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1 Introduction

For many innovative firms, intellectual capital is often their most important asset, with

patents being increasingly used as collateral for loans (Mann, 2018a; Ma and Wang, 2019).

Even firms that have yet to innovate pledge future patents as collateral through blanket liens

(Mann, 1997). Thus, it is not surprising that lenders worry about protecting the value of the

current and future intellectual capital of their borrowers. Indeed, anecdotal evidence shows

that lenders require borrowers to disclose any new innovations and to take actions, such

as patenting, to protect their value.1 Such clauses notwithstanding, many innovations that

are yet to materialize are likely difficult to verify, making the enforcement of these clauses

difficult, if not impossible.

This unenforceability makes the patenting decision endogenous, and in a way that in-

teracts with the contractual features of a firm’s financing choices. One important aspect

of patenting is that it creates a verifiable asset that a lender may liquidate, or threaten to

liquidate, if not fully repaid. Anecdotal evidence and discussions with industry practitioners

indicate that a firm facing the possibility of defaulting may not find it optimal to patent

an innovation if the benefit obtained from patent protection does not outweigh the cost

associated with increasing a lender’s ex-post bargaining power.2 Court cases also provide

evidence that not securing intellectual property by registering collateral on patents prior to

bankruptcy weakens or nullifies lenders’ security interests.3 Despite the importance of these
1See, for instance, the loan agreement between SI-Bone Inc. and Biopharma Credit Investments (Octo-

ber 13, 2017), available at: https://www.sec.gov/Archives/edgar/data/1459839/000119312518278797/
d452987dex1020.htm

2We thank Trevor J. Belden, as well as an anonymous banker, for useful suggestions, including examples
where lenders are worried that firms close to bankruptcy may have an incentive to delay patenting (or
registering IP) to increase their bargaining power in bankruptcy negotiations with lenders. Another example
was that lenders may extend additional loans to firms in order for them to litigate infringement of intellectual
property by third parties, fearing that the firm may otherwise not want to dedicate resources to protecting
IP that has a chance of transferring to the lender anyway.

3While a lender may have a blanket lien on all IP, unpatented innovations and/or unregistered intellectual
property make the security of the collateral uncertain for the lender. Patent security interests are advised to
be recorded under UCC and with the USPTO. A bankruptcy case involving Mitsui Manufacturers’ Bank and
Transportation Design and Technology, Inc (https://advance.lexis.com/api/document?collection=
cases&id=urn:contentItem:3S4V-NPN0-0039-K2T6-00000-00&context=1516831) illustrates this issue
well (see Haemmerli (1996) for a detailed discussion). In this instance, the lack of patents at the time
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potential issues to lenders, as well as the substantial evidence that debt financing plays an

important role in the funding of innovative firms (see, e.g. Amore et al., 2013; Chava et al.,

2013; Cornaggia et al., 2015; Chava et al., 2017; Mann, 2018a), there is little or no research

on how the endogeneity of the patenting decision interacts with a firm’s financing decisions.

We show that the endogeneity of patenting introduces a friction in contracting, especially for

innovative firms whose existing assets are insufficient to serve as collateral against their needs

for funding. While in equilibrium firms patent their innovations when doing so is efficient,

this friction nevertheless affects the feasibility of obtaining financing, the terms of financial

contracts, and has implications for policies related to patent protection and creditor rights.

In our model, a firm requires financing to invest in a two-period project which may

produce an innovation at the end of the first period. The firm’s existing assets and cash

flows, however, are not sufficient to support the needed financing. In addition, cash flows

and the innovation are not verifiable, so that contracts that directly depend on them are

not enforceable in courts (as in Grossman and Hart, 1986; Hart and Moore, 1990). At the

end of the first period, the firm learns whether the project produced an innovation and how

much cash was generated and decides whether and how much to repay the lender, as well as

whether to patent the innovation. If not fully repaid, the lender has the right to liquidate

the project early. If the project is not liquidated in the first period, second period cash

flows are realized. The contract can be renegotiated in each period, which ensures that the

patenting decision will be efficient. Renegotiation of the contract effectively makes the terms

of financing state-dependent and may introduce writedowns (“haircuts”), rollovers, or early

repayment when it is optimal to do so.

A key feature of our framework is that if an innovation takes place, the firm must then

decide whether to patent the innovation. Patenting not only protects intellectual capital but

also converts it into a verifiable asset on which claims can be registered and secured, and

which is then subject to repossession by an investor who has obtained control rights over

of bankruptcy by an innovating firm weakened the lender’s claim on the firm’s intellectual property in
bankruptcy, including patents that were granted post-filing.
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it. The firm’s patenting decision hinges on the tradeoff between the value associated with

protecting the innovation versus creating an asset that could be liquidated by the lender

in the second period. As a result, the endogeneity of the patenting decision imposes an

upper limit on the long-term repayment that the firm can credibly offer, which shapes the

terms of financial contracts in equilibrium, limiting the feasibility of financing and leading

to inefficiencies.

The upper limit on the long-term repayment depends, among other factors, on the differ-

ence between the value of the innovation with and without patenting. Of course, this differ-

ence depends on many considerations4 and has an impact on not only the firm’s patenting

decisions but also its ability to obtain financing. While a firm with no need for external

financing will patent its innovation any time this difference is positive, a financially con-

strained firm will not be able to obtain financing unless this difference is sufficiently large

since a lender will infer, correctly, that the firm will subsequently choose not to patent its

innovation. Moreover, even if the upper limit on repayments is not a binding constraint

ex-ante, it may still limit what payments can be deferred when the firm cannot meet its

first period obligation in full. This reduces the lender’s expected payoff, which must then

be compensated through an increase in the total promised payment. Hence, the need for

greater promised payments leads to more projects being denied financing or, if financing is

feasible, leads to a higher probability of liquidation of existing assets and/or the patent.

We find that when patenting is endogenous, innovative projects with a higher probability

of success (low risk) will be financed even when their expected values are relatively low.

This introduces a bias towards financing of low risk but also low payoff projects at the

expense of projects that may yield higher returns but are riskier, even though investors

have no particular preference for reducing risk. The effect of this bias is similar to credit

rationing (Stiglitz and Weiss, 1981; Besanko and Thakor, 1987), although the mechanism
4For example, for some innovations the value when unpatented may be larger than when patented, giving

an incentive to maintain trade secrets instead of patenting (see Saidi and Zaldokas, 2021; Friedman et al.,
1991, for a review). We examine cases where patenting is optimal for firms in the absence of financing
frictions to highlight the effects stemming from the endogeneity of patenting.
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is very different; here, the constraint on long term payments limits the degree to which a

lender can be compensated for risk.

Firm and industry characteristics affect the terms of the financial contract primarily

through their effect on the constraint on long-term payments. When the constraint binds,

relaxing the constraint increases the effective maturity of the financial contract. For instance,

increases in the value of innovation, patent protection, value of existing assets, probability of

innovation, creditor liquidation rights, and expected cash flows relax the constraint and, as

a result, increase the duration of the contract. On the other hand, an increase in the value of

the innovation when not patented tightens the constraint and hence decreases the duration

of the contract. When the probability of innovation is sufficiently large, the variables that

relax (tighten) the constraint also reduce (increase) interest rates.

We consider two policy tools, i.e., improving creditor rights and patent protection, that

highlight the important role played by the innovation’s value when not patented. Specifi-

cally, improving patent protection has a larger impact on feasibility when the value of an

unpatented innovation is higher, whereas the opposite is true for improving creditor rights.

Empirically, our model predicts that improving patent protection results in higher growth

in firms with higher values of unpatented innovations. These predictions could be tested

by using shocks to patent protection over time (see Lerner, 2002; Gallini, 2002), as well as

cross-sectional differences in the value of unpatented innovations, which could be proxied

by variables suggested in the literature that analyze tradeoffs between trade secrets versus

patenting (see Hall et al., 2014, for a review).

Our focus is primarily on debt financing of entrepreneurial firms with limited cash flows

and for whom future innovations may be difficult to verify. A natural setting to study such

issues comes from the literature on incomplete contracting or enforcement, where debt-like

contracts that assign investors property rights over the firm’s assets emerge (Aghion and

Bolton, 1992; Hart and Moore, 1994, 1998). Our model can be thought of as an extension of

Hart and Moore (1998) to a setting where a long term asset can be endogenously created. A
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recent theoretical contribution to this literature is Huang et al. (2019), who, like us, study

the trade-off between the termination threat and the desire to avoid early liquidation in a

multi-period setting. Garleanu and Zwiebel (2009) emphasize the role of the design of the

contractual assignment of property rights through loan covenants. Neither of these papers

consider how the liquidation threat itself, or the value of property rights, may be endogenous

to the extent that they rely on the existence of assets the lender can seize.

Our model can be classified within the broad literature on debt overhang (Myers, 1977;

Holmstrom and Tirole, 1997).5 From this perspective, our paper is related to Hackbarth et al.

(2014), who study how a debt overhang problem influences firms’ innovation decisions, and

how this incentive varies between integrated and non-integrated firms. We do not consider

the question of firm boundaries explored in Hackbarth et al. (2014), and instead focus on

the implications arising from the endogeneity of firms’ decisions concerning the patenting of

innovations.

Our work is perhaps closest to the literature on asset redeployability and lending, which

has found that firms with more redeployable assets are less financially constrained, receive

larger loans with longer maturities, and have lower cost of external financing (Benmelech

et al., 2005; Almeida and Campello, 2007; Benmelech, 2009; Benmelech and Bergman, 2008,

2009; Campello and Giambona, 2013; Marquez and Yavuz, 2013; Kim and Kung, 2017).

There is also a parallel in the literature studying the incentives for firms to distort the creation

or maintenance of collateral in the face of upcoming debt renegotiations. For instance,

Gilje et al. (2020) show that highly levered firms will adjust the timing and value of their

investments prior to renegotiating terms with their lenders. In particular, they show that

being able to enhance the value of collateral allows firms to obtain better terms when raising
5Recently, Diamond et al. (2020, 2021) analyze how firms’ decisions on the pledgeability of their cash-

flows interacts with debt overhang. In particular, higher outstanding debt reduces a firm’s incentive to raise
the pledgeability of its cash flows. Instead, we focus on the extent to which property rights over the asset
being financed can be enforced by the lender, which is crucial for analyzing firms’ investments in innovative
activities but is assumed to be frictionless in Diamond et al. (2020). Since our focus is on small innovative
firms, whose cash flows from existing assets are not sufficient to ensure financing, increasing the firm’s ability
to make pledges against those cash flows would not obviate the frictions we study.
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new financing. In our case, after raising funding, the firm decides whether to create an asset

through patenting, thus increasing its value to the lender and making redeployability itself

endogenous.

This aspect of our model is similar to the mechanism in Donaldson et al. (2018), who study

how a bank’s “warehousing” services can help improve the pledgeability of an entrepreneur’s

output and thus reduce financial frictions. In Donaldson et al. (2018), a farmer that produces

grain can either store it himself, in which case part of the grain is lost, or he can store it in

a warehouse (e.g., a bank) and avoid the loss. The main friction in that setting is that the

farmer’s output is not pledgeable. However, depositing in the warehouse creates a claim that

the warehouse/bank can seize if loan repayment is not made, thus making property rights

over the consumption good re-assignable through the creation of a receipt at a warehouse.

Much like in our setting, the contract has to be structured to provide incentives for the

farmer to actually deposit his output at the bank, and this constraint puts a limit on how

much the farmer can be forced to repay or, equivalently, how much the bank will be willing to

lend. In our setting, patenting by a firm is analogous to the grain deposit in Donaldson et al.

(2018) in that it is similarly a solution to the problem of contracting with non-contractible

cash flows. In our model, however, rather than making any of the firm’s future cash flows

contractible, patenting allows property rights over the means of production – the innovation

– to be assigned to the investor. This distinction is important in our setting because the

entrepreneur never wants to pay by liquidating the patent since doing so is inefficient, and

this inefficiency further tightens the constraint on lending and feasibility. In our model, by

making the property rights over the asset re-assignable through patenting, the firm is better

able to commit to repay the investor from existing cash flows. This allows the firm, which has

better use of the innovation, to retain control rights over its patented innovation whenever

it has sufficient other resources it can use to repay the investor, without having to liquidate

the patent in those cases.

The growth of innovative firms is often constrained by the availability of external funding
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(Carpenter and Petersen, 2002), which may be difficult to obtain from traditional lenders

(Hall and Lerner, 2010) because innovative firms invest in specialized assets (Williamson,

1988) that are difficult to verify (Glaeser et al., 2020), possess, and liquidate (Dell’Ariccia

et al., 2021). It is also well documented that funding by venture capital funds plays an

important role in the financing of innovation (Kortum and Lerner, 2000; Lerner and Nanda,

2020). Consequently, much of the financial contracting literature that studies innovative

firms focuses on venture capital and the convertible contracts that are often used in such

financing. Convertible debt has been viewed as helping solve incentive problems (Sahlman,

1990; Kaplan and Strömberg, 2003; Schmidt, 2003; Ewens et al., 2022) and/or enabling the

efficient allocation of control rights during exit (Berglöf, 1994; Hellmann, 2006). Our finding

that the endogenity of the patenting decision imposes a constraint on how much the firm can

credibly promise to repay also applies to convertible debt contracts, as we discuss in more

detail below.

Despite the importance of VC financing for innovative firms, many firms are unable to

obtain such financing, and there is growing evidence that debt financing also plays an impor-

tant role in the financing of innovation (Robb and Robinson, 2014). Hochberg et al. (2018)

show that young innovation-oriented companies are often financed by debt and salability of

patent collateral is one of the factors that facilitates such financing. Ibrahim (2010) estimates

that financiers lend about $5 billion to start-ups annually. There is an active lending market

for patent-producing startups in innovative industries such as medical devices, semiconduc-

tors, and software (Hochberg et al., 2015).6 Our contribution is to show that when equity

financing is not available or feasible, and when the entrepreneur does not have substantial

personal assets, debt financing may nevertheless be possible through the reassignment of

property rights over future innovations.

The paper proceeds as follows. Section 2 introduces the model. Section 3 solves for the
6There is also evidence that equity providers, such as venture funds that maintain significant control

rights, use debt financing bundled with warrants between equity financing rounds (Gonzalez-Uribe and
Mann, 2017).

7



participation constraint and the optimal contract terms. Section 4 analyzes the endogeneity

of patenting and project feasibility. Section 5 discusses predictions regarding project feasi-

bility and Section 6 focuses on predictions regarding contract terms. Section 7 concludes.

2 The model

A firm has a two-period project that requires an initial investment of I > 0 at t = 0, and

may deliver an innovation at t = 1. The firm has no internal funds but has assets in place

which produce a cash flow of C̃1 ∼ U [0, C̄1] at t = 1 and, if allowed to continue, a further

cash flow of C̃2 ∼ U [0, C̄2] at t = 2. All cash flows are observable but not verifiable and,

hence, cannot be contracted upon. The firm may use these cash flows, as well as the value

of its innovation (described below) to repay investors, with any excess being consumed by

the firm. The firm’s existing assets have a liquidation value L1 at t = 1.

We assume that the liquidation value of the existing assets and expected cash flows at

time 1 are insufficient to cover the cost of the investment, i.e., L1 + E[C1] < I, and in

particular the firm is cash-constrained at time 1: C̄1 < L1 < E[C2]. As we show later, these

two assumptions simplify the model by ensuring that the lender cannot rely only on first

period cash flows or the liquidation value of existing assets for payment. These assumptions

also imply that continuing the firm’s existing activities is always optimal, even in the absence

of innovation. Partial liquidation of assets is not possible and the liquidation value of the

assets in place decreases over time – for simplicity, we assume it is equal to zero at t = 2.7

The investment has a probability p > 0 of producing an innovation which arrives at time

1. The innovation is observable but not verifiable in court and hence cannot be contracted

upon. If successful, the innovation generates a positive cash flow at some later date (beyond

t = 2). As above, future cash flows of the innovation are not directly contractible. We denote

by V the total value to society that is generated by the innovation and if the firm protects
7In the appendix, we extend the analysis to consider the case where the firm may have some long-lived

assets, with positive value A > 0 at t = 2. We show that as long as the value of these assets under liquidation
is not sufficient to fully guarantee the needed financing, our results are qualitatively unchanged.
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its innovation by patenting it between t = 1 and t = 2, it can capture a portion ω ≤ 1 of V .

The parameter ω allows us to analyze the effect of patent protection on financial contracting

while keeping the value of the innovation constant.

Investment is efficient for the firm, i.e., I ≤ pωV . Once patented, the innovation repre-

sents an asset that in principle can be liquidated at t = 2 for a fraction β ≤ 1 of its value.

The parameter β captures the portion of the value that a creditor with a claim against that

asset can accrue if the asset gets liquidated. For example, β may proxy for the strength

of creditor rights in the bankruptcy process. In addition, assigning a patent to its second

best user may result in lower value, or secondary markets for patents could be illiquid. In

the absence of patenting, or if no innovation occurs, there are no more assets that can be

liquidated at t = 2.

If the firm does not patent its innovation, there is a chance that the innovation may be

copied and revenues will be lost by the firm: without patenting the value of the innovation to

the firm is αV . The parameter α captures the effect of the unpatented value of the innovation

independently from changes in the value of the innovation when patented, ω, as well from

the value of the innovation itself, V . As we discuss below, αV determines the outside option

of the firm and hence plays an important role.8 The two separate variables ω and α allows us

to capture the possibility that different factors may affect the value of the innovation to the

firm when patented versus not. For instance, extending the duration of patent protection, or

allowing for stricter enforcement of patents, should increase the value of the innovation when

patented (i.e., increase ω), with no consequent implications for the value of the innovation

when there is no patent, αV . Conversely, the value when not patented should be a function

of the likelihood a rival may copy the innovation, which should not affect the value of the

patented innovation.
8If the innovation is not patented, it is natural to consider what happens if the firm chooses to default on

its promised payments and thus gets liquidated. In this case, the entrepreneur could set up another firm and
use the unpatented innovation to generate future cash flows. Hence, deciding not to patent an innovation
is costly to the firm, but does not lead to complete loss even under liquidation, whereas a lender would be
unable to obtain any value from liquidating a firm whose innovations have not been patented.
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We assume that the potential gain from patent protection is larger than the loss from

liquidation of the patent, i.e., ωV −αV > ωV − βωV or, equivalently, βω > α. This implies

that patenting is optimal, and is consistent with the idea that the purchaser of the patent

also gets protection from competition even if there is some loss of value due to liquidation.

We assume that the maximum possible cash flows at time 2 are larger than the social gain of

patenting, i.e., C̄2 > (ω−α)V . As we discuss further below, this ensures that any constraints

on what the firm can repay are not driven by C̄2.

Non-verifiability of cash flows forces an investor to rely on control rights and liquidation

threats to ensure repayment (e.g., Bolton and Scharfstein, 1990, 1996; Aghion and Bolton,

1992; Hart and Moore, 1994). We focus therefore on debt-like contracts with liquidation

rights for the investor if a promised payment is not made. A recent contribution by Donaldson

et al. (2018) presents a mechanism where a third party, such as a “warehouse,” can be used

to verify the existence of a cashflow and, hence, represents a solution to the problem of

contracting on something that is not easily verifiable. Patenting in our model plays an

analogous role of allowing for contracting based on the outcome of an innovation, which is

itself not contractible.

The financial contract has a short-term promised payment of D1 to be made at t = 1

and a long-term payment of D2 to be made at t = 2. If any of these payments are not made

the lender is entitled to liquidate the firm’s assets to recover the promised payment D1 +D2.

The credit market is competitive at time zero.

We allow for renegotiation of the original contract to improve efficiency. Specifically, if

the firm repays its time 1 obligation D1 in full, it can then make a take-it-or-leave-it offer to

the investor for the remaining amount. In particular, the firm may want to repay some of

its long-term debt early when it has the resources to do so. On the other hand, if the firm

is unable to repay its obligation, or if it simply refuses to do so even if able (i.e., if the firm

strategically defaults), then the lender is entitled to make a take-it-or-leave-it offer to the

firm, with the limitation that the lender cannot ask for more than the total payment D1 +D2

10



promised in the original contract. This allows for the possibility that the lender may prefer

not to force liquidation, but may instead opt to roll over some of the shortfall in repayment,

or may even find it optimal to forgive a portion of the loan.9 The renegotiation process

also captures the notion that when the firm defaults, a lender’s bargaining power likely

improves. If an offer is accepted, the new contract replaces the existing contract. If rejected,

the original contract remains in place and the investor liquidates if the promised payment

was not made in full. As discussed below, this renegotiation mechanism results in agents

agreeing on socially efficient outcomes whenever possible at time 1. We also discuss results

under alternative renegotiation mechanisms in the Appendix. We allow for renegotiation at

time 2; however, since the game ends at time 2 there is no room for either debt forgiveness

or deferral of payments and, therefore, for simplicity we assume that only the firm can make

a take-it-or-leave-it offer to the lender.

Figure 1 shows the timeline of the model. At t = 1, the cash flow C1 is realized and both

parties learn whether or not an innovation has occurred. After contract renegotiation, and

if not liquidated, the firm decides whether to patent or not when it has innovated. Finally,

if the project is continued the time 2 cash flows are realized, agents again may renegotiate

the payment, and the lender may liquidate if the promised payment is not made.

3 Analysis

We now solve the model by backwards induction given a financing contract (D1, D2). Later,

we use the payoffs obtained to determine the ex-ante optimal financial contract.

3.1 No innovation

We first consider the case when there is no innovation. The analysis is fairly simple. If

the first period cash flows are sufficient to pay back the lender, the firm pays D1, continues
9We assume that when indifferent, the lender chooses to make the offer that is preferred by the firm. In

other words, the lender chooses a Pareto-improving offer when indifferent.
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• Firm has an investment
opportunity that costs I.

• Firm obtains financing with
debt contract (D1, D2).

• Innovation happens with
probability p.

• Financier has liquidation
right if C1 < D1.

• In case of no liquidation:
(D1, D2) is renegotiated to
(D′1, D

′
2).

• Firm decides whether to
patent.

• Financier has liquidation
right if C2 < D′2.

• D′2 is renegotiated.

t = 0 t = 1
C1 is realized

t = 2
C2 realized if not liq-
uidated at t = 1

Figure 1: Timeline

to t = 2 and receives the second period cash flows. However, if the first period cash flows

are not sufficient to pay back D1, then the lender liquidates to obtain L1. This is because

the liquidation value of assets is zero in the second period and cash flows are not verifiable,

making it impossible for the lender to get paid anything in the second period. We have the

following result (all proofs can be found in the Appendix).

Claim 1 Ex-ante, the expected payoff for the lender in case of no innovation can be written

as a function of D1 as follows

F0(D1) = L1 Pr(C1 < D1) +D1 Pr(C1 > D1) = L1
D1

C̄1

+D1

(
1− D1

C̄1

)
. (1)

The ex-ante payoff to the firm when there is no innovation is equal to

H0(D1) = E[C1] + (E[C2]−D1) Pr(C1 > D1) = E[C1] + (E[C2]−D1)

(
1− D1

C̄1

)
. (2)

Note that the firm’s payoff, H0(D1), decreases in D1. This is because liquidation is

inefficient even when there is no innovation. On the other hand, the expected payoff of the

lender, F0(D1), increases when D1 increases. For completeness, we also summarize here the

joint payoff – the sum of the payoffs to the lender and the firm – as it will be useful later.
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Here, the joint payoff is

G0(D1) = F0(D1) +H0(D1) = E[C1] + E[C2]− (E[C2]− L1)
D1

C̄1

.

Like the firm’s payoff H0(D1), the joint payoff G0(D1) is also decreasing in D1. This is

because an increase in D1 raises the probability of liquidation, which is inefficient. Therefore,

increasing D1 creates a trade-off between feasibility of financing and the total payoff when

there is no innovation.

3.2 Innovation with endogenous patenting

3.2.1 Second period

Denote the renegotiated terms of the contract as D′1, D′2. First, suppose that the firm has

patented its innovation after paying the lender D′1 at time 1. After the realization of the

time 2 cash flows C2, the firm will pay min{D′2, βωV } to the lender if C2 ≥ min{D′2, βωV }

to avoid liquidation of the project. The lender will accept this payment given that it is

equivalent to what it would get in the event of liquidation. However, if C2 < min{D′2, βωV },

then the firm will be unable to repay the promised amount and the lender will liquidate to

receive min{D′2, βωV }. In other words, the lender’s payoff at time 2 if there is a patented

innovation is always equal to min{D′2, βωV }, and the lender’s payoff varies with D′2 only

when D′2 < βωV . This gives us the following preliminary result.

Lemma 1 The payoffs of the firm and the lender from a contract with D′2 > βωV are

equivalent to the corresponding payoffs from a contract with D′2 = βωV .

Given Lemma 1, it is without loss of generality to assume that agents always agree on a

time 2 payment which is no greater than the liquidation value of the patent, i.e., D′2 ≤ βωV .

Therefore, at t = 2, after the firm has paid D′1 and patented its innovation, the lender’s

payoff is always D′1 +D′2.
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Suppose instead now that the firm has paid D′1 at time 1 to the lender, but decided not

to patent the innovation. In this case, the lender will not obtain any payment at time 2

because there are no assets that can be liquidated or threatened to be liquidated to force

the firm to pay. Hence, the lender only obtains D′1 and the firm’s payoff is

C1 + E[C2] + αV −D′1. (3)

3.2.2 First period and the incentive to patent

Given the set of possible outcomes and payoffs at time 2, we now analyze what happens at

time 1, starting with the patenting decision.

The firm’s decision to patent at time 1 depends on its payoff when it patents versus when

it does not. Suppose that the firm can make the time 1 promised payment. In this case, if

the firm chooses to patent its expected payoff is:

C1 + E[C2] + Pr(C2 ≥ D′2)ωV + Pr(C2 < D′2)βωV − (D′1 +D′2). (4)

This payoff reflects that, if the firm makes its time 1 payment and patents, its payoff equals

the time 1 plus the expected time 2 cash flows, as well as the patented value of the innovation

when able to meet its obligation at time 2, but only the liquidation value βωV when not,

minus the payments made to the lender, D′1 +D′2. The firm will patent if and only if (4) is

at least as large as (3), or in other words if

(ω Pr(C2 ≥ D′2) + ωβ Pr(C2 < D′2))V − αV −D′2 ≥ 0. (5)

Note that the value of D′2 that satisfies (5) is less than C̄2 because C̄2 is larger than the gain

from patenting, i.e., C̄2 > ωV − αV . Consequently, the left-hand side of (5) is decreasing in

D′2. Given that C2 is uniform in [0, C̄2], we can now establish the following result.
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Lemma 2 Let Dmax
2 be the maximum value such that (5) holds, and is given by

Dmax
2 =

ω − α
1
V

+ (1−β)ω

C̄2

. (6)

The firm finds it optimal to patent its innovation only if D′2 ≤ Dmax
2 .

Lemma 2 puts an upper bound on the amount that can be credibly pledged to the

lender, which amounts to an incentive compatibility constraint related to patenting, with

the result that any contract that leads to patenting must have a promised time 2 payment no

greater than Dmax
2 . This upper bound is analogous to the “pledgeable expected income” in

Holmstrom and Tirole (1997), who analyze an investment decision subject to a moral hazard

problem. In that setting, the borrower must retain a sufficiently large stake in the project’s

return in order to help resolve the underlying moral hazard problem. This friction then

translates into a limit on how much the borrower can credibly commit to repay its lender,

much like Dmax
2 in Lemma 2. One key difference, however, is that, unlike in most standard

agency problems, here there is no direct cost for the firm to patent its innovation, and in a

frictionless market it would always choose to do so. Rather, the cost of patenting to the firm

emerges endogenously as a result of the financial contract used, which requires a transfer

of control over the patented innovation in the event of default. This is also analogous to

what happens in Donaldson et al. (2018), where depositing grain at a warehouse allows for

contracting over cash flows that otherwise could not be pledged. In that setting, the contract

has to be structured to provide sufficient incentives for the farmer to actually deposit his

output at the bank, thus making cash flows verifiable. Doing so, however, puts a constraint

on how much the lender can expect to get paid, which in turn limits how much financing

the farmer can obtain. The cost of depositing with the bank at the interim date emerges

endogenously as a result of the deposit contract used, which transfers control over the grain

to the bank in the event of default.

It is worth noting that the incentive constraint on Dmax
2 depends on two economic quan-
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tities: ω − α, which is the value of protecting the innovation, and (1 − β)ω, which is the

inefficiency due to liquidation in period 2. The social gain from patenting, ω − α, plays

an important role in the amount that the firm can credibly pledge. However, the effect of

changes in α and ω on the ability to obtain financing and on the financial contract that

is optimal are not perfectly negatively correlated. This is because a higher value of ω has

an additional effect, which leads to an increase in the inefficiency caused by liquidation in

period 2. This additional effect decreases the firm’s incentive to patent. On the other hand,

changes in α do not produce any effect on the liquidation value of the patent.

Note that, as argued above, there is another upper bound on the payment that can be

made at time 2. Specifically, the time 2 payment has to be less than the liquidation value

of the patent, i.e., D′2 ≤ ωβV , as otherwise the firm could always renegotiate the payment

down to ωβV . As a result, we will focus only on the cases when Dmax
2 ≤ ωβV going forward.

3.3 Participation constraint and the optimal contract

In this section, we derive the lender’s participation constraint and the optimal contract. To

do so, we first assume that a feasible contract exists and calculate the lender’s payoff. We

discuss feasibility in more detail below.

The actions and payoffs of agents differ depending on whether D2 or Dmax
2 is bigger,

and the different payoff structures result in two optimization problems and two (potentially)

different optimal contracts, which need to be compared. We show later in Theorem 1 that a

contract with D2 > Dmax
2 can never be optimal. Thus, in the following we only describe the

case when D2 ≤ Dmax
2 . We have the following result.

Claim 2 Assume D2 ≤ Dmax
2 and D1 + D2 > Dmax

2 > L1, and that an innovation has

occurred. The lender’s payoff, f1, as a function of the terms of an original feasible contract

is

f1(C1, D1 +D2) = min{Dmax
2 + C1, D1 +D2}.
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The lender’s expected payoff is then

F1(D1 +D2) :=
1

C̄1

∫ C̄1

0

f1(C1, D1 +D2)dC1 = (D1 +D2)− (D1 +D2 −Dmax
2 )2

2C̄1

. (7)

The lender’s payoff depends on the realization of first period cash flows. If C1 ≥ D1,

the firm is able to make the time 1 payment and afterward finds it optimal to patent the

innovation given that D2 ≤ Dmax
2 . In this case, the outside option of the lender is D1 +

D2. The firm prefers to pay the maximum amount possible at time 1, C1, to minimize

the probability of liquidation at time 2. Thus, in this case, the renegotiated contract is

(D′1, D
′
2) = (C1, D1 +D2 − C1).

However, if C1 < D1, then the firm cannot make the payment and the lender has an option

to make a take-it-or-leave-it offer to the firm. Being aware that the firm will only patent if

D′2 ≤ Dmax
2 , the lender will offer the renegotiated contract (D′1, D

′
2) = (C1,min{Dmax

2 , D1 +

D2−C1}), with payoff to the lender of C1 +min{Dmax
2 , D1 +D2−C1}. The lender will find it

optimal to offer this contract when this payoff is greater than L1, and will roll over a portion

of the promised payment rather than forcing early liquidation. Importantly, when Dmax
2 <

D1 +D2−C1, the lender also prefers to forgive a portion equal to D1 +D2−C1−Dmax
2 > 0

of the remaining obligation rather than asking for full repayment as this would lead the firm

not to patent its innovation (detailed discussion is in the Appendix).

Figure 2 displays the lender’s payoff, f1, as a function of the terms of an original feasible

contract for the case where D2 ≤ Dmax
2 and D1 + D2 > Dmax

2 . For C1 < D1 + D2 −Dmax
2 ,

the lender’s payoff is increasing in C1, while it is constant and equal to D1 + D2 for larger

values of C1.

Participation constraint

We can now derive the participation constraint of the lender. Given that financing is com-

petitive at time 0, the lender participates as long as its expected payoff from the contract is
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Figure 2: Investor’s payoff, conditional on innovation, as a function of C1 when D2 ≤ Dmax
2 .

equal to the amount of the loan, which is equal to the investment, I. The expected payoff

of the lender can be written as

(1− p)F0(D1) + pF1(D1 +D2) = I,

where F0(D1) = L1
D1

C̄1
+D1(1− D1

C̄1
) is the expected payment to the lender when there is no

innovation (Claim 1), and F1(D1, D2) is the expected payment to the lender when there is

an innovation (Claim 2). Thus, we can rewrite the participation constraint as

(1− p)
(
L1
D1

C̄1

+D1(1− D1

C̄1

)

)
+ p

(
(D1 +D2)− (D1 +D2 −Dmax

2 )2

2C̄1

)
= I. (8)

The short and long-term components of the financial contract (D1, D2) are linked to each

other through this participation constraint. In particular, there is a one-to-one correspon-

dence between D1 and D2 for all contracts (D1, D2) with D2 ≤ Dmax
2 that satisfy (8).

For a given D1, denote by ∆(D1) the smallest value such that

(1− p)F0(D1) + pF1(D1 + ∆(D1)) = I.

Since both F1(.) and F0(.) are strictly increasing functions, ∆(D1) is a decreasing function

of D1. This is intuitive as when the short-term payment increases, one needs a lower long-
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term payment to satisfy the participation constraint. Given this, it is useful at this point to

convert the constraint that D2 ≤ Dmax
2 to a lower bound constraint on D1. Let

Dmin
1 := max{∆−(Dmax

2 ), 0}, where ∆− is the inverse function of ∆.

In Appendix A.5 we provide a closed-form solution for ∆(D1) andDmin
1 . The important thing

to note is that a contract satisfying the incentive constraint, D2 ≤ Dmax
2 , is equivalent to a

contract satisfying D1 ≥ Dmin
1 and the participation constraint. This helps us to characterize

the optimal contract, as discussed next.

Optimal contract

Given that the credit market is competitive, the optimal contract for the firm maximizes

joint surplus while ensuring that the lender’s participation constraint is satisfied. In the

Appendix, we show that the contract that maximizes joint surplus is equivalent to the

contract that minimizes the expected inefficiency due to liquidation, and we derive the

following minimization problem for the firm that pins down the optimal contract.

minD1,D2 (1− p)D1

C̄1

(E[C2]− L1) + pω(1− β)V Pr(C1 + C2 < f1(C1, D1 +D2))

subject to (1− p)F0(D1) + pF1(D1 +D2) = I, (9)

D1 ≤ C̄1,

D1 ≥ Dmin
1 .

The first and second terms in the objective function represents the expected social loss from

liquidation when there is no innovation and when there is innovation, respectively. With

this, we have the following characterization of the optimal contract.
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Theorem 1 A contract with D2 > Dmax
2 cannot be optimal. Let

D∗1 =
L1

2
− C̄2

2ω(1− β)V
(
C̄2

2
− C̄1 − L1).

The optimal contract can be characterized as D2 = ∆(D1), and D1 is determined as follow:

• If D∗1 ≥ C̄1, then D1 = C̄1

• If Dmin
1 < D∗1 < C̄1, then D1 = D∗1

• If D∗1 ≤ Dmin
1 , then D1 = Dmin

1

The theorem establishes that any contract with D2 > Dmax
2 is dominated, so that the

optimal contract always hasD2 ≤ Dmax
2 . The termD∗1 is a solution to the firm’s optimization

problem when there are no constraints. The optimal first period paymentD1 depends on how

D∗1 compares to the maximum time 1 cash flow and minimum time 1 payment. Moreover,

the expression for D2 = ∆(D1), found in (29) in the appendix, shows that the promised long-

term component of the total payment is affected by the endogeneity of patenting even when

the constraint on long-term payments does not bind ex-ante (i.e., even when D∗2 < Dmax
2 ).

This occurs because even if ex-ante the constraint is not binding, ex-post it may nevertheless

bind if the realization of time 1 cash flows is low and the promised time 1 payment needs

to be rolled over to time 2. The possibility that the lender gets less than D1 +D2 when the

constraint binds ex-post reduces the expected payoff of the lender so that the total promised

payment needs to go up to satisfy the lender’s participation constraint.

3.4 Contracts when patenting occurs automatically

For comparison, we present the case when patenting occurs automatically, meaning that any

innovation is always patented if the agents continue to time 2. First, notice that the case of

no innovation does not change and the analysis remains the same as in Section 3.1.
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As discussed above, agents always agree on a time 2 payment which is no greater than

the liquidation value of the patent, i.e., D2 ≤ βωV . Therefore, at t = 2, after the firm has

paid D1 and patented its innovation, the lender’s payoff is always D1 +D2.

Now consider what happens at date 1. We start with the case where C1 ≥ D1. If the

firm refuses to pay, or pays less than D1, the lender has the right to make a take-it-or-leave-

it offer. In that case, the lender can simply offer again the same original contract, which

maximizes its payoff if the firm decides to pay. The firm will then either pay D1 or let the

lender liquidate. In case of liquidation, the firms gets C1. If the firm pays D1 and continues,

it gets at least C1 + E[C2] + ωβV − D1 − D2. Because D1 ≤ C̄1 < E[C2] and D2 ≤ ωβV ,

the firms always prefers to pay D1 and continue. Alternatively, the firm can pay D1 and

retain the right to make a renegotiation offer. If the firm just pays D1, then it needs to

pay D2 at time 2, and the lender will liquidate the patent in states where C2 < D2. To

reduce the possibility of liquidation at time 2, the firm prefers to pay as much as possible at

time 1. Therefore, the firm offers renegotiated payments {D′1, D
′
2} that maximize its payoff:

D′1 = C1 and D′2 = D1 +D2 − C1.

Now consider the case where C1 < D1. In this case, the lender either liquidates or

makes a take-it-or-leave-it offer. If the lender liquidates it only gets L1. Instead, the payoffs

of both agents can be improved if the lender offers the following contract: D′1 = C1 and

D′2 = D1 +D2−C1. This contract will be accepted by the firm since rejecting it would lead

to liquidation by the lender and a lower payoff for the firm.

We can now write the lender’s payoff when there is an innovation for a given cash flow

realization C1 as,

C1 + min{ωβV,D1 +D2 − C1} = min{ωβV + C1, D1 +D2}.

With this we can calculate the expected payoff of the lender based on an initial feasible

contract when the firm has successfully innovated.
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Claim 3 The lender’s expected payoff in case of innovation is:

1

C̄1

∫ C̄1

0

min{ωβV + C1, D1 +D2}dC1. (10)

Note that, unlike the case where patenting is endogenous, the lender’s expected payoff

does not depend on the value of the innovation without patenting. Given that the lender’s

expected payoff will always be equal to I, a contract that maximizes the total surplus or,

equivalently, minimizes inefficiencies is again optimal. Therefore, we can write the optimiza-

tion problem as

min (1− p)(E[C2]− L1) Pr(C1 < D1) + pω(1− β)V Pr(C1 + C2 < D1 +D2) (11)

s.t (1− p)F0(D1) + p
1

C̄1

∫ C̄1

0

min{ωβV + C1, D1 +D2}dC1 = I

0 ≤ D1 ≤ C̄1.

The optimization problem in (11) and the financial contract that emerges differ from

the case where patenting is endogenous. Given that there is no need for a constraint that

D2 ≤ Dmax
2 , the time 2 promised payment is only bounded by ωβV , because of renegotiation

in the second period. So as not to further complicate the analysis and to retain our focus

on the case where patenting is endogenous, rather than explicitly providing a solution for

the optimal contract in this case, we simply note the main takeaway, which is that, quite

generally, the optimal contract in this case will have a larger D2 and smaller D1 compared

to the case where patenting is endogenous.

3.5 Renegotiation and state contingent contracting

An important feature of our analysis is that agents are allowed to renegotiate the origi-

nal contract based on the realization of first period cash flows and whether an innovation

occurred. In our model, renegotiation is designed to achieve the highest joint payoff by
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assigning an agent the right to make a take-it-or-leave-it offer so as to maximize the social

payoff. We focus on cases when patenting is socially optimal. As a result, in equilibrium

whenever there is an innovation, patenting always takes place regardless of the realization

of first period cash flows, as discussed above. The threat to not patent affects renegotiation

and the terms of contracting, but under the optimal contract we consider it never actually

leads to an inefficient patenting decision.

An implication of the efficiency of the patenting decision is that the ability to renego-

tiate makes the use of state-contingent contracts unnecessary and superfluous, in the sense

that allowing for state contingencies does not improve welfare relative to the contracts we

consider. Intuitively, a state-contingent contract could be useful by requiring a higher pay-

ment if the firm does not patent and then lowering the payment if the firm does in fact

patent. However, renegotiation already achieves the socially optimal outcome through early

payments, rollovers, and haircuts. For example, consider the case when C1 < D1. In this

case, the lender prefers to roll over the remaining portion of the date 1 promised repayment

instead of liquidating the firm. However, if D1 + D2 − C1 > Dmax
2 , the firm would not

patent the innovation under the terms of the original contract. In this case, the lender finds

it optimal to also forgive a portion rather than ask for full repayment. This is the region

in Figure 2 where the lender’s payoff increases in C1. On the other hand, punishment by

requiring higher payments in case the firm fails to patent an innovation is not possible given

that the innovation is not verifiable and firm’s verifiable assets are limited. As a result, state

contingencies of this type become redundant, and do not serve to loosen the firm’s financing

constraints (a formal proof is provided in the appendix).

An alternate way of introducing state contingencies is often employed in the context of

venture capital financing, where convertible contracts are commonplace (e.g., debt contracts

with fixed promised repayments, but which can convert to equity when specific conditions

are met). With slight changes to our model, convertible debt could similarly be feasible

in our setting if patenting, in addition to making the asset verifiable, also makes the future
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cash flows from the innovation verifiable. This would ensure that, after patenting, a financier

with an equity claim could force the firm to pay, which is not possible when cash flows are

not verifiable. In this case, whenever an innovation arises, the firm would need to take

into account that the financier can convert its claim, debt, into equity after the innovation

is patented. While in principle making cash flows verifiable should help loosen the firm’s

financing constraints, it would nevertheless be true that in order to satisfy the incentive

compatibility condition for the firm to patent there would need to be a limit in terms of how

much upside could be promised to the investor. In other words, there would be an upper

bound on the amount of equity into which the instrument could convert, thus still limiting

the firm’s ability to obtain financing for its innovative projects. As a result, we believe that

similar issues as those highlighted in our model of debt contracting would continue to apply.

4 The endogeneity of patenting and project feasibility

The constraint on long-term payments resulting from the endogeneity of patenting introduces

inefficiencies by limiting which projects are feasible and increasing the probability of liqui-

dation. In what follows, we contrast our findings with the benchmark case where patenting

is automatic as well as to the case where the investment is internally financed. This allows

us to isolate the effect coming from the endogeneity of patenting rather than from the more

widely studied frictions arising from the need to obtain outside financing.

4.1 Feasibility

When the project is internally financed, all that matters is that the expected value of the

innovation be greater than the initial investment. The firm will therefore undertake the

project if

pωV ≥ I. (12)
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This is also the condition for the first best because there is no inefficient liquidation. We have

assumed throughout that the project is positive NPV for the firm, meaning that pωV > I

so that if the firm had enough cash at time zero it would always undertake the project. The

need for outside financing can make the project infeasible because it introduces inefficiencies.

First, it may not be possible to satisfy the participation constraint of the lender. Second,

the possibility of liquidation introduced by outside financing may make the project negative

NPV from the perspective of the firm. We focus on the former possibility.

We can compare (12) to the case when patenting occurs automatically but the firm

requires outside financing to undertake the investment. We have the following result.

Lemma 3 Assume the firm can commit to patent any innovation. Then, there exists a

feasible financing contract if and only if

E[C1] + ωβV ≥ I − (1− p)L1

p
. (13)

Feasibility of financing depends on the sum of the expected maximum payment from time

1 cash flows, E[C1] = C̄1

2
, and the time 2 repayment, ωβV . Not all projects satisfying the

first best, (12), will be taken because of the non-contractibility of future cash flows, which

prevents the firm from committing to repay, and the associated inefficient liquidation. To

simplify the comparison, we assume C̄1 = L1 = 0, which eliminates the expected payoff of

the lender from time 1 cash flows as well as liquidation at time 1 when there is no innovation.

The participation constraint simplifies and becomes

pωβV ≥ I. (14)

For this case, the only limit on the time 2 promised payment is the liquidation value of

the patent, ωβV . By comparing (12) to (14) we can see that financing is not feasible for a

greater number of projects as β gets smaller, i.e., as the inefficiency introduced by liquidation

becomes larger or, equivalently, as creditor liquidation rights worsen.
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Next we analyze the condition for feasibility when the patenting decision is endogenous.

The main difference is that the expected payment at time 2 is constrained by the incentive

compatibility constraint on patenting.

Theorem 2 When patenting is endogenous, there exists a feasible financing contract if and

only if

E[C1] +Dmax
2 ≥ I − (1− p)L1

p
, (15)

where Dmax
2 is given by (6). Moreover, when financing is feasible, there will be no liquidation

at time 1 when an innovation has occurred: The firm always pays all time 1 cash flows C1

to the lender and patents the innovation.

The condition for feasibility, (15), shows that the sum of the maximum expected payment

from time 1 cash flows, E[C1], and the maximum possible payment from time 2 cash flows,

Dmax
2 , has to be greater than the initial investment, adjusted for the fact that the lender

does not get the promised payment when there is no innovation and instead the firm may be

liquidated. Theorem 2 also establishes that, for any feasible contract, the firm will never be

liquidated at time 1 if it successfully innovated. This is because liquidation is never efficient

and, for any feasible contract, renegotiation ensures that both parties will always prefer to

continue rather than liquidate the project. In the proof of Theorem 2 we also show that

feasibility requires that Dmax
2 > L1, as otherwise the total expected repayment to the lender

would be insufficient to cover the cost I of the investment.

It is interesting to note, from Theorem 2 and Lemma 3, that the time 2 cash flows do not

play a direct role on feasibility, only affecting feasibility through the constraint on the time

2 promised payment. In other words, time 2 cash flows matter for feasibility only because

of the endogeneity of the patenting decision. When the firm can commit to patenting, C2

becomes irrelevant for the feasibility of financing since the time 2 promised payment can

always be made by liquidating the patented innovation.

As we did for the case above where patenting occurs automatically, it is easiest to compare
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the conditions for feasibility by letting C̄1 = L1 = 0. Substituting for Dmax
2 , we obtain the

following combined condition for participation and positive NPV:

pDmax
2 = p

ω − α
1
V

+ (1−β)ω

C̄2

≥ I. (16)

The same condition when patenting occurs automatically is pωβV ≥ I. To further simplify

the comparison, consider the case where β = 1, so that there is no inefficiency in the

liquidation of the patent. In that case, the condition for financing to be feasible when

patenting occurs automatically coincides with the first best, i.e., pωV ≥ I. By contrast, when

patenting is endogenous, (16) reduces to p(ω − α)V ≥ I. Clearly, this is a more stringent

condition than both the first best case and the case where patenting is automatic. This

also illustrates that the inefficiency introduced by the endogeneity of the patenting decision

does not disappear when the inefficiency from liquidation disappears. This is because the

inefficiency from the endogenity of patenting is not driven entirely by the liquidation that

may take place, but rather arises from the ex-post hold-up resulting from the incentive

compatibility constraint for patenting. The condition also highlights how the incremental

value to the firm from patenting, ω−α, is an important driver of whether financing is feasible.

In particular, as α increases, projects become more difficult to finance externally, with no

projects being feasible as α→ ω.

4.2 When does the constraint bind?

In this section we discuss when the constraint that D2 ≤ Dmax
2 binds ex-ante. This will

prove useful later when deriving empirical predictions.

It is easiest to illustrate when the constraint binds through an example where we vary α

and V and plot the regions where the constraint binds and when it does not. Changes in α

vary the strictness of the constraint since α affects the incentive to patent, but it does not

directly affect the total payoff given that the firm always chooses to patent in equilibrium.
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Changes in V , by contrast, directly relate to the value of the project, and also affect feasibility

by relaxing the constraint on the long-term payment.
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Contracts are not feasible

Constraint on D2 does not bind

Figure 3: The figure displays the region where the constraint on the long-term payment,
Dmax

2 , binds ex-ante. The area below the orange curve, of low project values (V ) coupled
with large values for the innovation even when not patented (α), represents cases where
financing is not feasible. Above the solid curve, where V is relatively large and/or α is
relatively low, Dmax

2 does not bind ex-ante and the optimal contract has an interior solution:
D∗1 > Dmin

1 and D2 < Dmax
2 . In between the two curves, the constraint binds ex-ante:

D∗1 = Dmin
1 and D2 = Dmax

2 . Other parameters are set to: ω = 1, β = 0.8, I = 0.7, L1 =
C̄1 = 0.2, C̄2 = 1, p = 0.9

Figure 3 plots the region where the constraint binds as a function of α and V where other

parameters are set as follows: ω = 1, β = 0.8, I = 0.7, L1 = C̄1 = 0.2, C̄2 = 1, p = 0.9.

The bottom right corner represents projects where the constraint on time 2 payments is very

strict and the value of the innovation is relatively low. Therefore, financing is not feasible.

At the opposite corner, we have a set of projects whose value is very high. As a result,

the constraint on long-term payments does not bind ex-ante and the short-term promised

payment is equal to D∗1. In between, we have a region where financing is feasible but the

constraint binds ex-ante, so that D1 = Dmin
1 and D2 = Dmax

2 .

For the set of parameters given above, this latter region is quite large. For example,

if we fix α = 0.4, then we need to increase the value of the patented innovation by about

25% to move from the line of feasibility to the line where the constraint on the long-term
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payment no longer binds ex-ante. Hence, the mass of projects where the constraint on D2

binds ex-ante is significant, and not merely a knife-edge case.

5 Feasibility and empirical predictions

In this section we analyze how feasibility of the project changes when we change important

parameters of the model. Using (15) we can rewrite the feasibility condition as

pE[C1] + p
ω − α

1
V

+ (1−β)ω

C̄2

+ (1− p)L1 − I ≥ 0 (17)

We can now use (17) to obtain a number of predictions related to when projects are feasible,

as described below. Following each implication of the model, we discuss how to interpret

and test the prediction empirically. Throughout, we focus primarily on implications related

to ω, the value of the innovation to the firm when it is patented, and on α, the value of

unpatented innovations. The latter variable, in particular, plays a novel and important role

for feasibility, but only when patenting is endogenous. To the best of our knowledge, this

is a unique aspect of our model since α does not directly affect the value of the innovation,

but rather matters only through its effect on the constraint on long-term payments. As a

result, this variable would typically play no role in models where the patenting decision is

not endogenous.

Prediction 1 As C̄1, C̄2, L1, V, p, ω, or β increase, or as α decreases, the constraint on

feasibility becomes more relaxed.

A relaxation of the feasibility constraint implies that it is easier for a firm to get financing.

Under the assumption that these firms are financially constrained, the prediction translates

into a larger amount of investment. In other words, for a given distribution of parameters, as

the constraint on feasibility is relaxed a larger proportion of projects should obtain financing

and be undertaken. Empirically, this prediction could be tested in either the cross section
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or time series by looking at how R&D investment and financing by financially-constrained

innovative firms change with proxies for the model’s parameters, as described next.

While the value of an unpatented innovation, α, is not directly observed, there are sev-

eral potential proxies suggested by the literature that analyzes the trade-off between keeping

innovations as trade secrets versus patenting (see Hall et al. (2014) for an extensive review).

One general principle is that the value of an innovation without patenting will be relatively

higher if the innovation is difficult for competitors to replicate. For example, the value of an

innovation without patenting would be higher for large, important, or complex innovations,

process (rather than product) innovations, if the innovator has more lead time, or if the in-

novation is cumulative or sequential in nature. Empirical proxies for many of these variables

exist and have been used elsewhere. For example, Bena and Simintzi (2022) classify firms

as process versus product innovators based on textual analysis of patents, and such mea-

sures could be used to identify firms more focused on process innovations and with higher

unpatented values for their innovations. On the other hand, the value of an innovation with-

out patenting should be lower if there are more competitors who could potentially copy or

preemptively patent the same innovation. A simple proxy for competition is the Herfind-

ahl index for the industry, while more elaborate measures can be constructed using textual

analysis of managements’ mentions of competition in their 10-K filings or other documents

(see, e.g., Li et al., 2013).

The interactions of ω and α with other variables provide additional cross-sectional or

time-series heterogeneity that can potentially be tested. Focusing on α, Figure 4 illustrates

how feasibility depends on the interaction between α and β for the three different cases of

(1) endogenous patenting, (2) automatic patenting, and (3) the first best. As α increases

the value of the innovation V has to be larger in order for the project to be feasible. The

figure also shows that the effect of α on the feasibility of financing is larger for lower β. In

addition, the graph shows that the inefficiency resulting from the endogeneity of patenting

does not disappear as β gets larger, as discussed above.

30



0

2

4

6

8

10

12

0.
4

0.
42

4
0.

44
8

0.
47

2
0.

49
6

0.
52

0.
54

4
0.

56
8

0.
59

2
0.

61
6

0.
64

0.
66

4
0.

68
8

0.
71

2
0.

73
6

0.
76

0.
78

4
0.

80
8

0.
83

2
0.

85
6

0.
88

0.
90

4
0.

92
8

0.
95

2
0.

97
6 1

V

β

Endogenous Patenting α=0.3

Endogenous 
Patenting α=0.2

Automatic Patenting 

Firstbest
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A similar pattern holds for changes to ω, where reductions in ω make financing more

difficult to obtain. We omit presenting a figure between ω and β given it is very similar to

Figure 4. There is also an interaction effect between ω and β: the positive impact of ω on

feasibility is larger for lower β. The primary difference is that reductions to ω also affect

the graphs for the case where patenting occurs automatically, and for the first best. We

summarize these predictions below.

Prediction 2 The negative effect of α and the positive effect of ω on feasibility is stronger

with smaller β.

Empirically, this finding implies that the negative impact on R&D investment associated

with the value of the innovation when not patented should be greater when the liquidation

value of the patent is low (i.e., when β is small) or, more generally, when creditors have a

poor ability to exercise their liquidation rights over the posted collateral (the patent). A

similar finding holds true for the positive effect of increases in ω, the patented value of the
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innovation.

Given that this prediction is about the interaction of α and ω with β, one could test this

using exogenous changes in β. Focusing on creditor rights as a proxy for β, Mann (2018b)

uses court decisions that improve creditor rights to show that innovative companies raised

more debt and spent more on R&D investment after creditor rights were improved. Our

prediction is that the effect of creditor rights on R&D investment should be higher for firms

or industries where α is higher or ω is lower. Therefore, one could test whether the findings

in Mann (2018b) vary with proxies for α and ω, as listed above. Alternatively, one could

also use the Bankruptcy Reform Act (see, e.g., Hackbarth et al., 2015) as a shock to creditor

rights.

Figure 5 illustrates how the inefficiency arising from the endogeneity of patenting varies

with ω, the value of patenting to the firm. As the value of patent protection increases, the

region where the project is feasible increases. In addition, there is an interaction between

the values of the innovation with and without patenting, as described below.
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Prediction 3 The negative effect of α on feasibility is stronger with smaller ω.

As discussed above, a tighter feasibility constraint implies lower R&D investment and

reduced ability to obtain financing. This implication could be tested by analyzing how

the effect of a change in patent protection on R&D investment and financing varies with

proxies for the unpatented value of innovations. Significant variation in ω over time and

across countries has been documented (see Lerner (2002) for 150 years of changes). Gallini

(2002) summarizes changes in patent protection over time in the US, and argues that patent

protection has been strengthened in three major ways: 1) extending patent protection to

new subject matter; 2) giving greater power to patent holders in infringement lawsuits; and

3) lengthening the term of patents. Such events can be used to test whether R&D investment

and external financing increases more for industries/firms with higher values for unpatented

innovations.

Our model also has implications for how policy variables, such as the degree of patent

protection, ω, or the extent of creditor rights, β,10 impact a firm’s ability to invest in innova-

tive activities. Focusing on predictions that we believe are unique to our model, we find that

not only does Dmax
2 increase as ω or β changes, but that Dmax

2 is concave in ω but convex in

β (see Figure 6 and formal results in the appendix). This means that it is more efficient to

improve patent protection (ω) when such protection is low, while the reverse is true for the

liquidation value (β) of patents.11 We summarize the various comparative statics related to

policy variables in the prediction below.

Prediction 4 The following comparative statics on Dmax
2 , the upper limit on long-term pay-

ments, hold:

∂2Dmax
2

∂β2
> 0,

∂2Dmax
2

∂ω2
< 0,

∂2Dmax
2

∂β∂ω
> 0.

10The efficiency of the secondary market for the firm’s assets should influence β as well, which may
vary by industry or geographic region. We view this aspect as providing important cross-sectional variation,
separately from policy initiatives that could be taken to increase the liquidation value β of the firm’s patents.

11As above, one could use changes to the bankruptcy code Hackbarth et al. (2015) or court decisions Mann
(2018b) to test these predictions.
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α = 0.2, V = 4, C̄2 = 1.

Note that, from (17), creditor rights β and patent protection ω affect feasibility only

through their effects on Dmax
2 . As a result, we can view these comparative statistics as

predictions on feasibility. For example, the finding that ∂2Dmax2

∂β∂ω
> 0 implies that improving

creditor rights and patent protection together makes financing feasible for a greater range

of projects. In other words, the two policies are complementary. This prediction could be

tested across countries using either changes in patent protection or creditor rights.

Our final prediction concerning feasibility is about how increases in the probability of an

innovation or in its value affect feasibility depending on values of α and ω.

Prediction 5 The effect of an increase in p and V on feasibility is greater for firms with

lower α and higher ω.

5.1 Project risk and feasibility

An aspect that we have so far not emphasized is how the distribution of a project’s payoffs

affects the feasibility of obtaining financing. Since the project’s payoff is V with probability

p and 0 with probability 1 − p, to study this issue we fix the project’s expected payoff to

be constant, pV := V , and vary p.12 For simplicity, we also maintain the assumptions that
12Otherwise increasing p both reduces volatility and increases expected payoff at the same time.
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C̄1 = L1 = 0. For a given probability of innovation p, the variance of the project’s payoff is

V2 (1− p)
p

, (18)

which is a strictly decreasing function of p. Thus, a higher p corresponds to a project with

lower risk.

The feasibility conditions for both the first best, ωpV = ωV ≥ I (see (12)), and for the

benchmark case where patenting occurs automatically, ωβpV = ωβV ≥ I (see (14)), only

depend on the expected payoff V of the project. By contrast, when patenting is endogenous,

the condition for feasibility, (16), can be written as

ω − α
1
V + (1−β)ω

pC̄2

≥ I.

When V = pV is fixed, the left-hand side is an increasing function of p. Therefore, for

projects with the same expected payoff, only those that are less risky (i.e., higher p) will be

feasible.

Prediction 6 When V = pV is fixed, feasibility is an increasing function of p.

Figure 7 shows the feasibility region for different scenarios. For either the first best case

or the case where patenting occurs automatically, the variance of the project’s payoff, (18),

does not affect which projects are feasible since only the expected project payoff matters –

the graphs for both of these cases are flat and, hence, independent of p. By contrast, when

patenting is endogenous, the figure shows that it is easier to obtain financing for projects that

are safer and have a higher probability of delivering an innovation, even if that innovation

is less valuable when successful, and even though investors have no particular preference for

financing safer projects.

The result is different from standard risk-shifting considerations that often arise as a result

of debt financing, where creditors worry that shareholders will take higher-risk projects than
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what creditors prefer. Here, higher risk (i.e., lower p) projects will be unable to get financing

even if p is fixed and known ex ante, so that there is no scope for risk-shifting by the firm.

This effect is therefore similar to credit rationing (Stiglitz and Weiss, 1981; Besanko and

Thakor, 1987), although the mechanism is very different; here, the constraint on long term

payments limits the degree to which a lender can be compensated for risk.

6 Predictions on contract terms

In this section we outline predictions of the model related to the terms of financial contracts.

In particular we focus on loan duration and promised interest payments. One advantage

of focusing on these terms is that they can potentially be observed, allowing us to provide

testable empirical predictions. We focus on cases where the incentive compatibility constraint

on the time 2 payment, Dmax
2 , binds ex-ante, since it is for these firms that concerns related
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to patenting matter most in shaping the financial contracts they will use. We define contract

duration as 1 · D1

D1+D2
+2 · D2

D1+D2
and, since there is no discounting across periods, we measure

the promised interest rate as D1+D2−I
I

.

When the constraint on long-term payments binds ex-ante, the optimal contract is given

by D1 = Dmin
1 and D2 = Dmax

2 from Theorem 1, where Dmax
2 = ω−α

1
V

+
(1−β)ω

C̄2

. Plugging Dmax
2

into the participation constraint (8) and simplifying yields

(1− p)
p

(
L1
D1

C̄1

+D1(1− D1

C̄1

)

)
+

(
D1 −

(D1)2

2C̄1

)
+Dmax

2 =
I

p
. (19)

We can use (19) to study how duration and interest rates change as we vary model parame-

ters.

Prediction 7 When the constraint on long-term payments binds ex-ante, increasing ω, β,

V , C̄2, and decreasing α, results in higher D2 = Dmax
2 , lower D1, and therefore a longer

duration.

The main implication of this prediction is that increases in Dmax
2 allow the firm to offer

larger long-term payments and, as a consequence, reduce the promised early repayment, D1.

This makes the overall repayment more back-loaded, increasing the duration of the contract.

While the focus above was on increases in Dmax
2 , there are some variables that do not

have an effect on Dmax
2 but may nevertheless relax the constraint. Changes in these variables

will be balanced by changes in D1 alone, as described next.

Prediction 8 When the constraint on long-term payments binds ex-ante, so that D2 =

Dmax
2 , increasing L1, p, or decreasing I results in lower D1 but no change in D2. As a

result, the duration of the contract increases.

Since there is no change to the maximum repayment that can be promised, Dmax
2 , when

these variables change, it is straightforward to see that whenever D1 increases, the contract’s

duration must decrease.
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We can also study how changes in the same set of variables affect the loan’s interest rate.

Prediction 9 When the constraint on long-term payments binds ex-ante, increasing L1 or

p results in lower interest rate: D1+D2−I
I

decreases.

For brevity and simplicity, above we focus on variables that have a clear-cut effect on con-

tract duration and interest. However, in some cases the implications are less straightforward

since variables that relax the constraint on long-term payments allow D2 to increase but at

the same time lead D1 to go down. Hence, the overall implication on the total interest that is

paid is unclear. Nevertheless, an additional minor condition allows us to provide predictions

in some cases.

Prediction 10 Assume the constraint on long-term payments binds ex-ante. For p, the

probability of innovation, large enough, increasing ω, β, V , C̄2, and decreasing α results in

lower interest rates.

While the prediction assumes p is large enough, this is not necessarily restrictive since p

must be sufficiently large in order for the project to be feasible. Intuitively, an increase in

D2 matters more for feasibility when the probability of innovation is larger. Therefore, an

increase in D2 can be balanced by a larger reduction in D1, reducing the interest rate. The

prediction that increases in β lead to decreases in interest rates finds support in the findings

of Hackbarth et al. (2015).

7 Conclusion

Studying financing of small innovative firms is important given that they contribute dispro-

portionately to major innovations, facilitate creative destruction, and drive economic growth

(Rosen, 1991; Akcigit and Kerr, 2018). Growing empirical evidence shows that debt financ-

ing plays an important role in funding the growth of small and innovative firms (Chava

et al., 2013; Cornaggia et al., 2015; Kerr and Nanda, 2015; Chava et al., 2017; Mann, 2018a),
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despite a perception that such financing is not suitable for firms that invest in specialized

assets with low liquidation values (Williamson, 1988). One reason why debt financing for

innovative firms is difficult is because of their paucity of assets that could be useful as col-

lateral. While recent research has shown that intellectual property assets, in the form of

patents, can potentially be used as collateral (Mann, 2018a; Ma and Wang, 2019), many

small, innovative firms may not have such assets at the time of financing. Moreover, the

decision to patent future innovations is endogenous, and firms may sometimes prefer not to

patent their innovations for strategic reasons, hoping to reduce the ex-post bargaining power

of their lenders in the event of renegotiation. This key friction – that patenting is itself an

endogenous choice for firms – shapes financial contracts and has implications for what types

of projects can be financed through debt instruments.

We show that the difference between the patented value of an innovation and its value in

the absence of patent protection is particularly important since it determines how large of a

payment the firm can credibly commit to make to a lender. To the best of our knowledge,

the result that the value of innovation without patenting plays a role in determining a firm’s

ability to obtain financing as well as its terms of contracting is novel.

Our results can be extended to other types of intellectual property as well as to actions by

the firm over which the lender and the firm’s interests are not perfectly aligned. For example,

intellectual property (IP) violations may need to be litigated and even though both parties

value the IP, firms that are in financial distress may care less about the long term value of

the intellectual property that is collateral to lenders.

Our analysis also derives unique implications for the effects of improving patent protection

and creditor rights. In particular, we show that improving patent protection and creditor

rights have different implications on firm investment in R&D depending on the value of the

innovation without patenting. Moreover, the model is flexible in that it does not assume there

are large benefits to patenting, but rather offers predictions based on the size of any such

benefits, and their interaction with other variables of interest. These implications we believe
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are new to the literature, and offer a novel perspective on aspects that may be important

to consider when revising policies related to patent protection, as well as to the ease with

which patents may be liquidated by creditors.
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Appendix

A Proofs

A.1 Proof of Claim 1

At time 2, there are no assets to liquidate and therefore the payoff of the lender is zero while

the firm gets C2. If at time 1 C1 < D1, then the firm does not have the resources to repay and,

moreover, cannot credibly promise to repay anything at time 2. The lender then has the right

to liquidate and will choose to do so, obtaining L1. If the lender liquidates, the total amount

D = D1 +D2 becomes due and the investor’s payoff is equal to min{L1, D1 +D2} = L1 since

the liquidation value of the assets is low relative to the investment (L1 < I) and at the same

time the total promised payment has to be larger than or equal to the initial investment

(D1 +D2 ≥ I) for the lender to break even.

If C1 ≥ D1, then the firm can either pay D1 and continue or allow liquidation. In the

former case, the firm gets C1 + E[C2] − D1, while in the latter case, it gets C1, with the

proceeds from liquidation, L1, going to the lender. Given that E[C2] > C̄1 and the maximum

payment that can be made out of time 1 cash flows is C̄1, we can rule out the possibility

that the firm prefers liquidation.

Consider now the possibility that D1 > C̄1, the highest possible time 1 cash flow. Since

the most the lender can get under liquidation is L1, and the probability that C1 is less than

D1 would be equal to 1, such a contract could always be replaced with a contract that has

D1 = C̄1 and which would keep the total payment to the investor unchanged. As we show

later, a similar argument applies to the case where there is an innovation, so that it is without

loss of generality to assume that D1 ≤ C̄1, and we make this assumption going forward.
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The lender’s payoff is therefore

=

 L1 for C1 < D1

D1 for C1 ≥ D1

Ex-ante, the expected payoff for the lender in case of no innovation can be written as a

function of D1:

F0(D1) = L1 Pr(C1 < D1) +D1 Pr(C1 ≥ D1)

= L1
D1

C̄1

+D1

(
1− D1

C̄1

)
.

Now consider the renegotiation of the original contract at time 1. When C1 ≥ D1, the

firm offers to pay D1, nothing at t = 2, and continue, which is exactly equal to the lender’s

outside option. On the other hand, when C1 < D1 the firm will refuse to pay anything given

that the firm will be liquidated regardless, and there is no welfare-improving renegotiation

offer that is possible since C̄1 < L1. Thus, ex-ante the joint payoff when there is no innovation

is equal to:

G0(D1) =
1

C̄1

∫ D1

0

(C1 + L1)dC1 +
1

C̄1

∫ C̄1

D1

(C1 + E[C2])dC1

= E[C1] + E[C2]− (E[C2]− L1)
D1

C̄1

.

From this, we obtain the ex-ante payoff to the firm when there is no innovation is equal

to:

H0(D1) = G0(D1)−F0(D1) = E[C1] + (E[C2]−D1)

(
1− D1

C̄1

)
.
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A.2 Proof Of Claim 2

Given the firm’s patenting decision described in Section 3.2.1, we can now characterize the

payoffs of both parties at time 1.13

Let’s first consider the case where D2 ≤ Dmax
2 and C1 ≥ D1, so that the firm is able to

make the time 1 payment and afterward finds it optimal to patent the innovation. In this

case, the outside option of the lender is D1 + D2, as described above. The firm also can

make a take-it-or-leave-it offer and finds it optimal to pay the maximum amount possible at

time 1, C1, to minimize the probability of liquidation at time 2. Therefore, the firm offers

a new contract such that D′1 = C1 and D′2 = D1 + D2 − C1. This contract keeps the payoff

of the lender the same but increases the payoff to the firm by reducing the probability of

liquidation at time 2.

Next consider the case where D2 ≤ Dmax
2 but C1 < D1. In this case, the firm cannot

make the time 1 payment, and, under the original contract, the lender would liquidate. If

the lender liquidates the total amount D = D1 + D2 becomes due and the investor’s payoff

is equal to min{L1, D1 +D2} = L1.

However, when the firm fails to make the promised payment, the lender has the option

to make a take-it-or-leave-it offer to the firm. Being aware that the firm will only patent if

D′2 ≤ Dmax
2 , the lender will offer the contract (C1,min{Dmax

2 , D1 + D2 − C1}), with payoff

to the lender of C1 + min{Dmax
2 , D1 +D2−C1}. The lender will find it optimal to offer this

contract when this payoff is greater than L1, rolling over a portion of the promised payment

rather than forcing early liquidation. Importantly, whenDmax
2 < D1+D2−C1, the lender also

prefers to forgive a portion of the remaining debt obligation equal to D1+D2−C1−Dmax
2 > 0

rather than asking for full repayment as this would create disincentives for the firm to patent

its innovation. With the assumption that Dmax
2 > L1, the lender is always better off offering

this new contract.
13As per the discussion for the no innovation case, we assume without loss of generality that D1 ≤ C̄1.

If not, so that D1 > C̄1, we could replace this contract with another one where Dnew
1 = C̄1 and Dnew

2 =
D1 +D2 −Dnew

1 , which would be payoff-equivalent for both the firm and the investor.
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Overall, the lender’s payoff, f1, as a function of the terms of an original feasible contract

is

f1(C1, D1 +D2) = min{Dmax
2 + C1, D1 +D2}.

The lender’s expected payoff is then

F1(D1 +D2) :=
1

C̄1

∫ C̄1

0

f1(C1, D1 +D2)dC1 = (D1 +D2)− (D1 +D2 −Dmax
2 )2

2C̄1

.

A.3 Proof of Theorem 1

Inefficiency is caused by liquidation. There are two possible causes of liquidation. First, the

firm may get liquidated at time 1 when there is no innovation and the firm’s cash flows are

less than the promised payment: C1 < D1. In this case, the expected total surplus under

liquidation and no liquidation are C1 +L1 and C1 +E[C2], respectively. Thus, the expected

inefficiency of time 1 liquidation is

(1− p) Pr(C1 < D1)(E[C2]− L1) = (1− p)D1

C̄1

(E[C2]− L1).

Second, the patent may get liquidated at time 2. In this case, the expected total surplus

under liquidation and no liquidation are C1 + C2 + ωβV and C1 + C2 + ωV , respectively.

Hence, the expected inefficiency associated with the liquidation of the patent is

pω(1− β)V Pr(time 2 liquidation),

where the probability of liquidation is endogenous and depends on the contract.

Case 1: D2 ≤ Dmax
2

We first characterize the optimal contract with the assumption that D2 ≤ Dmax
2 .

The payment to the lender is f1(C1, D1 +D2) = min{C1 +Dmax
2 , D1 +D2}, as in Figure 2.
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At equilibrium, conditional on innovation, the first payment is C1, and the time 2 payment is

f1(C1, D1 +D2)−C1. Thus, the probability of liquidation at time 2 conditional on innovation

is

Pr(time 2 liquidation) = Pr(C2 < f1(C1, D1 +D2)− C1) = Pr(C1 + C2 < f1(C1, D1 +D2)).

(20)

This probability is a function of the realization of both time 1 and 2 cash flows. We compare

these cash flows to D1 + D2 if the constraint on the time 2 payment does not bind and to

C1 +Dmax
2 if the constraint does bind.

We can now express the optimization problem of the firm as

minD1,D2 (1− p)D1

C̄1

(E[C2]− L1) + pω(1− β)V Pr(C1 + C2 < f1(C1, D1 +D2))

subject to (1− p)F0(D1) + pF1(D1 +D2) = I, (21)

0 ≤ D1 ≤ C̄1,

0 ≤ D2 ≤ Dmax
2 .

The firm aims to minimize the total inefficiency due to external financing subject to

the lender’s participation constraint, the constraint that the short-term payment does not

exceed the maximum amount of cash the firm could possibly have at time 1, and the incentive

compatibility constraint on the long-term payment, that it does not exceed Dmax
2 .

As shown in the main text, we convert the constraint D2 ≤ Dmax
2 to the constraint

D1 ≥ Dmin
1 . In the remaining of the proof, we will convert this optimization problem to a

single variable D1 and will solve it with the constraint Dmin
1 ≤ D1 ≤ C̄1 .

51



Observe that according to (20),

Pr(time 2 liquidation) = Pr(C2 < f1(C1, D1 +D2)− C1)

=
1

C̄1

∫ C̄1

0

1

C̄2

∫ C̄2

0

(f1(C1, D1 +D2)− C1)dC2dC1

=
1

C̄1C̄1

∫ C̄1

0

f1(C1, D1 +D2)dC1 −
1

C̄1C̄1

∫ C̄1

0

C1dC1

=
1

C̄1C̄2

∫ C̄1

0

f1(C1, D1 +D2)dC1 −
C̄1

2C̄1

.

Thus, we obtain

Pr(time 2 liquidation) =
F1(D1 +D2)

C̄2

− C̄1

2C̄2

.

Using the participation constraint, (8), this probability is the same as

Pr(time 2 liquidation) =
I − (1− p)F0(D1)

pC̄2

− C̄1

2C̄2

. (22)

Thus, the total inefficiency is

(1− p)D1

C̄1

(E[C2]− L1) + pω(1− β)V (
I − (1− p)F0(D1)

pC̄2

− C̄1

2C̄2

).

We can write the total inefficiency as a quadratic function of D1.

T (D1) := (1− p)
(
D1

E[C2]− L1

C̄1

− ω(1− β)V

C̄2

F0(D1)
)

+ ω(1− β)V
(2I − pC̄1)

2C̄1

= (1− p)(D1
E[C2]− L1

C̄1

− ω(1− β)V

C̄2

(L1
D1

C̄1

+D1(1− D1

C̄1

))) + ω(1− β)V
(2I − pC̄1)

2C̄1

= (1−p)(D1(
E[C2]− L1

C̄1

−ω(1− β)V

C̄2

L1

C̄1

−1)+
ω(1− β)V

C̄1C̄2

D2
1)+ω(1−β)V

(2I − pC̄1)

2C̄1

(23)

From this, we can characterize the equilibrium because it is a function of only one variable,
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D1. The derivative is 0 at

D∗1 =
C̄2

2ω(1− β)V
(C̄1 + L1 − E[C2]) +

L1

2

=
L1

2
− C̄2

2ω(1− β)V
(
C̄2

2
− C̄1 − L1). (24)

With the constraint that Dmin
1 ≤ D1 ≤ C̄1, this establishes the result under the assump-

tion that D2 ≤ Dmax
2 .

Case 2: D2 > Dmax
2

Next, we consider a contract with D2 > Dmax
2 . We will show that one can modify that

contract with Dnew
2 ≤ Dmax

2 so that the participation constraint is maintained and has a

better total payoff.

Let (D1, D2) be a feasible contract with D2 > Dmax
2 . First, we show that it must be that

D1 ≥ Dmin
1 .

max
2D

min max
1 2D D+

1C
min

1D

min max
1 1 1 2( , )f C D D+

1D

1D
1 1( , )h C D

Figure 8: Payment to the lender when D1 < Dmin
1 , D1 > Dmax

2

Assume to the contrary that D1 < Dmin
1 . Then the payment to the lender conditional on

innovation is

h(C1, D1) =

 Dmax
2 + C1 if C1 ≤ D1 < Dmin

1

D1 if C1 ≥ D1

Notice that h(C1) ≤ f1(C1, D
min
1 +Dmax

2 ), which is the payment function under the contract
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(Dmin
1 , Dmax

2 ). Thus, the expected payment of such a contract conditional on innovation is

at most that of the contract (Dmin
1 , Dmax

2 ) (see Figure 8). Furthermore, when there is no

innovation, the expected payment is a strictly increasing function of D1. Therefore, the total

expected payment of the contract (D1, D2) is less than that of the contract (Dmin
1 , Dmax

2 ).

This shows that (D1, D2) cannot be feasible because (Dmin
1 , Dmax

2 ) satisfies the participation

constraint with equality. Hence, for (D1, D2) to be feasible, it must be that D1 ≥ Dmin
1 .

Now let Dnew
2 := ∆(D1), as defined in (29). Because Dmin

1 ≤ D1 ≤ C̄1, Dnew
2 ≤ Dmax

2

and the participation constraint of the contract (D1, D
new
2 ) binds. Next, we will show that

the probability of liquidation at time 2 under the contract (D1, D
new
2 ) is smaller than that

of (D1, D2). Because both contracts satisfy the participation constraint with equality, this

implies that the firm’s payoff is larger under (D1, D
new
2 ) and thus the contract (D1, D2) with

D2 > Dmax
2 cannot be optimal.

According to (22), the probability of liquidation at time 2 for the contract (D1, D
new
2 ) is

Pr(time 2 liquidation) =
I − (1− p)F0(D1)

pC̄2

− C̄1

2C̄2

, (25)

where F0(D1) = L1
D1

C̄1
+D1(1− D1

C̄1
).

To compute the probability liquidation at time 2 for the contract (D1, D2), we start from

the participation constraint. Recall that for D2 > Dmax
2 , we defined the payoff to the lender

when there is innovation as h(C1, D1). Thus, the expected payoff of the lender conditional

on innovation is

∫ D1

0

(C1 +Dmax
2 )dC1 +

∫ C̄1

D1

D1dC1 =
D1

C̄1

(Dmax
2 +

D1

2
)+D1(1−D1

C̄1

) =
D1

C̄1

(Dmax
2 + C̄1−

D1

2
).

Hence, the participation constraint becomes

(1− p)(L1
D1

C̄1

+D1(1− D1

C̄1

)) + p
D1

C̄1

(Dmax
2 + C̄1 −

D1

2
) = I (26)
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= (1− p)F0(D1) + pF ′1(D1),

where we define F ′1(D1) = D1

C̄1
(Dmax

2 + C̄1 − D1

2
) as the lender’s expected payoff conditional

on innovation under this contract. Notice that

Pr(time 2 liquidation) = Pr(C1 < D1&C2 < Dmax
2 ) =

D1

C̄1

Dmax
2

C̄2

=
F ′(D1)

C̄2

−D1
2C̄1 −D1

2C̄1C̄2

.

Using the participation constraint, (26), to substitute for F ′(D1), we have

Pr(time 2 liquidation|(D1, D2)) =
I − (1− p)F0(D1)

pC̄2

−D1
2C̄1 −D1

2C̄1C̄2

. (27)

From (27) and (25), we obtain

Pr(time 2 liquidation|(D1, D2))− Pr(time 2 liquidation|(D1, D
new
2 )) =

=
C̄1

2C̄2

−D1
2C̄1 −D1

2C̄1C̄2

=
(C̄1 −D1)2

2C̄1C̄2

≥ 0.

Equality is only obtained when D1 = C̄1, in which case the two contracts are the same. This

shows that a contract with D2 > Dmax
2 cannot be optimal.

A.4 Proof of Theorem 2

To prove Theorem 2, we first establish the following preliminary result, which also establishes

the second part of the theorem, that liquidation does not occur in equilibrium when financing

is feasible.

Lemma 4 Financing is feasible only if Dmax
2 > L1. Moreover, when financing is feasible,

there will be no liquidation at time 1 when there is innovation: The firm always pays all time

1 cash flows C1 to the lender and patents the innovation.
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A.4.1 Proof of Lemma 4

The expected payment the investor receives conditional on no innovation is

L1
D1

C̄1

+D1(1− D1

C̄1

) ≤ L1 +D1(1− D1

C̄1

) ≤ L1 +
C̄1

4
< L1 + E[C1].

Given that L1 + E[C1] < I by assumption, the expected payment to the lender when there

is no innovation is clearly less than I.

Consider now the case where there is innovation. If Dmax
2 ≤ L1, and assume that D2 ≤

Dmax
2 . Then the payment conditional on innovation, as a function of C1, is

f1(C1, D1 +D2) =


L1 if C1 ≤ L1 −Dmax

2

Dmax
2 + C1 if L1 −Dmax

2 < C1 ≤ D1 +D2 −Dmax
2

D1 +D2 if C1 ≥ D1 +D2 −Dmax
2

(28)

If, on the other hand, D2 > Dmax
2 , then the payment conditional on innovation is only

D1 when C1 > D1 as the firm, which can make a take-it-or-leave-it offer, would always offer

D′2 = 0. The lender would accept since that is what they would get under the original

contract which, since D2 > Dmax
2 , would not lead to patenting. The payment conditional on

innovation is, therefore, at most f1(C1, D1 +D2).

Hence, like in the no innovation case, the payment to the lender is at most f1(C1, D1 +

D2) ≤ L1 + C1. Therefore, the expected payment is at most L1 + E[C1] < I. Thus, for any

feasible contract, it must be the case that Dmax
2 > L1.

Finally, we show that if financing is feasible, there will be no liquidation conditional on

innovation. We focus on the case where D2 ≤ Dmax
2 . If C1 < D1, then the firm patents only

if D1 + D2 − C1 ≤ Dmax
2 . Otherwise, the firm would not patent and the lender’s outside

option would be equal to L1 under the original contract. However, if Dmax
2 ≥ L1, then the

firm could promise to pay up to Dmax
2 even when the time 1 cash flow, C1, equals 0 and

avoid liquidation. The firm clearly finds it optimal to do so, so that liquidation never occurs
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when financing is feasible.

A.4.2 Proof of Theorem 2

As argued earlier, we may restrict the analysis to contracts where D1 ≤ C̄1. Next, we

establish that a contract with D2 = Dmax
2 yields a higher payoff for the lender than a

contract with D2 > Dmax
2 , for the same D1. To see this, consider what happens under the

original contract when D2 > Dmax
2 : if C1 > D1, the firm can repay D1, and has the right to

make a take-it-or-leave-it offer D′2 to the lender for the time 2 payment. If the lender rejects

the new offer, the firm will prefer not to patent the innovation, and hence the payment to

the lender at time 2 will be zero. Hence, the lender’s outside option is equal to zero. By

contrast, if D2 = Dmax
2 under the original contract, any offer D′2 less than Dmax

2 would be

rejected by the lender since, with the original contract in place, the firm will prefer to patent

the innovation, leading to a payment of D2 = Dmax
2 for the lender.

Likewise, the payoff to the lender for any contract with D2 < Dmax
2 can again be increased

by instead settingD2 = Dmax
2 , for the sameD1. To see this, consider the case where C1 < D1,

so that the firm cannot make the time 1 payment. This allows the lender to make a take-it-

or-leave-it offer to the firm, where the optimal such offer is (C1,min{Dmax
2 , D1 +D2 −C1}).

The payoff from this contract is weakly increasing in D2 for D2 < Dmax
2 , and is strictly

increasing for C1 close to D1. Hence, the expected payment to the lender is maximized for

D2 = Dmax
2 , given a fixed value for D1.

We now show that, given D2, the payoff to the lender is maximized for D1 = C̄1. To see

this, suppose that D1 < C̄1, and assume first that there is no innovation. When C1 < D1,

the lender can liquidate to obtain min{L1, D1 + D2} = L1. However, when C1 ≥ D1, the

firm can simply make the time 1 payment D1 and pay nothing at time 2. Hence, the lender’s

payoff can be strictly increased by raising D1, as long as D1 < C̄1.

Consider then the case of innovation. As argued above, for any given C1, and assuming

D2 ≤ Dmax
2 , the lender’s payoff is D1 + D2 when the firm has the power over renegotiation
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and is C1 + min{Dmax
2 , D1 +D2−C1} when instead the lender can propose the renegotiated

contract. Either way, the lender’s payoff is increasing in D1, for a given D2. Together with

the argument above, this implies that the contract that yields the highest expected payoff

for the lender is (D1, D2) = (C̄1, D
max
2 ).

Given this, we can now substitute the contract D1 = C̄1, D2 = Dmax
2 into the lender’s

participation constraint to obtain

(1− p)L1 + p(Dmax
2 +

C̄1

2
) ≥ I,

which, after some rearranging, yields the expression in the statement of the Theorem.

A.5 Closed form for ∆(D1) and Dmin
1

(1− p)F0(D1) + pF1(D1 + ∆(D1)) = I.

Replacing F0(D1), F1(D1 + ∆(D1)) from Claim 1,2 and using algebra, we obtain

∆(D1) = C̄1

(
1−

√
1− 2A

C̄1

)
+Dmax

2 −D1, (29)

where

A :=
I

p
− (1− p)

p

(
L1
D1

C̄1

+D1(1− D1

C̄1

)

)
−Dmax

2 .

Notice that both F1(.) and F0(.) are strictly increasing functions. Thus, there is a one-

to-one correspondence between D1 and D2 for all contracts (D1, D2) with D2 ≤ Dmax
2 that

satisfy the participation constraint (1− p)F0(D1) + pF1(D1 +D2) = I.

To shorten the notation, let D0
1 = ∆−(Dmax

2 ), we have

(1− p)F0(D0
1) + pF1(D0

1 +Dmax
2 ) = I,

D0
1 can be determined from
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(1− p)
(
L1
D0

1

C̄1

+D0
1(1− D0

1

C̄1

)

)
+ p

(
D0

1 +Dmax
2 − (D0

1)2

2C̄1

)
= I,

which can be rewritten as a quadratic equation of D0
1:

(
(1− p)L1

C̄1

+ 1 + p

)
D0

1 −
2− p
2C̄1

(D0
1)2 = I − pDmax

2 . (30)

There are two values of D0
1 that satisfy (30). But D0

1 = ∆−(Dmax
2 ) by definition is the

smallest value satisfy (30), thus

D0
1 = C̄1

(1− p)L1

C̄1
+ 1 + p− Ω

2− p
,

where

Ω =

√
((1− p)L1

C̄1

+ 1 + p)2 − 2(2− p)I − pD
max
2

C̄1

.

And hence,

Dmin
1 = max{0, D0

1}.

A.6 Calculation for Prediction 4

The lemma can be established from simple differentiation of Dmax
2 , as follows:

∂2Dmax
2

∂β2
= 2V 3ω2C2

ω − α(
V ω + C2 − V βω

)3 > 0

∂2Dmax
2

∂ω2
= 2V 2C2 (β − 1)

V α + C2 − V αβ(
V ω + C2 − V βω

)3 < 0

∂2Dmax
2

∂β∂ω
= −V 2 C2(

V ω (1− β) + C2

)3

(
C2 (α− 2ω)− V αω (1− β)

)
> 0.
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A.7 Calculation for Prediction 10

To study the effect of changing Dmax
2 on interest rate, we will show that under a certain

condition, if Dmax
2 increases by ε, then D1 need to decrease more than ε so that (19) still

holds. This means that when Dmax
2 increases and the long-term payment binds ex-ante

D2 = Dmax
2 , the interest rate (D1 +D2 − I)/I will decrease.

Note that the prediction above is derived from the first order derivative of the left-hand

side of (19) according to D1:

1− p
p

(
L1

C̄1

+ 1− 2D1

C̄1

) + 1− D1

C̄1

If this derivative is smaller than 1 a small increase in D2 results in a larger decline in D1

reducing the promised interest payment.

1− p
p

(
L1

C̄1

+ 1− 2D1

C̄1

) <
D1

C̄1

which is equivalent to

D1 >
1− p
2− p

(L1 + C1).

This holds when p is close to 1.

B Contingent Contracts

Assume a state-contingent contract of the following form: payment D1 at date 1 and DP
2 <

DNP
2 at date 2 in case of patenting or non-patenting, respectively. The rest of the model

remains the same. However, we will show that DNP
2 does not affect the payoff to the lender

nor the incentive constraint.

Consider now the various cases. If C1 ≥ D1 and the firm decides not to patent, then it will

pay D1 at date 1 to avoid liquidation and pay nothing at date 2 since, without patenting, the
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asset is not verifiable. Therefore, the firm’s payoff is C1 +C2 +αV −D1, which is independent

of DNP
2 , and the payment to the lender is also independent of DNP

2 .

Suppose instead that the firm decides to patent. In that case, it will pay C1 at date 1,

and renegotiate the date 2 payment, which is the minimum of either D1 + DP
2 − C1 or the

largest amount that makes patenting incentive compatible.

Given that the payoff of the firm without patenting, as described above, is independent

of DNP
2 , the promised repayment DNP

2 does not play any role in ensuring the incentive

compatible constraint is satisfied. Therefore, it does not play any role in the renegotiation

of the date 2 payment when the firm decides to patent.

Now consider the case where C1 < D1. In this case, the lender is entitled to make a take-

it-or-leave-it offer to the firm. If the lender liquidates, neither the lender’s nor the firm’s

payoff depends on DNP
2 because the existing assets are not sufficient to pay back the lender.

If the lender wants to continue to date 2, it offers to receive C1 at date 1 and then for

the minimum of either the remaining payment D1 + DP
2 − C1 or the greatest amount that

makes patenting incentive compatible. Hence, similar to the previous case, this amount is

independent of DNP
2 .

We can now conclude that the promised payment DNP
2 in the event that the firm does

not patent has no effect on the payment to the lender. It also does not affect the incentive

constraints and, thus, the payoff of the firm in equilibrium. Therefore, a state-contingent

contract of this type cannot improve efficiency relative to the contract studied in the paper,

which already allows for efficient renegotiation and leads to patenting whenever an innovation

is realized.

C Robustness

In this section, we consider a variation of the renegotiation game where the firm has all the

bargaining power, and as a result, always makes the offer in the bargaining process. Our
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main goal is to show that the endogeneity of patenting remains a significant friction for

lending. Specifically, we show the following result.

Theorem 3 Under the assumption that the firm always has the right to make a take-it-or-

leave-it offer to the lender, a feasible contract exists if and only if pDmax
2 ≥ I.

To prove this result, first, consider the case when there is no innovation. If C1 < D1, the

lender gets L1, and the firm liquidates at time 1 with probability 1. If C1 ≥ D1, the lender

gets D1 and the firm does not liquidate. This is the same as before.

When there is innovation, the outcome of the contract depends on whether D2 ≤ Dmax
2

or D2 > Dmax
2 .

• If D2 ≤ Dmax
2 :

– If C1 < D1, the lender gets L1 and the firm gets liquidated at time 2 with Pr(C2 <

L1 − C1);

– If C1 ≥ D1, the lender gets D1 + D2 and the firm gets liquidated at time 2 with

Pr(C2 < D1 +D2 − C1).

• If D2 > Dmax
2 :

– If C1 < D1, the lender gets L1 and the firm gets liquidated at time 2 with Pr(C2 <

L1 − C1);

– If C1 ≥ D1, the lender gets D1 and the firm does not patent.

Thus, when D2 > Dmax
2 the payoff of the lender is

D1

C̄1

L1 + (1− D1

C̄1

)D1 ≤ L1.

Therefore, such a contract is not feasible.
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Now, when D2 ≤ Dmax
2 , the expected payment to the lender is

p

(
D1

C̄1

L1 + (1− D1

C̄1

)(D1 +D2)

)
+ (1− p)

(
D1

C̄1

L1 + (1− D1

C̄1

)D1

)

=
1

C̄1

(
(L1 + C̄1 − pD2)D1 −D2

1

)
+ pD2. (31)

Lemma 5 If (D1, D2) is feasible, then the expected payment to the lender in (31) is a de-

creasing function of D1.

Proof. We need to show that L1 + C̄1 − pD2 ≤ 0, which implies that (31) is a decreasing

function of D1. Assume that L1 + C̄1 − pD2 > 0. Then (31) is maximized when D1 =

min{L1+C̄1−pD2

2
, C̄1}, and the maximum value is either

1

C̄1

(
L1 + C̄1 − pD2

2
)2 + pD2 when

L1 + C̄1 − pD2

2
≤ C̄1

or

L1 when
L1 + C̄1 − pDmax

2

2
> C̄1.

In the former case, that value is at most

(
L1 + C̄1 − pD2

2
) + pD2 = (

L1 + C̄1 + pD2

2
) ≤ L1 + C̄1 < I

So in both cases, our assumption rules out feasibility.

This implies that for a contract to be feasible, L1 + C̄1 − pD2 ≤ 0, which establishes the

result. �

Because of Lemma 5, the expected payoff to the lender is maximized when D1 = 0, D2 =

Dmax
2 , and therefore the maximum value is pDmax

2 . This proves Theorem 3.
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D Existing assets

In this section, we briefly study the role of existing assets the firm may have which can be

used to support the financing that is needed, and how they affect the firm’s incentive to

patent. We model this by assuming the firm has additional assets which have value A to

the firm at time 2, and λA to the lender if liquidated, where 0 ≤ λ ≤ 1. For simplicity, we

assume that A is small, so that it cannot fully support the needed financing I, and that in

the event of default both the asset and the patent, if any, need to be liquidated.

Incentive compatibility of patenting

The firm’s decision to patent at time 1 depends on its payoff when it patents versus when

it does not. Suppose that C1 > D1, so that the firm can make the time 1 promised payment.

In this case, if the firm chooses to patent its expected payoff is

C1 + E[C2] + Pr(C2 ≥ D2)(ωV + A) + Pr(C2 < D2)(βωV + λA)− (D1 +D2). (32)

This payoff reflects that, if the firm makes its time 1 payment and patents, its payoff equals

the time 1 plus the expected time 2 cash flows, as well as the patented value of the innovation

and the asset when able to meet its obligation at time 2, but only the liquidation value of

the patent and the additional asset, βωV + λA, when not. The firm will patent if and only

if (32) is at least as large as the value of not patenting, which is

C1 + E[C2] + αV + λA−D1 −min{D2, λA}. (33)

We consider the case λA ≤ D2, consistent with our assumption that the value of additional

assets is relatively small. Then the condition for endogenous patenting is

(ωV + A) Pr(C2 ≥ D2) + (ωβV + λA) Pr(C2 < D2)− αV ≥ D2. (34)

The left-hand side of (34) is decreasing in D2, while the right-hand side is increasing in D2.
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Furthermore, at D2 = C̄2, the LHS is ωβV + λA, which we take to be less than C̄2 (by

assumption, ωβV < C̄2, so that this condition holds for A small). Hence, there is a Dnewmax
2

of D2 that satisfies (34) with equality.

We can now establish the following result.

Lemma 6 Let Dnewmax
2 be the maximum value of D2 such that (34) holds. The firm finds

it optimal to patent its innovation only if D2 ≤ Dnewmax
2 , where

Dnewmax
2 =

ω − α + A
V

1
V

+ (1−β)ω

C̄2
+ (1−λ)

C̄2

A
V

.

When A = 0, Dnewmax
2 = Dmax

2 , the threshold value of D2 below, which patenting is

optimal, derived in the main text. For A > 0, we have that Dnewmax
2 > Dmax

2 , so that the

incentive compatibility constraint associated with patenting is loosened, and the firm has

a greater incentive to patent. Nevertheless, as long as the value of any additional existing

assets is not so large that the firm can fully collateralize its loan (i.e., as long as λA < I),

the firm’s patenting decision will still be endogenous, with the same implications derived

above.
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