BEFORE you define your weapon image otherwise an error will be sent to the console and it simply wont work

3. **** Find the RifleImage datablock. The changes are made are followed by

 //**** Added in sound tutorial

datablock ShapeBaseImageData(RifleImage)

{

// Basic Item properties

shapeFile = "~/data/shapes/rifle/weapon.dts";

emap = true;

// Specify mount point & offset for 3rd person, and eye offset

// for first person rendering.

mountPoint = 0;

offset = "0 0 0"; // Change the offset so that the player holds the weapon correctly in 3rd prson

eyeOffset = "0.1 0.2 -0.55"; // Change offset for 1st prson

// When firing from a point offset from the eye, muzzle correction

// will adjust the muzzle vector to point to the eye LOS point.

// Since this weapon doesn´t actually fire from the muzzle point,

// we need to turn this off.

correctMuzzleVector = false;

// Add the WeaponImage namespace as a parent, WeaponImage namespace

// provides some hooks into the inventory system.

className = "WeaponImage";

// Projectile && Ammo.

item = Rifle;

ammo = RifleAmmo;

projectile = RifleProjectile;

projectileType = Projectile;

casing = RifleShell;

// Images have a state system which controls how the animations

// are run, which sounds are played, script callbacks, etc. This

// state system is downloaded to the client so that clients can

// predict state changes and animate accordingly. The following

// system supports basic ready->fire->reload transitions as

// well as a no-ammo->dryfire idle state.

// Initial start up state

stateName[0] = "Preactivate";

stateTransitionOnLoaded[0] = "Activate";

stateTransitionOnNoAmmo[0] = "NoAmmo";

stateSound[0] = "RifleMountSound"; // **** Added in sound tutorial

// Activating the gun. Called when the weapon is first

// mounted and there is ammo.

stateName[1] = "Activate";

stateTransitionOnTimeout[1] = "Ready";

stateTimeoutValue[1] = 0.5;

stateSequence[1] = "Activate";

// Ready to fire, just waiting for the trigger

stateName[2] = "Ready";

stateTransitionOnNoAmmo[2] = "NoAmmo";

stateTransitionOnTriggerDown[2] = "Fire";

// Fire the weapon. Calls the fire script which does

// the actual work.

stateName[3] = "Fire";

stateTransitionOnTimeout[3] = "Reload";

stateTimeoutValue[3] = 0.1;

stateFire[3] = true;

stateRecoil[3] = LightRecoil;

stateAllowImageChange[3] = false;

stateSequence[3] = "Fire";

stateScript[3] = "onFire";

stateEmitter[3] = RifleFireEmitter;

stateEmitterTime[3] = 0.3;

stateSound[3] = "RifleFireSound"; // **** Added in sound tutorial

// Play the relead animation, and transition into

stateName[4] = "Reload";

stateTransitionOnNoAmmo[4] = "NoAmmo";

stateTransitionOnTimeout[4] = "Ready";

stateTimeoutValue[4] = 0.1;

stateAllowImageChange[4] = false;

stateSequence[4] = "Reload";

stateEjectShell[4] = true;

// No ammo in the weapon, just idle until something

// shows up. Play the dry fire sound if the trigger is

// pulled.

stateName[5] = "NoAmmo";

stateTransitionOnAmmo[5] = "Reload";

stateSequence[5] = "NoAmmo";

stateTransitionOnTriggerDown[5] = "DryFire";

// No ammo dry fire

stateName[6] = "DryFire";

stateTimeoutValue[6] = 1.0;

stateTransitionOnTimeout[6] = "NoAmmo";

stateSound[6] = "RifleDryFireSound"; // **** Added in sound tutorial

};

Basically what happens is when state 6 becomes the active state (ie. dryfire),

then the declared statesound is played.

Adding Environmental effects – Rain and Snow.

Just follow the following steps to add rain and snow in exterior levels.

Step 1. With your text editor, make a file named something like "weather.cs" with the following:

//-------------- Sound for Rain -------------------------------------

datablock AudioProfile(Universal_Rain_Light_1)

{

 filename = "~/data/sound/fx/environment/rain_light_1.wav";

 description = AudioLooping2d;

};

//the description is already defined in ~/fps/server/scripts/audioprofiles.cs

//

//-------------------- RAIN ---

datablock PrecipitationData(Rain)

{

 type = 1;

 materialList = "~/data/fx/precipitation/raindrops.dml";

 soundProfile = "Universal_Rain_Light_1";

 sizeX = 0.10;

 sizeY = 0.10;

 movingBoxPer = 0.35;

 divHeightVal = 1.5;

 sizeBigBox = 1;

 topBoxSpeed = 20;

 frontBoxSpeed = 30;

 topBoxDrawPer = 0.5;

 bottomDrawHeight = 40;

 skipIfPer = -0.3;

 bottomSpeedPer = 1.0;

 frontSpeedPer = 1.5;

 frontRadiusPer = 0.5;

};

//-------------------- SNOW ---

datablock PrecipitationData(Snow)

{

 type = 1;

 materialList = "~/data/fx/precipitation/snowflakes3.dml";

 sizeX = 0.10;

 sizeY = 0.10;

 movingBoxPer = 0.35;

 divHeightVal = 1.5;

 sizeBigBox = 1;

 topBoxSpeed = 20;

 frontBoxSpeed = 30;

 topBoxDrawPer = 0.5;

 bottomDrawHeight = 40;

 skipIfPer = -0.3;

 bottomSpeedPer = 1.0;

 frontSpeedPer = 1.5;

 frontRadiusPer = 0.5;

};

Save the file to the "/fps/server/scripts" directory.

The first section above assigns the name Universal_Rain_Light_1 as an audioProfile called from the RAIN datablock section. The parameter "filename" is assigned the path to a WAV file; if the directory doesn't exist, create and place your sound effect there.

The second and third sections are the datablocks for RAIN and SNOW. In each of these datablocks, the parameter "materialList" is assigned the path to a "dml" file that lists the texture(s) for the effect (see example below). In the RAIN datablock is a parameter "soundProfile" that targets the audioProfile in the first section. In each datablock, the parameters "sizeX" and "sizeY" are used to control the dml image(s) aspect ratios.

Step 2. In the directories specified by the "materialList" parameter, create a file named "raindrops.dml" (or whatever name you would like as long as it matches the "textureList" parameter). In this file, list the name(s) of the PNG image(s) to be used. For the rain effect, use just one 256x256 PNG with alpha channel--basically just some random pixels painted grey with the background transparent--and placed it in the same directory as the dml file. So the dml file in this case simply has the following line:

 raindrops

If you want the textures to live in a subdirectory (for example "textures") under the directory with the dml file, add the subdirectory name to the listings also:

 textures/raindrops

Do the same for the SNOW.

Step 3. In "/fps/server/scripts/game.cs", add the execute line as shown below to initialize the weather effects;

function createGame()

{

 // Load up all datablocks, objects etc. This function is called when

 // a server is constructed.

 exec("./audioProfiles.cs");

 exec("./camera.cs");

 exec("./markers.cs");

 exec("./inventory.cs");

 exec("./shapeBase.cs");

 exec("./item.cs");

 exec("./health.cs");

 exec("./weapon.cs");

 exec("./radiusDamage.cs");

 exec("./rifle.cs");

 exec("./crossbow.cs");

 exec("./weather.cs"); //df: add for rain/snow effects

 exec("./lightning.cs"); //df: add for random lightning effects

 exec("./player.cs");

 // Keep track of when the game started

 $Game::StartTime = $Sim::Time;

}

Step 4. To make the rain or snow effect to take place, add the following section to your mission file:

 new Precipitation(Precipitation) {

 position = "0 0 0";

 rotation = "1 0 0 0";

 scale = "1 1 1";

 dataBlock = "Rain";

 percentage = "0.5";

 color1 = "0.600000 0.600000 0.600000 0.500000";

 color2 = "-1.000000 0.000000 0.000000 1.000000";

 color3 = "-1.000000 0.000000 0.000000 1.000000";

 offsetSpeed = "0.25";

 minVelocity = "0.25";

 maxVelocity = "1.5";

 maxNumDrops = "2000";

 maxRadius = "125";

 locked = "true";

 };
Fool around with the above parameters to get the exact effect you want.

Generating Environmental Surround Images for Torque Using Terragen

Torque uses a set of seven JPEG (jpg;24-bit) images that are automatically placed on the sides of an environmental surround (skybox) according to definitions created in the mission files for your map. These images can be up to 512x512 pixels in powers of two. The typical skybox implementation uses five images for the front, left, back, right and up views of the sky.

A sixth small black JPEG (jpg;24-bit;4x4 pixels) is used as the bottom texture that is normally not seen because of the incredible terrain block entity and the parameter in the sky section of the mission file: renderBottomTexture = "0";.

It's also possible to create a bottom texture that could be seen (and not use the terrain block) by changing the renderBottomTexture parameter. In this case you could set the following in the mission file:

 useSkyTextures = "1";

 renderBottomTexture = "1";

Make sure you don't use a terrainBlock.

The seventh image is a wide-angle view of the entire sky which is used as an environment map for reflections on objects that do not have their own env. map (i.e., armor on models and water).

There are several ways to create environmental images but this tutorial specifically describes using the free sky and terrain generator tool: Terragen. Please consult the Terragen documentation (http://www.planetside.co.uk/) about how to create a world in general and control specifics about light, water, terrain, etc.

Section One: Making the Environmental Surround Images

Step 1. Open TerraGen and modify the sky, water, sunlight, etc. to suit your taste. You can review the TerraGen Guide for these details. And, unless you plan to have terrain visible in the side images, close the LANDSCAPE window.

Step 2. Open your RENDERING CONTROLS window and change the camera and target settings to match those in the picture below.

[image: image64.jpg]Rendering Control

Image Caimera——C Teuanurits & Hetes
=)

oo [5:0n [in
Fixed Height Above Suface 7 [30m
Teiget Posiion [3840m [7680m [30m

Fixed Height Above Surface [~
_— hesd ptch _bank

Orentation [0 o o

Use Mouse Buitons.

Flender Preview

Dl ik | | todesciibethe
setigs, |1~ Lond 0 Sky | | comerss vew.
[E| Leftbutton postons
Image Size i psels] the Camera, and

widh 512 Height[512 s

e Image amera Selings
Lastimage: _view o ([[] zoom <[[]

Step 3. Move your camera to the center point in your map. The default size for the plan view of the scene is 7680 units. The default units are meters as seen from the radio button settings at the top of the window. The camera and its target are located by xyz coordinates. To center the camera on the horizontal plane, change the "y" setting to 3840m.

Step 4. Then disable the "Fixed Height above Surface" for the target. In the horizontal plane, the "z" value will be the same as the camera automatically (unless you override the value). However, we are also going to be taking pictures of the UP (and possibly DOWN) directions relative to the camera position so we don't want the target fixed. Change the "y" value of the target to 7680 units; this places the target at the top edge of the scene--the direction we will start.

Step 5. Sometimes the pitch in the Camera Orientation section will not be zero after making changes to the camera or target. Be sure that heading/pitch/bank are initially set to 0/0/0. Also, since we are only concerned with the sky images in this tutorial, it really doesn't matter what the altitude of the camera and target are (except that they should be the same value for the skybox side images). HINT: Try setting the altitude at about 30 to start--also experiment with the cloud height settings in the mission file with respect to the altitude with which the images were taken.

Step 6. In the Camera Settings dialog set "Zoom Magnification" to "1" for the first five images (front, back, left, right, and up). We will change this later to approximately "0.35" for the seventh image.

[image: image65.jpg]Fhotographic Medm
 Tredtional computer grapics

 High conirast photachenical im

 High tolerance photocherical i (oiginal)

Esposue / Lkt Serstiviy
T i —

Zoom / Magrification

MR

Ertcts._| o

Step 7. To the left side of the Rendering Control window there is a scroll bar next to the word "Detail". Set Detail to Maximum (far right). Also, click on the SETTINGS button to view the RENDER SETTINGS window. In the QUALITY section, scroll "Atmosphere" and "Cloud shading" to high accuracy. In the OPTIONS section uncheck the "Render Lanscape" option.

Step 8. Below the SETTINGS button is a section to control the IMAGE SIZE. Set the Image Size width and height to the maximum 512x512 pixels for the best results. If you want to go lower in size, the images must be square and in powers of two (i.e., 128x128, 256x256). You will of course have less detail as well by going lower in size.

Step 9. That's it for the basic settings. Before moving on to capture the images make any atmospheric changes for the environment (i.e., cloud and sun characteristics). For this tutorial I changed the sun color and position. Click on the sun icon to the left:

[image: image66.jpg]

In the LIGHTING CONDITIONS window, set the solar angles (sun azimuth and altitude). Also change the sun color, etc.

[image: image67.png]SunHeading [138

I~ Terain Casts Shadows
7 Clouds Cast Shadows

7 Shadows in Amosphere

Effect

G o e

Direet Sunlght | Background Light | Suris Appearance | Lighting of Atmosphere |

Control if and how Sunlght

" Specity Sunlght Colour

= Redlitc Suright
© Penetration System

is diminished and reddened by Atmosphere and Clouds.

50 SunlhtStength Reset
[fow esmsresmmospre <[]

‘Whers cloud-casting not used, use uriform shadow:

Base Sun Colour.

0% ecoecoutooer [[i

Let's assume we want a mid-morning sun in March at Latitude 31 degrees. The altitude is about 55 degrees and the azimuth (heading) is about 42 degrees from south. Terragen sun headings are calculated from north (0 degrees). If the angle is from the east they are positive angles down the right side to south (+180 degrees); if the sun is bearing from the west, the angles are negative from north (0) to south (-180). The sun heading is then 180 - 42 = 138 degrees for this example.

[image: image68.png]

Step 10. Now it's time to render the images. The table below shows the settings for CAMERA ORIENTATION (as seen in the render control window in step two). Change these values before clicking the RENDER IMAGE button to create the image.

Now create the first five images and save them. Although the filenames can be completely arbitrary, I recommend the following: Each image should begin with the same rootname but add the suffixes shown in the table below depending on the orientation of the image. In other words, if we wanted midday to be the rootname our set of six images, then we should add the appropriate suffix to the rootname "midday".

	skybox side
	heading
	pitch
	bank
	rootname suffix
	rootname + suffix
	output filename

	south
	0
	0
	0
	_1
	add "midday" + "_1"
	midday_1.bmp

	west
	90
	0
	0
	_2
	add "midday" + "_2"
	midday_2.bmp

	north
	180
	0
	0
	_3
	add "midday" + "_3"
	midday_3.bmp

	east
	270
	0
	0
	_4
	add "midday" + "_4"
	midday_4.bmp

	up
	0
	90
	0
	_5
	add "midday" + "_5"
	midday_5.bmp

Now make the wide-angle seventh image. This is the image that is used for environmental mapping for reflective armor surfaces on models and water. Leave the heading and pitch the same as image 5 above. In the Camera Settings section set "Zoom Magnification" to "0.35". You can set it as low as "0.25" in Terragen but 0.35-0.40" looks more realistic.

NOTE: The FOV (field-of-view) formula in Terragen is 2 * tan-1(1 / zoom). If zoom = 1, then the FOV is 90. A zoom factor of 0.35 gives us an FOV of 141.42 degrees.

	skybox side
	heading
	pitch
	bank
	rootname suffix
	rootname + suffix
	output filename

	wide
	0
	90
	0
	_7
	add "midday" + "_7"
	midday_7.bmp

Since the seventh image is used as a reflection of the environment, you will have to flip this image around the X-axis to make the it mirror the sky.

Step 11. The output file format from TerraGen will be .bmp ; convert the images to .jpg format in PaintShopPro or PhotoShop.

Step 12. And last, make image midday_6 in PaintShopPro or PhotoShop; it should be 4x4 pixels, with Black as the color. After save the image, convert it to JPG format along with the other six images. Place all the images in the /data/skies directory.

Section Two: Setting Up Torque to Use the Sky Images

Step 1. After moving/copying the seven sky images to the /data/skies folder, create a text file named midday.dml. Beginning at line one, list the rootnames (without the ".jpg" extension) of the seven images:

midday_1

midday_2

midday_3

midday_4

midday_5

midday_6

midday_7

Unlike many other engines, in Torque you can also have from 1 to 3 moving cloud layers in addition to the skybox. In the Torque distribution, there is an image named cloud1.png in the /data/skies folder. If you want layers of clouds using that image, list that many iterations of the cloud image rootname after the skybox image rootnames. If we want just one moving cloud layer, the midday.dml list should look like this:

midday_1

midday_2

midday_3

midday_4

midday_5

midday_6

midday_7

cloud1
Step 2. In the mission file for your map, find the sky section. Make sure the following parameters are set:

useSkyTexture = "1" //Use the sky images you have just created

renderBottomTexture = "0" //We don't need the bottom because we are using a Terrain block

materialList = "~/data/skies/midday.dml" //Have Torque read our image list

Section Three: Matching the Sun Direction to the Sky Images

Find the sun section in the mission file. We need to edit the sun direction to match the direction in your sky images. The direction is three real numbers representing the X, Y, and Z components of a unit (length = 1) vector from the sun to the center of the mission area. These values can be entered without being normalized and Torque will do the normalization (to make sure the sun vector stays a 1 unit length). However, this tutorial goes through the normalization process beforehand.

In the image below, the sun vector (length 1) is in yellow. Its projected vector Zp on the X-Y plane is colored cyan. The three component vectors for X, Y, and Z are in red.

[image: image69.png]

Step 1. PROJECTION VECTOR: First, convert the sun altitude; given the altitude is 55 degrees in this example, we want to find the length of the sun vector projected onto the X-Y plane (vector Zp). We will use this result to calculate the x- and y-components of the sun vector. The sun vector projected onto the X-Y plane is found by:

 Zp = cos altitude = cos 55 = 0.5736
The result, 0.5736, will be used below to calculate the x- and y-components.

Step 2. Z-COMPONENT VECTOR: While we're working with the altitude, determine the value for the z-component (a vertical vector from sun origin to X-Y plane) of the sun direction. The z-component of the sun vectors is found by:

 Z = sin altitude = sin 55 = 0.8192
Since our sun is located above the terrain, the z-component should always be negatively signed, so this will be -0.8192.

Step 3. X-, Y-COMPONENT VECTORS: Now let's calculate the azimuth of the sun and convert the angle to its x- and y-components. In the X-Y plane, determine the angle from true south.

[image: image70.png]+

+x

42 degrees

For example, using the sun angle 42 degrees east of south, a right triangle is formed by Zp, the projected sun vector (the cyan hypotenuse seen in the figure below) and its component vectors: the +Y vertical distance from the sun origin to the X-axis (sun target), and the -X horizontal distance from the sun origin to the Y-axis (sun target).

[image: image71.png]

Calculate the x-component by: x = sin A * Zp where A is the angle from the Y-axis to the projected sun vector (Zp). In this case x = sin 42 * 0.5736 = 0.3838 and is negatively directed.

Calculate the y-component by: y = sin (90 - A) * Zp: y = sin (90 - 42) * 0.5736 = 0.4263 and is positively directed.

So, our normalized sun direction values in this case would be: -0.3838 0.4263 -0.8192

NOTE: if the sun direction is directly overhead (0.0 0.0 -1.0) the engine will crash.

Environmental Reflections from the Sky Images

Last but not least, here is a partial sample from a waterblock section of a mission file using the _7 image. As I said before, the naming is arbitrary; in this case I had named the image "midday_searefl"; you see the call to that texture in the envMapTexture parameter below:

 new WaterBlock(water)

{

 .

 .

 envMapTexture = "~/data/skies/midday_searefl";

 .

 .

 }

Additional Notes:

1. Remember, the environmental reflection image has to be flipped around the X-axis to look correct in the water surface.

2. Remember, the sun direction can not be directly overhead (0.0 0.0 -1.0); change the X or Y slightly off 0.0, say 0.01.

UI Instructions
Note: these instructions assume the application is in the example folder and is called “fps”.

General Tips:

* The quickest way to make changes is to press F10 while looking at a menu. This will pull down the UI menu and you can move things around, edit, add, and remove GUI components. Be sure to save any changes you’ve made.

To add Weapon Icons to the in-game UI:

· Create the icons in Photoshop or whatever tool you prefer as long as the output is a png with a transparent background. All icons should be exactly the same size.

· Create a blank image the same size as the weapons and name it blankweapon.png.

· Open example/fps/client/ui/playGui.gui

· Add the following towards the bottom of the page but still within the brackets:

new GuiBitmapCtrl(weaponHUD) {

 profile = "GuiDefaultProfile";

 horizSizing = "left";

 vertSizing = "top";

 position = "376 0";

 extent = "424 228";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 lockMouse = "0";

 bitmap = "./blankweapon.png";

 wrap = "0";

};

· Adjust the horizSizing, vertSizing, position, and extent as appropriate for your weapon icon images.

· Open example/fps/client/scripts/playGui.cs.

· Add code in the form of the following:

function clientCmddisplayWeaponHUD(%weaponName)

{

 // Check which weapon HUD to draw

 if(%weaponName $= "RevolverImage")

 {

weaponHUD.setBitmap("game/client/ui/UI_Revolver.png");

 }

 else if(%weaponName $= "RifleImage")

 {

 weaponHUD.setBitmap("game/client/ui/rifle.png");

 }

 else if(%weaponName $= "CrossbowImage")

 {

 weaponHUD.setBitmap("game/client/ui/UI_Crossbow.png");

 }

 else if(%weaponName $= "CaneImage")

 {

 weaponHUD.setBitmap("game/client/ui/UI_Cane.png");

 }

 else if(%weaponName $= "ShotgunImage")

 {

 weaponHUD.setBitmap("game/client/ui/UI_Shotgun.png");

 }

 else if(%weaponName $= "StakeImage")

 {

 weaponHUD.setBitmap("game/client/ui/UI_stake.png");

 }

 else

 {

 weaponHUD.setBitmap("./blankweapon.png");

 }

}

The string conditional test string “MyWeaponImage” is the default form of the string, however it may be different if the given weapon has been coded differently. Essentially, this function receives the weapon name, tests to see what weapon it is, and then swaps the blankweapon.png image with whatever is specified in the weaponHUD.setBitmap(“weaponbitmap.png”) call.

· Open example/fps/server/scripts/weapon.cs.

· Insert the following function:

function GameConnection::displayWeaponHUD(%client, %weaponName)

{

 commandToClient(%client, 'displayWeaponHUD', %weaponName);

}

· The WeaponImage::onMount(%this, %obj, %slot) function should look like the following:

function WeaponImage::onMount(%this,%obj,%slot)

{

 // Images assume a false ammo state on load. We need to

 // set the state according to the current inventory.

 $count = 0;

 if (%obj.getInventory(%this.ammo)) {

 %obj.setImageAmmo(%slot,true);

 $count = %obj.getInventory(%this.ammo);

 }

// Display the weapon HUD

%obj.client.displayWeaponHUD(%this.getName());

}

The way the weapon system works in Torque is that when the engine receives a weapon onMount event it calls the WeaponImage::onMount function in this script and sends it the appropriate parameters. From here you can launch any particular sequence of behaviors that you like. Another instance would be the next example.

(Note: this example assumes you’ve already done the weapon icons)

To add an ammo counter to the in-game UI:

· Open example/fps/client/ui/playGui.gui.

· Add the following after the weaponHUD code:

new GuiBitmapCtrl(inventoryHUDDlg) {

 profile = "CenterPrintProfile";

 horizSizing = "center";

 vertSizing = "center";

 position = "710 170";

 extent = "25 20";

 minExtent = "8 8";

 visible = "0";

 helpTag = "0";

 border = "false";

 bitmap = "";

 wrap = "0";

 new GuiMLTextCtrl(inventoryHUDText) {

 profile = "CenterPrintTextProfile";

 horizSizing = "center";

 vertSizing = "center";

 position = "0 0";

 extent = "22 18";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 lineSpacing = "2";

 allowColorChars = "0";

 maxChars = "-1";

 text = "";

 border = "false";

 };

 };

· As before horizSizing, vertSizing, position, and extent are whatever you want them to be.

· If you want a bitmap underneath the text, put the png in the example/fps/client/ui/ directory and refer to it in the form of: ./myimage.png.

· Open example/fps/client/scripts/playGui.cs.

· Add the following function in the form:

function clientCmddisplayInventoryHUD(%ammotype, %amount)

{

 inventoryHUDDlg.setVisible("1");

 // Check which ammo count should be displayed

 if(%ammotype $= "RevolverAmmo")

 {

inventoryHUDText.setValue(%amount);

 }

 else if(%ammotype $= "CrossbowAmmo")

 {

 inventoryHUDText.setValue(%amount);

 }

 else if(%ammotype $= "ShotgunAmmo")

 {

 inventoryHUDText.setValue(%amount);

 }

 else

 {

//

 }

}

· Open example/fps/server/scripts/weapon.cs.

· Make sure the GameConnection::displayWeaponHUD function looks like:

function GameConnection::displayWeaponHUD(%client, %weaponName)

{

 commandToClient(%client, 'displayWeaponHUD', %weaponName);

 commandToClient(%client, 'displayInventoryHUD', %weaponName);

}

· And make sure the WeaponImage::onMount function looks like:

function WeaponImage::onMount(%this,%obj,%slot)

{

 // Images assume a false ammo state on load. We need to

 // set the state according to the current inventory.

 $count = 0;

 if (%obj.getInventory(%this.ammo)) {

 %obj.setImageAmmo(%slot,true);

 $count = %obj.getInventory(%this.ammo);

 }

// Display the weapon HUD

%obj.client.displayWeaponHUD(%this.getName());

commandToClient(%obj.client, 'displayInventoryHUD', %this.ammo, $count);

}

To change the Main Menu UI:
· To change the background image, open example/fps/client/ui/mainMenu.gui.

· Create the new background image. JPG’s, PNG’s, and BMP’s are acceptable.

· In the new GuiChunkedBitmapCtrl(MainMenuGui) datablock, change the bitmap value to the name or your new background image.

To add new Main Menu Screens:
· Create the new background image if desired.

· Create a new file in the form of myNewGui.gui that will go in the example/fps/client/ui directory.

· It is best to open one of the other *.gui files and model your new file after one of those. Remember that the first datablock is the highest level component and that all new widgets should be placed within this datablock’s brackets.

· To open your new GUI screen from another GUI screen, for instance with a button, in the calling GUI, you would set the command attribute within its datablock so that it looked like:

 new GuiButtonCtrl() {

 profile = "GuiButtonProfile";

 horizSizing = "right";

 vertSizing = "top";

 position = "680 10";

 extent = "110 76";

 minExtent = "8 8";

 visible = "1";

 command = "Canvas.setContent(myNewGUIScreen);";

 helpTag = "0";

 text = "Get MEDIEVAL!";

 groupNum = "-1";

 buttonType = "PushButton";

 };

· Open example/fps/client/init.cs.

· Add the following line after the other shell scripts (around line 69 or so):

exec("./ui/myNewGUIScreen.gui");

To add background music to the Main Menu:

· Create the music file you want played. It can be either a .wav or .ogg. Use .ogg for best results as it is gives the smallest file size with very good sound quality.

· Place your music in example/fps/data/sound.

· Open example/fps/client/scripts/audioProfiles.cs.

· At the end of the file create a profile that looks like:

new AudioProfile(Gui_Music)

{

filename = "~/data/sound/my_gui_backgroundmusic.wav";

description = "AudioDefaultLoopGui";

preload = true;

};

· In example/fps/client/ui/mainMenu.gui make sure you have the following function after your datablocks:

function mainMenuGui::onWake(%this)

{

alxStopAll();

alxPlay("Gui_music");

}

Importing Characters:
Importing Characters is actually pretty easy to do, once you get past all the problems with exporting and getting the models to work. I used the supplied player.cs files located in both the server/scripts and data/shapes/player folders in the example/fps game data section. The biggest thing to do is change paths in the files to the ones that you want to use. It is a good idea to copy the player folder and use that to make sure you have all the files that you need. Then you can add your own and change the appropriate paths when needed. The actual structure of the player.cs character file is pretty self explanatory, and I am sure there are better tutorials out there to explain every little detail. The player.cs animation file is simple as well; just make sure to use the supplied names for the animations, such as root, walk, side, etc. Otherwise torque won’t call the correct animations, or they will not work at all. If you want to use custom animations, you just replace the paths in the player.cs animation file. However, make sure to check these, as they can be difficult to get right. In this project, we had several custom animations that were all cut due to not being done correctly, and unfortunately we didn’t have enough time to fix them. Also, I have not verified this, but I would expect that to add more animations, you will have to add functionality to the engine, so try to just redo the ones that are already there. Here is a quick checklist:

· Create new player.cs files for both server/scripts and data/shapes/player folders. You can rename these to whatever you want. It is a good idea to create a new folder for all the character animations, textures, and shapes to keep everything organized.

· Rename the paths in those files to the correct files. Also you can add or change anything you want. My recommendation would be to rename the datablocks located in the player.cs file so that you keep character information separate.

· Add your new player.cs character file to game.cs using exec. This will make it so that your new character information is executed. Otherwise torque will not know what you are talking about.

Health Items

I modeled the items used in the game off the health patch datablock located in health.cs in server/scripts. It is a very simple and straightforward process. I just copied the datablock over and changed the file path, some statistics, and a couple descriptions and that was all there was to it. It was very simple to do with the way that the torque guys designed the engine.
PAGE
109
[image: image72.jpg]

[image: image91.jpg]Fle Edt Camera World Window
1552 issioncrows _Smorus

[Firteror
Haps
B gata
Elnteriors
Bt
B maps
wedze
tube.
Dungeon Final
ai 08
Bl Interior Final
B inor
st
3 shapes
[ststc Shapes
3 wission Gbjects

