2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)

Comparative Performance Evaluation of
High-performance Data Transfer Tools

Deepak Nadig*, Eun-Sung Jung®, Rajkumar Kettimuthu®, Ian Foster!$, Nageswara S.V. Rao¥, Byrav Ramamurthy*
*Dept. of Computer Science & Engineering, University of Nebraska-Lincoln, USA
TDept. of Computer and Information Communication, Hongik University, South Korea
!Data Science and Learning Division, Argonne National Laboratory, USA
§Dep‘[. of Computer Science, The University of Chicago, USA
YComputer Science and Mathematics Division, Oak Ridge National Laboratory, USA

Abstract—Data transfer in wide-area networks has been long
studied in different contexts, from data sharing among data
centers to online access to scientific data. Many software tools and
platforms have been developed to facilitate easy, reliable, fast, and
secure data transfer over wide area networks, such as GridFTP,
FDT, bbcp, mdtmFTP, and XDD. However, few studies have
shown the full capabilities of existing data transfer tools from
the perspective of whether such tools have fully adopted state-of-
the-art techniques through meticulous comparative evaluations.
In this paper, we evaluate the performance of the four high-
performance data transfer tools (GridFTP, FDT, mdtmFTP, and
XDD) in various environments. Our evaluation suggests that each
tool has strengths and weaknesses. FDT and GridFTP perform
consistently in diverse environments. XDD and mdtmFTP show
improved performance in limited environments and datasets
during our evaluation. Unlike other studies on data transfer tools,
we also evaluate the predictability of the tools’ performance,
an important factor for scheduling different stages of science
workflows. Performance predictability also helps in (auto)tuning
the configurable parameters of the data transfer tool. We apply
statistical learning techniques such as linear/polynomial regres-
sion, and k-nearest neighbors (kNN), to assess the performance
predictability of each tool using its control parameters. Our
results show that we can achieve good prediction performance
for GridFTP and mdtmFTP using linear regression and kNN,
respectively.

I. INTRODUCTION

Data transfer in wide-area networks has been long studied
in different contexts including data sharing among data centers
managed by a single organization (e.g., synchronization among
data centers [1,2]), and online access to scientific data [3—
6]. Many software tools and platforms have been developed
to facilitate easy, reliable, fast, and secure data transfer over
wide area networks, such as GridFTP [7], FDT [8], bbcp [9],
mdtmFTP [10], and XDD [11].

Faster data transfers in e-Science will ultimately result in
faster knowledge discovery. In this regard, high-performance
data transfer has been studied in various aspects since the data
transfer operation involves many system components along
which the data path lies. The following areas have been studied
towards the performance improvement of high-performance
data transfers over wide area networks (WANS).

o Storage systems: How can we read/write a dataset in the
fastest way possible?

978-1-5386-8134-3/18/$31.00 ©2018 IEEE

o Networks: How can we transfer data to/from memory
over WANs? What network parameters can be optimized?

o Protocols: What protocol optimizations yield the best
transfer performance?

o Tool/platform: How can data transfer tools and platforms
coordinate the above components to optimize perfor-
mance by adapting to diverse use cases?

High-performance parallel file systems (PFS) such as Lustre
and General Parallel File System (GPFES) by IBM are deployed
in supercomputing facilities. The complex structure of these
filesystems require sophisticated parameter tuning to utilize the
storage system to its full capacity [12, 13]. Similar tuning is
also required for the network protocols (e.g. TCP/IP protocol
stack based on static/dynamic network configuration [14]) and
the underlying networks to exploit multiple alternative paths.
Several data transfer tools have modified the traditional FTP
protocol to improve performance in the context of specific en-
vironments or data transfer workloads. For example, GridFTP
builds on FTP to improve its performance, reliability and
security. An important issue with data transfer tools/platforms
is the orchestration of storage, network and protocols, and
their holistic optimization [15]. Studies have also focused on
the above problems to analyze the performance of both the
isolated components [16] and the end-to-end systems [17].
However, few studies have shown the full capabilities of ex-
isting data transfer tools from the perspective of whether such
tools have fully adopted state-of-the-art techniques through
meticulous comparative evaluations.

The main contributions of this paper are as follows:

1) We present a comprehensive comparative performance
evaluation of various existing data transfer tools.

2) For each data transfer tool, we outline all parameters that
are critical to data transfer performance by classifying
them into appropriate categories.

3) We developed a number of test datasets to accurately
capture the real-world performance of the data transfer
tools, and to analyze their strengths and weaknesses.

4) We perform extensive real-world data transfers on var-
ious geographically separated supercomputing facilities
over the wide area network and discuss performance

2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)

predictability based on the tools’ control parameters.

The rest of this paper is as follows. Section II outlines the
related work. Section III presents a brief description of various
data transfer tools that are evaluated in our study. Section IV
presents our experimental methodology and experimental re-
sults under various parameters critical to data transfer per-
formance. We also discuss the experimental results and their
implications for the design of high-performance data transfer
tools. In Section V, we discuss performance predictability
based on the tools’ control parameters. We present a discussion
on the strengths and weaknesses of the tools compared in
Section VI. Finally, we conclude in Section VII.

II. RELATED WORK

Many high-performance data transfer tools have been de-
veloped. GridFTP [7], FDT [8], BBCP [9], mdtmFTP [10],
and XDD [11,18] are representative examples. Advanced
services such as Globus [19], PhEDEx [20], and LIGO Data
Replicator [6] are currently provided. These tools and services
are built upon many years of performance improvement en-
deavors. For example, in the case of GridFTP, these include
the use of parallelism for high-speed data transfer [21], a
layered software architecture to adapt to various working
environments [22], and pipelining [23] and popen [24] to
address the lots of small files (LOSF) problem.

Most previous studies of data transfer performance have
focused on evaluating a single tool or feature [25]; few have
involved comparative evaluations of multiple data transfer
tools. Mattman et al. [26] classified data transfer tools along
seven dimensions (scalability, reliability, easy of use, transfer
rate, cost of operate, cost to implement, and industry adoption),
but that study was performed more than a decade ago and
considered mostly older tools. Zhang et al. recently evaluated
the performance of the mdtmFTP data transfer tool [27].
Our work here is distinguished by its extensive comparative
evaluation of four representative data transfer tools, namely
FDT, GridFTP, mdtmFTP, and XDD.

III. DATA TRANSFER SOFTWARE ARCHITECTURE

We first describe the major features of the data transfer
tools from a performance perspective. Table I summarizes
the features of the various tools in terms of storage, network,
protocol, and their software architecture. For storage, there are
three sub-features; (1) Direct I/O, (2) Parallel file system (PFS)
multi-threading, and (3) PFES striping. Direct I/O indicates
whether a tool uses the direct I/O function for file reads/writes
(file reads and writes go directly between the tool and the
storage system, bypassing the operating system read and write
caches). PFS multi-threading and striping indicate whether a
tool exploits multiple threads and file striping over multiple
disks on PFS, respectively. Regarding the network, there are
two sub-features: (1) multi-thread and (2) multi-socket, which
indicate whether a tool deploys multi-threads for network I/O
and multiple TCP sockets to achieve high performance, re-
spectively. At the protocol level, we consider one sub-feature,
namely, the support for lots of small files (LOSF) transfers.

This indicates whether a tool has implemented an optimization
to improve the performance for LOSF transfers. The software
architecture indicates any distinguishable characteristics of a
tool in terms of its design architecture.

A. Fast Data Transfer (FDT)

This tool uses a managed pool of TCP socket buffers to en-
able continuous streaming of a dataset between endpoints [8].
FDT ensures fast and efficient data transfers by using inde-
pendent read/write threads, appropriate corresponding storage
I/0 and network buffer sizes. On the receiver endpoint, the
received dataset (or files) are recreated asynchronously from
the managed buffer pool. For large datasets, FDT can be used
to stream the data continuously between the endpoints without
requiring the need for restarting network transfers between
files.

B. GridFTP

GridFTP [7] is a high-performance protocol optimized for
secure and reliable data transfers across high-bandwidth WAN.
The Globus implementation of GridFTP supports parallel data
transfers using multiple TCP streams with support for striping
and interleaving. It incorporates a number of features for
secure, reliable and high-performance data transfer including
third-party data transfer controls, automatic renegotiation of
TCP buffers and window sizes, user authentication, data in-
tegrity/confidentiality controls, and support for checkpointing
and connection restarts.

C. mdtmFTP

This tool uses dedicated I/O threads for both disk and
network operations [10]. It uses a pipelined I/O-centric ar-
chitecture and multi-core services provided by the multicore-
aware data transfer middleware (MDTM) [28] for fast and
efficient file transfers. The MDTM services are combined
with other features like pipelining, batch-processing, managed
buffer pools, zero-copy, and asynchronous I/O operations to
optimize data transfer performance. Further, mdtmFTP em-
ploys a “virtual file” mechanism for handling LOSF transfers.
A large virtual file is created by sequentially adding all the
artifacts of the dataset along with a content index table. This
virtual file is restored at the destination endpoint by using the
metadata information contained in the content index table.

D. eXtreme DD Toolset (XDD)

This tool creates and uses a set of threads at both the
source and the destination endpoints when a file transfer is
initiated [11]. A number of QThreads [29] read from a thread-
local buffer (the size of which is determined by the request size
parameter) and source XDD process creates a TargetThread
which initiates a corresponding connection with the destination
XDD process. A file transfer is initiated by creating a set of
source/destination paired processes. For accomplishing an end-
to-end data transfer task, the XDD instance uses the same
number of ports, the same 1/O request sizes and queue depths
at both endpoints. Thus, XDD requires a pair of “matched”
instances for each file transfer.

2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)

TABLE I: Comparison of Software Architecture of Different Data Transfer Tools

Storage Network Protocol
Direct PFS PFS multi- | multi- SW Arch.
/0 multi-thread | striping | thread | socket LOSF Approach
GridFTP Y Y Y Y Y Concurrency, Pipelining Layered
XDD Y Y Y Y Y NA Not layered
FDT N Y N Y Y Managed buffer pool, streaming | Not layered
mdtmFTP Y Y N Y Y Virtual fileystem Unknown

IV. EXPERIMENTAL EVALUATION

We evaluate both local area network (LAN) and wide
area network (WAN) disk-to-disk transfers over high-speed
network connections. While LAN transfer performance was
evaluated on the cloud computing infrastructure, WAN transfer
performance evaluation on the other hand was conducted
between different supercomputing center pairs with different
round-trip-time (RTT) latencies. Dedicated data transfer nodes
(DTNs), high-performance parallel file systems, and software
components including storage I/O and network transport mod-
ules were provided by the supercomputing sites.

A. Experimental Setup

The LAN transfers were performed over the cloud com-
puting resources provided by the Holland Computing Center
(HCC) at University of Nebraska-Lincoln (UNL). The nodes
were configured to use 4 cores, 16GB RAM, 160GB of Ceph
storage and 10GbE network interfaces. The transfer perfor-
mance for the sub-1 ms RTT case was evaluated on this setup.
For WAN transfers, the data transfer nodes (DTNs) at the
following supercomputing centers were employed: a) Gordon
at San Diego Supercomputer Center (SDSC), b) Bridges at
Pittsburgh Supercomputing Center (PSC), c) Research Com-
puting Center (RCC) at University of Chicago, and d) HCC at
UNL. We consider RTTs of approximately 15 ms, 30 ms, and
60 ms, corresponding to the supercomputing center pairs RCC-
to-PSC, UNL-to-SDSC and SDSC-to-PSC respectively. Each
DTN provided a 10GbE network connection for the different
data transfer measurements. The disk-to-disk file transfer
performance was measured over the GPFS/Lustre filesystems
mounted over an Infiniband network at each compute center.

B. Transfer Tools

We evaluated the performance of the four high performance
data transfer tools described in Section III namely: GridFTP,
FDT, mdtmFTP, and XDD. Of these tools, GridFTP was set
up for third-party transfers, while the other tools operated
in client-server mode. The mdtmFTP tools were distributed
as Docker [30] containers and RPM packages, and required
superuser privileges to set up on the DTNs. Therefore, we
present mdtmFTP performance measurements for the LAN
scenario only and do not incorporate it in our WAN evaluations
as none of the production DTNs provided this support. Also,
we were unable to build an earlier source distribution of
mdtmFTP due to the lack of support for its dependent libraries
on the production DTNs. We do not include bbcp transfer per-
formance in our discussions because bbcp performed poorly
for both the large file and lots of small files (LOSF) cases. For

example, bbcp was from 3x to 8x slower than other tools in
our experiments—or, in the case of Datasets 5 and 6 (see Table
II), did not complete at all.

C. Methodology

We evaluate and compare the transfer performance of the
different tools by measuring the disk-to-disk transfer times
for different datasets (abbreviated as DS in the figures). The
datasets used in the tests are as shown in Table II. The total size
of each dataset is fixed at 10GB, with file sizes varying from
10GB to 100KB. Thus, the presented transfer performance is
representative of both large file transfers, as well as the LOSF
transfers. We measure the transfer performance consecutively
for each tool for a given dataset. Each dataset is transferred ten
times to ensure that the measured transfer times are statistically
significant and measurements are presented with a confidence
interval estimate of 95%.

TABLE II: Transfer Datasets

Dataset# 1 2 3 4 5 6
File Size | 10GB 1GB 100MB 10MB IMB 100KB
#Files 1 10 100 1000 10000 100000

D. Performance Parameters

Different data transfer tools use different performance pa-
rameters. Here, we provide a description of the parameters
and their values used in our experiments for both large file
transfers and LOSF transfers.

1) GridFTP: The storage 1/O block size was set to 4MB
and the TCP buffer size was set to 2MB. Pipelining
and Direct I/O were enabled for all transfers. We set
concurrency (number of concurrent file transfers) to be
32 and parallelism (number of TCP streams per file) to
be 4 for all datasets.

2) FDT: For all datasets, the I/O buffer size was set to 32M,
the TCP SO_SND_BUFFER size to 2MB and blocking
I/0 was enabled. All dataset transfers used a total of 32
parallel network streams.

3) mdtmFTP: mdtmFTP was set up to use an I/O block
size of 4MB on both client/server endpoints and the total
number of parallel TCP streams were set to 32. Further,
direct I/O was enabled, and the monitoring option was
disabled on the server.

4) XDD: We configure XDD to use an I/O block size of
4MB, I/0 queue depth of 32 and the total parallel network
streams to 32, on both the source and the destination
endpoints. The direct I/O option was also enabled on both
endpoints.

2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)

E. Results

We present data transfer performance results for the dif-
ferent tools in Figure 1. In order to present widely varying
transfer times observed across different datasets in a readable
manner, we present normalized results for each dataset with
respect to the lowest time taken by any tool. The lowest
time taken is used as a baseline measure for evaluating the
performance of other tools. As XDD was designed to move
single large files across the WAN, it does not provide directory
transfer capabilities. Thus, we only present XDD results
for Dataset 1. Further, as noted in Section IV-B, mdtmFTP
evaluations are presented for the LAN case only.

1) LAN case: 0.6 ms RTT: Figures la shows FDT, GridFTP,
mdtmFTP, and XDD results for Dataset 1 (a single 10 GB
file) in the 0.6 ms RTT (i.e., LAN) case. XDD has the best
performance of the four tools, closely followed by GridFTP
and mdtmFTP. All tools are within 1.25x of the baseline.

Figure 1b presents results for Datasets 2 to 6 with GridFTP,
FDT, and mdtmFTP. We see that GridFTP and mdtmFTP
perform similarly in all cases, with mdtmFTP slightly faster
than the other tools. GridFTP transfer performance lies within
10% of mdtmFP. FDT is the slowest in all cases, with a much
larger transfer delay for the LOSF case (Dataset 6), where it
is about 190% of the baseline (mdtmFTP in this case).

2) WAN case #1: 15 ms RTT: Figure 1c and 1d show results
for the 15 ms environment, between the DTNs at UChicago-
RCC and PSC-Bridges. For WAN transfer of large files, XDD
performance is better than its counterparts, with GridFTP
closely following the XDD performance. For Datasets 2 to 5,
FDT performs comparably to GridFTP, but its performance
deteriorates for the LOSF case.

3) WAN case #2: 30 ms RTT: Figures le and If show
results for the 30 ms environment, between the DTNs at UNL-
HCC and PSC-Bridges. For these transfers, we see reduced
variations in performance for the large file transfer case among
the tools. However, FDT performance for Datasets 2 to 6
decreases with a decrease in file sizes and a corresponding
increase in the total number of files transferred between the
endpoints.

4) WAN case #3: 60 ms RTT: Figures 1g and 1h show
results for the 60 ms environment, between the DTNs at
SDSC-Gordon and PSC-Bridges. Results are similar to those
seen for the 30 ms environment.

V. PERFORMANCE PREDICTABILITY BASED ON TOOL
CONTROL PARAMETERS

So far we have analyzed various data transfer tools in
terms of the maximum performance that they can achieve.
In this section, we analyze and compare data transfer tools
with respect to the predictability of performance based on
tools’ control parameters. This is important both for users
initiating data transfers and for the administrators of data
transfer systems such as data transfer nodes (DTNs), so that
they can get an accurate estimate of the transfer time and/or
aggregate throughput.

TABLE III: Comparison cases

Case# | RTT | Dataset# | Tool
1 0.6ms | All GridFTP, FDT, mdtmFTP
2 All 1 GridFTP, FDT, XDD
3 All All GridFTP, FDT

Based on the data points that we gathered for each data
transfer tool, we assess the performance predictability of the
tool by running several statistical learning techniques and
measuring errors. Regarding the data points, we have some
limitations and assumptions. Unfortunately, due to limited
configuration parameters of the tools, we used all the data
points for training only and measured errors. For fairness, we
only compare the tools with the same number of data points
and similar control parameters. Accordingly, there are three
cases as shown in Table III.

The number of predictors/features varies among data trans-
fer tools since the parameters provided by each tool is
different. External loads, e.g. network traffic generated by
data transfers other than the one of interest, are assumed
to be steady since the performance data are averaged over
ten measurements. In general, the training error decreases as
the flexibility of a model increases. Therefore, it is obvious
that the more predictors are provided, the less training errors
will be if all other conditions are same. We conduct the
analytical comparison among tools based on the tools’ control
parameters.

Among many statistical and machine learning techniques,
we use two basic techniques namely: linear regression and
kNN (k-Nearest Neighbors) regression techniques. We used
R [31] for running such algorithms and getting numerical
results. We evaluate both the linear regression technique and
the polynomial linear regression technique. In case of the
polynomial linear regression technique, the degree of the
polynomial linear regression is restricted to a minimum of
2 and a maximum of the one less than the number of different
points. For example, if a predictor has only 2 distinct values,
the degree of the predictor is restricted to 1. In case of kNN,
the minimum error when k=2 or k=3 is chosen. We use Mean
Absolute Percentage Error (MAPE), which is the average of
absolute differences of predicted values and actual values,
for error measurement metrics for all techniques. Lower error
value indicates better predictability.

Due to the small number of data points, only the training
error results are presented in Table IV. As described in
Section IV-B, we could not evaluate all of the tools for each
case due to the tools’ platform and dependency limitations.
Accordingly we evaluated the performance for three cases.
Case 1 indicates the test condition with RTT = 0.6ms and
all datasets, Case 2 indicates the test condition with all RTTs
and Dataset 1, and Case 3 indicates the test condition with
all RTTs and all datasets. In Case 1 and 3, linear regression
techniques for GridFTP accounts for the best MAPE percent
while in Case 2, polynomial linear regression technique works
better for other tools than GridFTP. The results also suggest
that kNN regression technique in general is a little worse than

2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)

B

S

S

2
Normalized Transfer Time

o
£
£
3
2
g
£
H
5
S
E
15
2

S

oA
GridFTP FOT mdtmFTP XDD
Data Transfer Tool

i 3|T1[T2[T3 3 i
[1e8 | tooms | tome | M8 | ook |

(a) 10GB File transfer perfor-
mance (DS1), RTT=0.6 ms.

(b) File
(DS2 to 6), RTT=0.6 ms.

20
[GridFTP (T1)‘

1.8 | FOT (12)
16

Ea

&
B 12

Normalized Transfer Time

FOT
Data Transfer Tool

T2 2| M T2 1] T2
o8 [toows | owe | e | oo |

(e) 10GB File transfer perfor-

mance (DS1) b/w UNL-HCC and to 6) b/w UNL-HCC and PSC-

PSC-Bridges, RTT=30 ms. Bridges, RTT=30 ms.

transfer performance (c) 10GB File transfer perfor-

(f) File transfer performance (DS2 (g) 10GB File transfer perfor-

£
Normalized Transfer Time

o
£
£
8
5
2
g
£
3
8
]
E
s
2

FOT
Data Transfer Tool

(d) File transfer performance
(DS2 to 6) b/w UChicago-RCC
and PSC-Bridges, RTT=15 ms.

mance (DS1) b/w UChicago-RCC
and PSC-Bridges, RTT=15 ms.

1. 35
[GridF TP (T1)
4o [EEALFDT (12)

o

&

4

Normalized Transfer Time
Normalized Transfer Time

FOT
Data Transfer Tool

2 [T
10MB MB

T2 [T[T
168 100MB

100kE

(h) File transfer performance
mance (DS1) b/w SDSC-Gordon (DS2 to 6) b/w SDSC-Gordon and
and PSC-Bridges, RTT=60 ms. PSC-Bridges, RTT=60 ms.

Fig. 1: Performance Evaluation of the data transfer tools.

TABLE IV: Predictability comparison results (MAPE%) for linear regression/polynomial linear regression/kNN.

| # | RIT | Dataset# | GridfFTP | FDT | mdtmFTP | XDD |
1 | 0.6ms All 4%/ 0.08%/ 21% | 30%/ 27%/ 36% | 13%/ 8%/ 16% | NA/ NA/ NA
2| Al 1 19%/ 16%/ 142% | 60%/ 0%/ 113% | NA/ NA/NA | 72%/ 13%/149%
3| Al All 56%/ 14%/ 100% | 128%/ 88%/ 131% | NA/ NA/ NA NA/ NA/ NA

linear regression technique. But the order of the kNN MAPE
of data transfer tools has a similar tendency to the order of
the linear regression techniques.

VI. DISCUSSION

Of the data transfer tools compared in this paper, FDT
required the least configuration. The Globus Connect Personal
packaging of GridFTP [19,32], although not evaluated here,
is similar in this regard. With a Java-based implementation,
FDT is highly portable and can be used in a wide range of
environments. It is to be noted that all tools compared in
this evaluation, with the exception of GridFTP, employed a
client-server architecture for data transfers. GridFTP is the
only tool in this mix to support third-party transfers, which
is important for moving data between different computing
center endpoints. Also, we note that XDD does not support
recursive/directory file transfers: it can only be used with
single-file transfers. XDD is optimized for very large single
file transfers and performs well for this use case. In our
tests, anonymous authentication was enabled for all GridFTP
transfers. We note that the remaining tools offered limited/no
support for authentication/confidentiality controls for end-to-
end data transfers. The use of authentication with GridFTP will

result in additional overheads and it would therefore be inter-
esting to compare the performance of the tools by discounting
the security latencies for GridFTP transfers. All GridFTP data
transfer results presented here include the authentication costs
in the performance evaluations.

To the best of our knowledge, this is a first evaluation
of data transfer tools in terms of predictability. Performance
predictability can play an important role in autotuning the data
transfer tools for maximum performance. A large number of
control parameters provided by a data transfer tool can result in
additional predictors/features for use with statistical/machine
learning techniques. In this paper, we demonstrated the use of
techniques such as linear regression, k-nearest neighbors and
polynomial regression for performance prediction. GridFTP
and mdtmFTP have various parameters to control system and
data transfer performance. This results in high predictability
when linear regression or kNN are used.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a detailed comparison and evaluation of
the capabilities and performance of four data transfer tools:
FDT, GridFTP, mdtmFTP, and XDD. Our performance eval-
uation focuses on different types workloads, including one

2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)

that involves many small files—a relatively uncommon, but still
important use case for scientific workloads.

Our evaluation suggests that each tool has strengths and
weaknesses. FDT and GridFTP win in terms of ease of
installation and use. XDD and mdtmFTP performed slightly
better than GridFTP in the limited environments and datasets
for which we were able to get them to work. GridFTP works
in the widest range of environments and delivers performance
that is always above 90% (and in many cases above 95%) of
that best performance achieved by any tool.

A more comprehensive study would also evaluate data
transfer tools along additional dimensions. In particular, re-
liability and usability are of vital importance for any data
transfer tool that aims to be widely adopted in academia and
industry. Here, the availability of the Globus transfer service
as a highly usable and reliable GridFTP client, with both
Web and REST interfaces, is an important differentiator for
GridFTP, enabling large-scale deployment [32] and integration
into applications [33].

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department
of Energy under contract number DEAC02-06CH11357 and
SDN-SF project, and the National Science Foundation, under
grant numbers ACI-1440761, OAC-1541442. This work was
completed using the Holland Computing Center of the Univer-
sity of Nebraska, which receives support from the Nebraska
Research Initiative.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal et al., “B4: Experience with a Globally-
deployed Software Defined Wan,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 4, pp. 3—-14, Aug. 2013.

[2] C.-Y. Hong, S. Kandula, R. Mahajan e al., “Achieving High Utilization
with Software-driven WAN,” in ACM SIGCOMM 2013 Conference on
SIGCOMM, ser. SIGCOMM ’13. ACM, 2013, pp. 15-26.

[3] W. Hendrix, I. K. Tetteh, A. Agrawal ef al., “Community Dynamics and
Analysis of Decadal Trends in Climate Data,” in 2011 IEEE 11th Intl.
Conf. on Data Mining Workshops, Dec. 2011, pp. 9-14.

[4] J. Saez-Rodriguez, A. Goldsipe, J. Muhlich et al., “Flexible informatics
for linking experimental data to mathematical models via DataRail,”
Bioinformatics, vol. 24, no. 6, pp. 840-847, Mar. 2008.

[5] R. Latham, C. Daley, W.-k. Liao et al., “A case study for scientific
1/0: improving the FLASH astrophysics code,” Computational Science
& Discovery, vol. 5, no. 1, p. 015001, 2012.

[6] A. Chervenak, R. Schuler, C. Kesselman er al., “Wide areca data

replication for scientific collaborations,” in The 6th IEEE/ACM Intl.

Workshop on Grid Computing, 2005., Nov. 2005.

W. Allcock, J. Bester, J. Bresnahan et al., “GridFTP: Protocol extensions

to FTP for the grid,” Global Grid Forum, GFD-RP, vol. 20, pp. 1-21,

2003.

[8] “Fast Data Transfer,” http://monalisa.cern.ch/FDT/.
[9]1 “BBCP,” http://www.slac.stanford.edu/ abh/bbcp/.

[10] L. Zhang, W. Wu, P. DeMar, and E. Pouyoul, “mdtmFTP and its

evaluation on ESNET SDN testbed,” Future Generation Computer

Systems, 2017.

“XDD - The eXtreme dd toolset,” https://github.com/bws/xdd.

T. Jones, A. Koniges, and R. Yates, “Performance of the IBM general

parallel file system,” in Parallel and Distributed Processing Symposium,

2000. IPDPS 2000. Proceedings. 14th International, 2000, pp. 673-681.

Z. Sebepou, K. Magoutis, M. Marazakis, and A. Bilas, “A Comparative

Experimental Study of Parallel File Systems for Large-scale Data

Processing,” in First USENIX Workshop on Large-Scale Computing, ser.

LASCO’08, Berkeley, CA, USA, 2008, pp. 5:1-5:10.

[7

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

D. Yun, C. Q. Wu, N. S. V. Rao et al., “Profiling Optimization for Big
Data Transfer over Dedicated Channels,” in 2016 25th Intl. Conf. on
Computer Communication and Networks (ICCCN), Aug. 2016, pp. 1-9.
C. Q. Wu, D. Yun, N. Rao, Q. Liu, R. Kettimuthu, and E.-S. Jung,
“Data transfer advisor with transport profiling optimization,” in 2017
42nd Annual IEEE Conference on Local Computer Networks, 2017.

Y. Kim, S. Atchley, G. R. Valle, S. Lee, and G. M. Shipman, “Optimizing
End-to-End Big Data Transfers over Terabits Network Infrastructure,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 1,
pp. 188-201, Jan. 2017.

E.-S. Jung, R. Kettimuthu, and V. Vishwanath, “Cluster-to-cluster data
transfer with data compression over wide-area networks,” Journal of
Parallel and Distributed Computing, vol. 79-80, pp. 90-103, May 2015.
B. W. Settlemyer, J. D. Dobson, S. W. Hodson, J. A. Kuehn, S. W.
Poole, and T. M. Ruwart, “A Technique for Moving Large Data Sets
over High-performance Long Distance Networks,” in 2011 IEEE 27th
Symposium on Mass Storage Systems and Technologies, ser. MSST ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 1-6.

B. Allen, J. Bresnahan, L. Childers et al., “Software as a service for
data scientists,” Commun. ACM, vol. 55, no. 2, pp. 81-88, 2012.
“Physics Experiment Data Export,” https://github.com/dmwm/PHEDEX.
J. Lee, D. Gunter, B. Tierney, B. Allcock, J. Bester, J. Bresnahan,
and S. Tuecke, “Applied techniques for high bandwidth data transfers
across wide area networks,” Ernest Orlando Lawrence Berkeley National
Laboratory, Tech. Rep. LBNL-47183, 2001.

W. Allcock, J. Bresnahan, K. Kettimuthu, and J. Link, “The globus
extensible input/output system (XIO): a protocol independent IO system
for the grid,” in Parallel and Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International, Apr. 2005, p. 8 pp.

J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I. Foster, “GridFTP
Pipelining,” in Proc. 2007 TeraGrid Conference, Teragrid, 2007.

R. Kettimuthu, S. Link, J. Bresnahan, M. Link, and I. Foster, “Globus
XIO pipe open driver: enabling GridFTP to leverage standard Unix
tools,” in 2011 TeraGrid Conference: Extreme Digital Discovery, ser.
TG ’11. New York, NY, USA: ACM, 2011, pp. 20:1-20:7.

C. Cirstoiu, R. Voicu, and N. Tapus, “Framework for High-Performance
Data Transfers Optimization in Large Distributed Systems,” in 2008
International Symposium on Parallel and Distributed Computing, Jul.
2008, pp. 385-392.

C. A. Mattmann, S. Kelly, D. J. Crichton, J. S. Hughes, S. Hardman,
P. Ramirez, and R. Joyner, “A classification and evaluation of data
movement technologies for the delivery of highly voluminous scientific
data products,” 2006.

L. Zhang, W. Wu, P. DeMar, and E. Pouyoul, “mdtmFTP and its
evaluation on ESNET SDN testbed,” Future Generation Computer
Systems, Apr. 2017.

“A Multicore-Aware Data
https://web.fnal.gov/project/mdtm.
K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API
for programming with millions of lightweight threads,” in 2008 IEEE
International Symposium on Parallel and Distributed Processing, April
2008, pp. 1-8.

D. Merkel, “Docker: Lightweight linux containers for consistent devel-
opment and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.

R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2018. [Online]. Available: https://www.R-project.org

K. Chard, S. Tuecke, and I. Foster, “Efficient and secure transfer,
synchronization, and sharing of big data,” IEEE Cloud Computing,
vol. 1, no. 3, pp. 46-55, 2014.

K. Chard, E. Dart, I. Foster, D. Shifflett, S. Tuecke, and J. Williams,
“The Modern Research Data Portal: A design pattern for networked,
data-intensive science,” PeerJ Computer Science, vol. 4, p. el44, 2018.

Transfer Middleware (MDTM),”

