
Learning Non-parametric Choice Models with Discrete Fourier

Analysis

1, Haoyu Song1, Hai H. Nguyen1, and Thanh Nguyen2

1Department of Computer Science, Purdue University
2Mitchell E. Daniels, Jr. School of Business, Purdue University

January 21, 2024

Abstract

Non-parametric choice models offer broad applicability and robustness. However, the expo-
nentially large parameter space leads practitioners to use heuristics for estimation. We introduce
an alternative approach to modeling and estimating non-parametric choice models using dis-
crete Fourier analysis. We demonstrate that any choice function can be approximated with a
small number of Fourier parameters. Our sample-efficient, active-learning algorithm, without
requiring an explicit model description, needs at most poly(log n, 1

ε) data queries to estimate
any choice function up to ε accuracy. Computational studies show significant error reduction
with Fourier methods compared to common heuristics for non-parametric choice estimation in
both simulated and real data.

1

1 Introduction

Choice models play a crucial role in informing operational and economic decisions. Recently,
there has been a significant focus on non-parametric choice models, driven by their flexibility and
robustness. These models stand out for their ability to capture intricate patterns and relationships
without depending on a predetermined functional form. Additionally, they avoid making explicit
assumptions about the distribution of the data. Two notable models are the random rankings
model (Farias et al. (2013)) and the decision forest model (Chen and Mǐsić (2022)). Their greatest
appeal is generality. It has been known that all rational choice functions (RUM) can be expressed
as a distribution over rankings Luce (1959). Furthermore, Chen and Mǐsić (2022) goes a step
further, demonstrating that any choice function, irrespective of its rationality, can be represented
as a decision forest.

However, the broad applicability of these non-parametric models comes with a trade-off. The
exponential size of the parameter space presents two challenges: computational and the need for
large amounts of data. Hence practitioners often rely on heuristics like random sampling and heuris-
tic choice generation during the estimation of non-parametric choice models, which lack theoretical
guarantee and can be far from optimal. For instance, in the case of the decision forest model, a
common approach is to consider sub-classes, such as decision forests with bounded depth/leaf-size.
However, this sub-class is also extensive when the number of products is large. Consequently, es-
timating them becomes a challenging task: a substantial number of samples will be required, and
solving complicated optimization problems becomes necessary.

Our paper introduces an alternative approach to modeling and estimating non-parametric choice
models through discrete Fourier analysis. To the best of our knowledge, this has not been explored
previously. The advantage of our approach is twofold. Firstly, it is agnostic to specific model-
ing assumptions. Secondly, it provides an algorithm to estimate choice models with theoretical
guarantees on sample size.

Discrete Fourier analysis describes functions on a discrete domain through a linear combination
of a set of “basic” functions known as the Fourier basis. These basis functions are highly structured,
facilitating easy understanding and estimation. Each basis function depends on a subset of the
underlying variables (each variable represents a product in our setting). The size of the subset
determines the ”complexity” of the basis function, also referred to as its degree. Two important
measures of a choice function are its sparsity (the number of basic functions needed to describe it)
and its degree (the maximum degree of the basis in its Fourier expression).

First, we show that non-parametric choice models can be approximated by functions with low
sparsity. An essential technical aspect to prove this result involves the use of the L1 Fourier norm.
In particular, we show that, regardless of the number of trees involved, a decision forest’s L1

Fourier norm is upper bounded by the maximum number of leaves in a tree. Building on this, we
exploit the characterization of choice functions as binary choice forests to establish that any choice
function is ε-close to a decision forest with a leaf size of log(1ε), and therefore has a concise Fourier
representation.

Expanding on this insight, our second contribution is to design an efficient active-learning
algorithm estimating parameters in the Fourier domain tailored for choice functions. There are
two significant features of our algorithm. First, it does not depend on the explicit description of
the choice model (say the number of trees), but rather on the natural Fourier properties of the
underlying choice function, which we show to be small. Second, the sample complexity of the
learning algorithm scales with log(n) rather than n, where n is the number of products. Applying
the Goldreich-Levin algorithm (Goldreich and Levin, 1989; Kushilevitz and Mansour, 1993) to
the high-dimensional choice setting is feasible but demands a sample complexity polynomial in n,

2

impractical in many real-world applications. To achieve lower sample complexity, we show that the
considered choice functions have a Fourier degree d significantly smaller than n. Leveraging this
low-degree property, we integrate the Goldreich-Levin algorithm with the hashing technique from
Amrollahi et al. (2019), resulting in a sample complexity polynomial in log n.

In the specific case of ranking models, we develop a distinct algorithm. By leveraging a novel
inductive structure on the Fourier spectrum of ranking models, the algorithm also scales propor-
tionally to log(n). Although less general than the first one, this algorithm is built upon the easy
procedure of estimation through uniform sampling, which involves querying uniform samples and
taking an average of the returned results, thus making its implementation much more straightfor-
ward.

In addition to theoretical results, we perform computational studies on synthetic and real
datasets. We observe the Fourier-based method outperforming Multinomial Logit Models (MNL)
and two common heuristics in non-parametric choice model estimation, reducing Root Mean
Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) by over 20% on average.

1.1 Related works

The literature on modeling and understanding customer preferences is extensive and continuously
evolving. Alongside the classical choice model of multinomial logit McFadden et al. (1973), Markov
chain models Blanchet et al. (2016), and other rational choice models (refer to Ben-Akiva and
Bierlaire (1999) for a survey), recent years have witnessed a growing body of literature focusing
on complex non-parametric choice models capable of capturing irrational behavior (e.g., Chen and
Mǐsić (2022), Chen et al. (2019)). This trend is fueled by the increased adoption of data-driven
approaches. Our paper contributes to this expanding literature.

The works most closely related to ours include Farias et al. (2013), presenting the random
rankings model, and Chen and Mǐsić (2022), introducing the decision forest model. These works
address the challenge of managing a large number of model configurations by employing heuristics
such as column generation and random sampling for model estimation. In contrast, our contribution
introduces Fourier analysis, a novel addition that offers similar modeling flexibility while providing
theoretical guarantees on learning algorithms.

The second line of literature related to our paper pertains to Fourier-based learning in computer
science. Although this literature is extensive, its primary focus lies in learning boolean functions
mapping to a binary range or real numbers (O’Donnell (2014)). For instance, Stobbe and Krause
(2012) and Haviv and Regev (2017) investigated learning Boolean functions using random sam-
ples, while Mossel et al. (2003), Blum (1994), and Kolountzakis et al. (2005) delved into learning
junta Boolean functions. Additionally, Linial et al. (1993) examined binary functions modeled by
constant-depth circuits, and Kushilevitz and Mansour (1993) studied using Fourier analysis to learn
decision trees. In contrast to these works, our focus is on choice functions that are inherently high-
dimensional. While it is conceivable to treat high-dimensional functions as collections of multiple
one-dimensional functions, the sample complexity required for learning increases multiplicatively
with the dimension. This can become impractical for real-world applications. Our objective is to
achieve a logarithmic dependency on the dimension.

The novelty of our algorithm lies in combining the idea of the Goldreich-Levin algorithm (Gol-
dreich and Levin, 1989; Kushilevitz and Mansour, 1993) with hashing of sparse and low-degree
functions. Our hashing technique is inspired by Amrollahi et al. (2019), which utilizes both ap-
proximate sparsity and low-degree but doesn’t address multi-dimensional settings nor operate under
the sample oracle model as in our paper. In particular, that paper requires the precise valuation
of the function to be learned, f(x), at each query point x. On the contrary, in our sample oracle

3

model, with each query, we exclusively acquire one item i sampled from f(x). This represents
observing the selection of one customer. The key component for our algorithm to function in this
general model is the combination of the L2 Fourier weight estimation, as demonstrated in the
Goldreich-Levin algorithm, with hashing techniques inspired by Amrollahi et al. (2019).

The rest of the paper is structured as follows. Section 2 covers the fundamentals of discrete
Fourier analysis and its application to choice functions and our learning model. Section 3 demon-
strates that any choice function can be approximated with a small number of parameters in the
Fourier domain. The algorithms for learning the parameters of these functions in the Fourier domain
are presented in Section 4. In Section 5, we present numerical results indicating that Fourier-based
methods outperform MNL and common heuristics used to learn non-parametric models. The ap-
pendix contains the missing proofs.

2 Preliminaries

2.1 Choice functions

In this section, we define some important models of choice functions which will be discussed in
more detail in later sections.

Let N be the set of products, and let n = |N |, a choice function f is a mapping from a subset
of the products (an assortment) to a distribution over the items being purchased (including the
option of not purchasing any item). Then each choice set can be expressed by a vector x ∈ {0, 1}n
where xi = 1 means that the i-th item is present in the choice set. The no-purchase option is
labeled n+1 and is assumed to be always present. And for each x, fi(x) gives the probability that
the i-th item is selected. Thus a choice function can be formally defined as follows.

Definition 1. f : {0, 1}n → Rn is a choice function if the following conditions are satisfied: (1)
fi(x) = 0 whenever xi = 0 (2) fi(x) ⩾ 0 (3)

∑
i
fi(x) ≤ 1.

The Random Utility Maximization model (RUM) is the most common model of choice functions.
The model is often abbreviated as the “rational model,” since it matches the common sense that a
rational agent will choose the option maximizing its utility.

Definition 2. In the RUM model, each item i is associated with a fixed utility ui and a randomized
error term εi. Then fi(x) is the probability that ui + εi is greater than uj + εj for all j s.t. xj ̸= 0.

This formulation of RUM may fail to yield a closed-form formula. Therefore, it is sometimes
more desirable to work with an equivalent characterization, the ranking model. Each customer is
represented as a permutation/ranking, who selects the item positioned at the highest place among
all available options. The ranking model is formulated as a distribution over all rankings. The
equivalence between the two models is first proved by Block and Marshak (1959). Though the two
models are equivalent, we will exclusively use the term ‘ranking model’ to avoid confusion.

Definition 3. For each permutation/ranking σ over [n + 1], there is an associated ranking func-
tion rσ : {0, 1}n → Rn s.t. [rσ(x)]i = 1 if σ(i) < σ(j) for all j s.t. xj = 1. And a choice
function f : {0, 1}n → Rn is a ranking model if f =

∑
σ∈Kn+1

cσrσ, where Kn+1 denotes the set of

permutations/rankings over [n+ 1] and
∑

cσ = 1.

Recently Chen and Mǐsić (2022) generalized the ranking model to the decision forest model (DF)
to capture irrational choice behavior, in which each customer type is represented as a decision tree.

4

An agent starts from the root node of the corresponding decision tree. At each node i, the agent
moves to the left child node if the i-th product is present and to the right child otherwise. This
process continues until reaching a leaf node ℓ, and the agent then selects the ℓ-th item.

Figure 1 visualizes an example of a decision tree. If the choice set is S = {1, 2, 3}, then the
customer will choose product 2; if S = {1, 4}, she will choose no purchase option 0.

To formulate the choice function corresponding to a decision tree as a function f mapping from
{0, 1}n to Rn, we give an alternative representation of the decision tree as follows (refer to Figure 2
for an example). Each non-leaf node is labeled by a variable xi. Each leaf node is labeled by a
vector ei ∈ Rn, where e0 denotes a vector of zeros, and ei denotes the standard basis vector in Rn.
Every edge going from a parent node to a left child node is labeled by 1. Other edges are labeled by
0. So given a choice set expressed as x ∈ {0, 1}n, the customer’s decision can be determined from
the decision tree. For instance, if x = 1110 (corresponding to the case S = {1, 2, 3}), f(x) = e2
means that the customer will choose product 2.

A decision forest is a choice model that can be expressed as a distribution of decision trees.

Definition 4. A choice function f : {0, 1}n → Rn is a decision forest if f =
∑

T∈Tn

cTT, where Tn

denotes the set of all trees with depths smaller than n and
∑

T∈Tn

cT = 1.

We use two parameters to measure the size of a decision tree. One is leaf-size, which is the
number of leaves. Another is depth, the maximum number of nodes a customer will encounter in
a path from the root to a leaf. The leaf-size/depth of a decision forest is defined as the maximum
leaf-size/depth of trees with non-zero weights.

An alternative model equivalent to the decision forest, recently proposed by Chen et al. (2019),
is the binary choice forest model (BCF). While the model is also expressed as a distribution over
trees, each tree has a much simpler form: there is only one node at each level. We will discuss the
model more thoroughly in section Section 3, where we use the formulation to derive Theorem 4.

We make Figure 3 to clarify the relations among the models mentioned in this section.

2.2 Discrete Fourier Analysis

This section presents the basics of discrete Fourier analysis which we shall use as the technical tools
for our learning algorithms. We start with the straightforward case of real-valued functions.

Fourier basics of real-valued functions

Let f, g : {0, 1}n → R be two real-valued functions. The inner product of two functions f and g is
defined as

⟨f, g⟩ = 1

2n

∑
x∈{0,1}n

f(x) · g(x) = E
x∈{0,1}n

[f(x) · g(x)] .

For each S ⊆ [n], the characteristic function χS(x) = (−1)
∑

i∈S xi is a linear function that computes
the parity of the bits (xi)i∈S . The set of all χS forms an orthonormal basis for the space of real-
valued functions on {0, 1}n and are called Fourier bases, or bases for short. When it is clear from
context, we will use S to stand for χS . Notice that we abuse notation to use S to represent both a
set and a Fourier base.

Any function f can be uniquely expressed as f =
∑

S⊆[n] f̂(S)χS which is called the Fourier

expansion of f . f̂(S) is called the Fourier coefficient of f at S and by orthonormality can be
evaluated as f̂(S) = ⟨f, χS⟩ = Ex∈{0,1}n f(x)χS(x). We say that f̂(S) is the coefficient of the base

5

S and S is the location of f̂(S). The L2 Fourier weight of f on a base/set S ⊆ [n] is defined to be
f̂(S)2. Parseval’s identity says that Ex∈{0,1}n f(x)

2 =
∑

S⊆[n] f̂(S)
2. We denote |S| as the size of

the set S. We refer the readers to O’Donnell (2014) for more details on Fourier analysis.

Fourier basics of vector-valued functions

Fourier analysis is naturally extended to function mapping from {0, 1}n to Rn. The inner product
of any two functions f, g : {0, 1}n → Rd is defined as:

⟨f, g⟩ := E
x∈{0,1}n

[f(x) · g(x)],

where f(x) ·g(x) denotes the dot product of the two vectors f(x), g(x) ∈ Rn. For any vector x ∈ Rn,

the p-norm of x is defined as ∥x∥p := (xp1 + xp2 + . . .+ xpn)
1/p

. For any function f : {0, 1} → Rn,
the Lp norm of f is defined as

∥f∥p :=

(
E

x∈{0,1}n
∥f(x)∥pp

)1/p

=

(
E

x∈{0,1}n

d∑
i=1

|f(x)i|p
)1/p

.

Also, given any two functions f, g, their Lp distance is defined as

Lp(f, g) = ∥f − g∥pp.

And when f is the target function, we will refer to this as the Lp error of g.
As same as in the one-dimensional case, the characteristic function χS : {0, 1}n → R is defined

as χS(x) = (−1)
∑

i∈S xi . It follows immediately from the uniqueness of Fourier expansion in one-
dimensional output space that the Fourier expansion in multi-dimensional output space is also
unique. That is, any function f : {0, 1}n → Rn can be uniquely represented as

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

Now the Fourier coefficient f̂(S) is a vector in Rn for every S ⊆ [n], and χS(x) = (−1)
∑

i∈S xi and
can be evaluated as f̂(S) = Ex∈{0,1}n f(x)χS(x). Again, we say that f̂(S) is the coefficient of the

base S and S is the location of f̂(S).
For each integer p, define the Lp Fourier weight of a base S to be ||f̂(S)||pp. And the L2 Fourier

weight is particularly important due to the following fact.

Fact 1 (Paserval’s identity). ∥f∥22 =
∑

S⊆[n]

∥∥∥f̂(S)∥∥∥2
2
.

Intuitively, the identity says that the square of the L2 norm of a function is equal to the sum
of the L2 Fourier weights of all bases.

Also, for any function f : {0, 1}n → Rn, we define the L1 Fourier norm of f as

∥̂f ∥̂ :=
∑
S⊆[n]

∥∥∥f̂(S)∥∥∥
1
.

The following proposition states some properties of the L1 Fourier norm which will be useful
for proving Fourier properties of decision trees. It follows directly from the definition of the L1

Fourier norm and the triangle inequality.

6

Proposition 1. Let f, g : {0, 1}n → Rn. Then, the following hold.

1. ∥̂f + g∥̂ ⩽ ∥̂f ∥̂+ ∥̂g∥̂.

2. ∥̂cf ∥̂ = c∥̂f ∥̂ for any real value c ⩾ 0.

Next, we present the definitions of Fourier sparsity and the degree of a function, which are key
measures in our approach.

Definition 5. Given f : {0, 1}n → Rn, we say that g : {0, 1}n → Rn is ε-close to f if L2(f, g) =
∥f − g∥22 ⩽ ε

Definition 6. We define the degree of a function f : {0, 1}n → Rn, denoted by deg(f), to be

max{|S| : f̂(S) ̸= 0}.

Definition 7. Let f : {0, 1}n → Rn. f is s-sparse if the number of non-zero Fourier coefficients is
at most s.

3 Fourier Representation of Non-parametric Choice Models

In this section, we initially demonstrate that a decision forest with a small leaf-size can be approx-
imated by a limited number of Fourier bases, irrespective of the number of trees involved in the
forest. Subsequently, leveraging this result and the characterization of choice functions as binary
choice forests, we establish that any choice function possesses a sparse Fourier representation.

3.1 Decision Forest with Bounded Leaf-size

The alternative method of representing the decision tree within the decision forest model enables
us to effectively apply discrete Fourier analysis. The intuition for this formulation comes from
the representation of a Boolean function f : {0, 1}n → {0, 1} as a decision tree (see section 3.2
in O’Donnell (2014)). The main difference in our case is that because we are concerned with choice
models, the leaves are not restricted to 0, 1 but instead represent one of the products that the
customer chooses.

First, we need to represent a decision tree as a sum of vector indicator functions.
Let P be a path on a decision tree with internal node labels x1, x2, . . . , xd, and corresponding

edge labels i1, i2, . . . , id ∈ {0, 1}, and the leaf label ei. Then we will write P = {x1 = i1, x2 =
i2, . . . , xd = id, ei}. The indicator function of a path P , denoted as 1P , is a function mapping from
{0, 1}n to Rn such that

1P (x) = 1(x1 = i1) · 1(x2 = i2) · · · 1(xd = id) · ei.

Example 1. To better see how a path can be represented in this way, let us go back to Figure 2.
Here the leaf is x1 and we will use the vector e1 to denote it. This corresponds to the fact that item
1 is the only possible output choice for this path. For the agent to follow this path, he/she will first
check whether item 1 is offered. If it is not, then this path will not be followed and the output of this
path will be zero. This corresponds to the indicator function 1(x1 = 1). Then the agent arrives at x2
and checks whether item 2 is not offered because he/she is now going rightwards. This corresponds
to the indicator function 1(x2 = 0). The logic is the same for x4. Since the agent will arrive at the
leaf only if all those conditions are met, the three indicators need to be multiplied together. Thus
we have the representation

1(x1 = 1, x2 = 0, x4 = 1) · e1.

7

Now observe that a decision tree can be expressed in terms of path functions corresponding to
various paths from the root to the leaves as:

f(x) =
∑

Path P

1P (x)f(P),

where f(P) is the label on the leaf when the function f takes the path P in its decision tree. Every
indicator function of a path in a decision tree enjoys some nice Fourier properties as follows.

Lemma 1. Let P be a path of a decision tree T : {0, 1}n → Rn. Suppose there are d variables in

the path P . Then, it holds that (1) deg(1P) = d and (2) ∥̂1P ∥̂1 = 1.

Proof. Suppose x1, x2, . . . , xd are the variables in the path P and i1, i2, . . . , id are the labels of
edges in the path. Observe that each indicator function 1(x1 = i1) can be written in terms of the
characteristic function χx1 : {0, 1}

n → {−1, 1} as follows.

1(x1 = i1) =
(−1)i1χx1(y) + 1

2

Therefore, we have

1P (x) = 1(x1 = i1) · 1(x2 = i2) · · · 1(xd = id) · ei

=
(−1)i1χx1(y) + 1

2
· (−1)i2χx2(y) + 1

2
· · · (−1)idχxd

(y) + 1

2
· ei.

Expanding the first d terms and using the homomorphism property of the characteristic functions
χS∪T = χS · χT implies that there are 2d non-zero Fourier coefficients, each is of magnitude 1/2d.

Thus, 1P has degree d and ∥̂1P ∥̂1 = 1.

Next, we show that a decision tree has a bounded L1 Fourier norm.

Lemma 2. If f : {0, 1}n → Rn is a decision tree with leaf-size s , then ∥̂f ∥̂1 ⩽ s.

Proof. Recall that f(x) =
∑

Path P 1P (x)f(P). By definition of the choice function, it holds that∑
i f(P)i ⩽ 1. By Proposition 1, we have

∥̂f ∥̂1 = ∥̂
∑

Path P

1P · f(P)∥̂1 ⩽
∑

Path P

∥̂1P · f(P)∥̂ ⩽
∑

Path P

∥̂1P ∥̂ ·
∑
i

f(P)i ⩽
∑

Path P

∥̂1P ∥̂ ⩽ s,

which completes the proof.

Now we demonstrate that trees with small leaf-size can be approximated by low-degree bases.
The intuition is that for each long path 1P with length ℓ, the probability that 1P (x) ̸= 0 is as small
as 1

2ℓ
. So we can safely cut down a portion of the path without significantly affecting the result.

Lemma 3. Given a decision tree T with leaf-size s, there exists a decision tree T ′ with depth at
most log(s

2

ε) such that ∥T − T ′∥22 ⩽ ε.

Proof. Let P = {x1 = i1, x2 = i2, ..., xk = ik, ei} be an arbitrary path of T. If k ⩽ log(sε), we keep
P as it is. Otherwise, let k′ = log(sε). Then form a path P ′ by removing all internal nodes after the
k′-th one and output the same value ei. Then, T (x) ̸= T (x′) only when x takes a path of length
greater than log(s2/ε) in T . This happen with probability 2log(s

2/ε) = ε/s2. So we have

∥1P − 1P ′∥22 = Pr
x∈{0,1}n

[T (x) ̸= T ′(x)] ⩽ ε/s2

8

Now we can apply triangle inequality to obtain

∥∥T − T ′∥∥
2
⩽
∑
P

∥1P − 1P ′∥2 ⩽ s ·
√

ε

s2
=

√
ε.

This implies that ∥T − T ′∥22 ⩽ ε, as desired

As a consequence of Lemma 3, a decision forest can be approximated by a low-degree decision
forest as follows.

Theorem 1. For any decision forest f : {0, 1}n → Rn with leaf-size s, and ε > 0, there exists a
decision forest g : {0, 1}n → Rn such that (1) ∥f − g∥22 ⩽ ε and (2) deg(g) = log(s2/ε).

Proof. For each tree T , cut down T to T ′ with depth at most log(s
2

ε) as in Lemma 3. Define
f ′ =

∑
T ′. Then, by triangle inequality, we have∥∥f − f ′∥∥

2
⩽
∑
T

cT
∥∥T − T ′∥∥

2
⩽ max

T

∥∥T − T ′∥∥
2
⩽

√
ε.

Since each T ′ only contains Fourier bases with a degree less than log(s
2

ε), our proof is complete.

Now we are ready to establish the approximate Fourier sparsity of decision forests. The key
insight is that any decision forest with a small leaf-size has a small Fourier L1 norm, which then
implies that the function can be approximated by a sparse function.

Lemma 4. Let f : {0, 1}n → Rn satisfies ∥̂f ∥̂1 ⩽ L, and ε > 0. Then, there exists a function

g : {0, 1}n → Rn such that (1) ∥f − g∥22 ⩽ ε, and (2) g is L2

ε -sparse.

Proof. The main idea is that a small L1 norm allows us to throw away many bases with a small L1

Fourier weight. Let us define

S =
{
S ⊆ {0, 1}n :

∥∥∥f̂(S)∥∥∥
1
⩾

ε

L

}
, and g =

∑
S∈S

f̂(S)χS .

It is clear that |S| ⩽ L
ε/L = L2

ε . This implies that g contains at most L2

ε bases with non-zero Fourier
coefficients. Using Parseval’s identity, we have

∥f − g∥22 =
∑
S/∈S

∥∥∥f̂(S)∥∥∥2
2
⩽ max

S/∈S

∥∥∥f̂(S)∥∥∥
2

∑
S/∈S

∥∥∥f̂(S)∥∥∥
2

⩽ max
S/∈S

∥∥∥f̂(S)∥∥∥
1

∑
S/∈S

∥∥∥f̂(S)∥∥∥
1
⩽ max

S/∈S

∥∥∥f̂(S)∥∥∥
1

(∑
S/∈S

∥∥∥f̂(S)∥∥∥
1
+
∑
S∈S

∥∥∥f̂(S)∥∥∥
1

)
⩽

ε

∥̂f ∥̂1
· ∥̂f ∥̂1 ⩽

ε

L
· L = ε.

This completes the proof.

Applying the triangle inequality to the Fourier L1 norm, we obtain the following result. The
Fourier sparsity of any decision forest is always upper-bounded by a function that depends on s
and ε, but not on the number of trees in the forest. This argument relies crucially on the fact that
the sum of coefficients of the trees in the forest is bounded by 1.

9

Theorem 2. Let f : {0, 1}n → Rn be a decision forest with leaf-size s and ε > 0. Then, there exists

a decision forest f ′ : {0, 1}n → Rn such that (1) ∥f − f ′∥22 ⩽ 2ε, (2) deg(f ′) ⩽ log(s
2

ε), and (3) f ′

is s2

ε -sparse.

Proof. Let f =
∑

T cTT . As in Theorem 1, we can cut down each T to be of depth at most log(s
2

ε).
Since cutting down paths will not increase leaf-size, every resulting tree T ′ has a leaf-size smaller
than s, and therefore its L1 Fourier norm is smaller than s. Define fcut =

∑
T

cTT
′. By Theorem 1,

fcut is within ε of f. Then using triangle inequality for L1 Fourier norm, we get

∥̂fcut∥̂1 ⩽
∑
T

cT ∥̂T ′∥̂1 ⩽ max
T

∥̂T ′∥̂1 ⩽ s.

Then by Lemma 4, fcut can be approximated within ε by a function f ′ consisting of at most s2

ε
non-zero Fourier coefficients. According to Lemma 4, Fourier bases of f ′ are all bases of fcut, which
are of degree less than log(s

2

ε). This completes the proof.

3.2 Choice Models as Binary Choice Forests

In this section, we utilize the characterization of choice models as binary choice forests Chen et al.
(2019) to show that any choice function can be approximated by a decision forest with a small
leaf-size and therefore enjoys a sparse, low-degree Fourier representation.

Definition 8. A binary choice tree f is a decision tree of n nodes (xi, σi, oi) with ci ∈ [n], σi ∈
{0, 1}, oi ∈ [n]. Given x ∈ {0, 1}n, f(x) is computed as follows: starting from i = 0, f outputs oi if
xi = σi and proceeds to the (i+ 1)-th node otherwise. A binary choice forest is a distribution over
binary choice trees.

Similar to ranking, a binary choice tree has only one node at each level. However, there are two
distinctions. Firstly, in ranking, it is necessary that ci = oi. Secondly, in ranking, σi = 1 for all
i—meaning we proceed only when xi = 0. A binary choice tree eliminates these two constraints,
making it a more general form of ranking. An example can be found in Figure 4.

Theorem 3 (Chen et al. (2019)). Every choice function can be expressed as a binary choice forest
with at most n ∗ 2n−1 + 1 binary choice trees.

Since a binary choice tree is a tree with leaf-size n, naively applying Theorem 2 yields a sparsity
bound n2

ε and a degree bound log(n
2

ε). However, resorting to the special structure of ranking trees,
we can obtain a degree/sparsity bound completely dependent only on ε.

As seen in Figure 4, an important observation is that there is exactly one leaf at each level
except the lowest level. Therefore, if we can cut down the tree to a smaller depth, the leaf size will
also be reduced.

Lemma 5. Let R : {0, 1}n → Rn be an arbitrary binary choice tree. Then, there exists a decision
tree R′ : {0, 1}n → Rn such that (1) ∥R−R′∥22 ⩽ ε, (2) the leaf size of R′ is smaller than log(1/ε).

Proof. Suppose R is given by {(x1, σ1, o1), (x2, σ2, o2)..., (xn, σn, on)}. Then we obtain R′ by cutting
down all nodes after xlog(1

ε
). This implies that deg(R′) ⩽ log(1/ε). Since there is only one leaf at

each level, the leaf size of R′ is also log(1ε).

10

Then by the definition of a binary choice tree, xi+1 will be accessed only if xj ̸= σj for all
1, 2, ..., i. It follows

∥∥R−R′∥∥2
2
⩽ 1 · Pr[x1 ̸= σ1, x2 ̸= σ2, ..., xlog(1

ε
) ̸= σlog(1

ε
)] =

(
1

2

)log(1
ε
)

= ε,

which completes the proof.

Example 2. To better illustrate the idea of this lemma, consider the following example. We use
an example of ranking for convenience. Suppose an agent has a ranking {1 → 2 → 3.... → 100}.
Suppose we want to estimate the ranking function to the precision of 1

16 . Now we cut down the
ranking to {1 → 2 → 3 → 4 → 5}. For the two rankings to produce different results, it must be the
case that items 1,2,3,4,5 are all not available in the choice set. And this probability is (12)

5 = 1
32 ⩽ 1

16
and by Parseval, this is also the distance between the two rankings. And the new ranking’s leaf size
is only five. This matches the common sense that given a long ranking, only the first few items are
particularly relevant.

Combining Lemma 5 and Theorem 2, we can conclude that every binary choice forest, and
therefore every choice function, has a concise Fourier representation.

Theorem 4. For any choice function f , there exist a function g : {0, 1}n → Rn such that (1)

∥f − g∥22 ⩽ ε, (2) g is log2(1/ε)
ε -sparse, and (3) deg(g) ⩽ log(1/ε).

4 Fourier-based Learning

We begin with a discussion of our learning model. Subsequently, we present three learning algo-
rithms. The first one in Section 4.2 extends the well-known Goldreich-Levin algorithm, to functions
with range Rn. We include it here primarily because the subroutine for estimating Fourier coef-
ficients is required in our second algorithm in Section 4.3. However, it’s important to note that,
to avoid an unnecessary blow-up of a factor of n, the analysis becomes more intricate in the
multi-dimensional setting with the use of vectorized concentration inequalities. Furthermore, we
demonstrate the algorithm’s effectiveness in the presence of bounded noise, thereby supporting the
sample-oracle model.

Our primary contribution is the learning algorithm presented in Section 4.3 designed for sparse
and low-degree functions. Specifically, the algorithm involves a unique combination of Goldreich-
Levin and the hashing technique in Amrollahi et al. (2019). As demonstrated in the preceding
section, where we establish that all choice functions are approximately Fourier-sparse with low
degree, the algorithm can be effectively applied for efficient learning.

Finally, the algorithm in Section 4.4 is designed for a special case of ranking models. Its
simplicity facilitates straightforward uniform demand queries, making it attractive for practical
implementation.

4.1 Data Access Model

Given a choice function f(.), we are allowed to query a choice set x ∈ {0, 1}n, and the oracle returns
a randomized output vector y(x). Our purpose is to use the returned data to find a function f ′(.)
that has a small L2-norm error between f(.) and f ′(.).1

We say that an algorithm A learns f to an error ε in confidence δ with m queries if, using
results obtained from m queries, A returns a f ′ s.t. L2(f

′, f) ⩽ ε with probability at least 1− δ. In

11

this paper, we set δ to be a fixed constant, says 1
1000 . Boosting this probability involves repeating

the algorithm a constant number of times, averaging the outcomes, and achieving a constant value
arbitrarily close to 1.

Let us denote the noise function y(x) − f(x) as ρ(x). If for all x, ρ(x) has mean zero and
∥ρ(x)∥2 ⩽ γ with probability 1, we say that the oracle has output noise N (γ). If γ = 0, we say
that the oracle is an exact oracle. Under the choice estimation setting, it can be difficult to acquire
an exact oracle or even an oracle having an output noise N (γ) with small γ, because it frequently
occurs that practitioners can only observe a small number of individual selections given a choice
set and the average may fail to be a sufficiently good estimate of the true choice probabilities.

We adopt what Chierichetti et al. (2018) defined as a sample oracle. Each time we query x,
an item i ∈ [n] is sampled according to x and the oracle returns to us ei. This has the natural
interpretation of observing one purchase from an assortment in the choice estimation setting. Notice
that since ∥ei∥2 ⩽ 1 and ∥f(x)∥2 ⩽ 1 always, then by triangle inequality a sample oracle is also an
oracle having output noise N (2).

4.2 Learning Sparse Functions

We present an extension of the Goldreich-Levin algorithm that learns any function f : {0, 1}n → Rn

that closely approximates a sparse function.

Theorem 5. Assume f : {0, 1}n → Rn is ε-close to a s-sparse function, then f is learnable with

error ε with sample complexity O
(
ns3

ε3
log(ns/ε)

)
and time complexity poly(n, s, 1/ε).

Before presenting the algorithm, let’s first observe that the L2 Fourier weights of an approxi-
mately sparse function must concentrate on a small set of Fourier bases with L2 weights above a
threshold (Claim 1). The primary challenge is to identify these bases.

Claim 1. Assume f : {0, 1}n → Rn is ε-close to an s-sparse function. Define L = {S ⊆

[n] :
∥∥∥f̂(S)∥∥∥2

2
⩾ ε

s}. Then |S| ⩽ 2s and

∥∥∥∥f −
∑
S∈L

f̂(S)χS

∥∥∥∥2
2

⩽ 2ε.

From now on, we will call L the set of significant Fourier bases.

Definition 9. Given a predefined threshold τ > 0, we say a Fourier base S is significant if
∥̂f̂(S)∥̂22 ⩾ τ.

At a high-level idea, the learning algorithm consists of two steps. The first step is to find all
significant bases of the function (Lemma 6) and ignore all others, that is, find a list L = {S ⊆
[n] :

∥∥∥f̂(S)∥∥∥2
2
⩾ τ} for some appropriate threshold τ ⩾ 0. Then, we use random samples to estimate

every Fourier coefficient f̂(S) of S ∈ L (Lemma 7), which, in turn, gives a good approximation of
the original function. In the second step, we use Azuma-like concentration bounds (Hayes (2005))
for random vectors, while Chernoff-Hoeffding bounds are used in the one-dimensional case.

Lemma 6. Given query access with output noise N (γ) to a function f : {0, 1}n → Rn as well as a
threshold 0 ⩽ τ ⩽ 1, there is a randomized algorithm that with high probability outputs a list L of
subsets of [n] satisfying

1. if
∥∥∥f̂(U)

∥∥∥2
2
⩾ τ , then U ∈ L, and

2. if U ∈ L, then
∥∥∥f̂(U)

∥∥∥2
2
⩾ τ/4.

12

Furthermore, the running time is polynomial in (n, 1/τ), and sample complexity O
(
(1+γ)n log(n/τ)

τ3

)
.

Lemma 7. Given access to uniformly random samples of a function f : {0, 1}n → Rn with output
noise N (γ), there is a randomized algorithm which takes as input S ⊆ [n], 0 < ε, δ ⩽ 1 and outputs
an estimate f̃(S) for f̂(S) such that ∥∥∥f̃(S)− f̂(S)

∥∥∥2
2
⩽ ε

except with probability at most δ. Furthermore, the number of samples needed is (2+γ) log(4e2/δ)
ε .

We provide the proofs of Theorem 5, Lemma 6, and Lemma 7 in the appendix.

ALGORITHM 1: Estimate
Input: Random access to f , confident parameter δ, accuracy parameter ε, and a subset

S ⊆ [n]

Output: f̃(S) such that
∥∥∥f̃(S)− f̂(S)

∥∥∥2
2
⩽ ε

f̃(S) = 0, m = log(1/δ)
ε

for i = 1 to m do
Sample x uniformly at random from {0, 1}n,
f̃(S) = f̃(S) + 1

m · f(x) · χS(x)

Return f̃(S)

Comparison with a naive approach. A naive approach would learn function f : {0, 1}n →
Rn by learning each fi : {0, 1}n → R separately using Goldreich-Levin, where f = (f1, f2, . . . , fn).
This implies that the number of samples needed to approximately learn f with the same error ε
and confident parameter δ is scaled up by a factor of n. We provide more details in the appendix.

4.3 Learning Sparse and Low-degree Functions

In this section, we focus on function mapping from {0, 1}n to Rn that closely approximates a sparse
and low-degree function. We will demonstrate that learning this specific class of functions can be
achieved more efficiently. Specifically, our main result is as follows:

Theorem 6. Assume f : {0, 1}n → Rn is ε-close to a s-sparse, degree-d function, then f is learnable
using O

(
(ds2 log(n) log(sd log n))/ε2

)
samples with time complexity poly(n, s, 1/ε).

Compared to Theorem 5, the sample complexity is diminished by a multiplicative factor of
n/(d log n), a notable reduction, especially when d log n ≪ n. Our algorithm, akin to the learning
algorithm in Section 4.2, comprises two steps. The first step involves the development of a new
algorithm for identifying significant Fourier bases (Definition 9), while the second step remains
consistent with the approach in Section 4.2.

4.3.1 Identifying Significant Fourier Bases

Recently, Amrollahi et al. (2019) presented an efficient algorithm that learns a sparse and low-
degree function mapping from {0, 1}n to R. In particular, they showed that there exists a set of
measurement vectors {v(i)} such that any S ∈ {0, 1}n can be recovered from the linear measure-
ments ⟨v(i), S⟩.

Lemma 8 (Amrollahi et al. (2019)). For any integers n, d, there exists a set of measurements
vectors {v(i)}mi=0 for m = d log n such that, every S ∈ {0, 1}n with |S| ⩽ d can be recovered given
the linear measurements ⟨v(i), S⟩ for all 1 ⩽ i ⩽ m.

13

Inspired by this idea and the GL/KM algorithm, we develop an efficient algorithm for identifying
the set of all significant Fourier bases (Definition 9).

Let us introduce some notations before presenting the algorithm.

Definition 10. Given a set B of Fourier bases, the L2 Fourier weight of B is weight(B) =∑
S∈B

∥̂f̂(S)∥̂22.

Let V = {v(1), v(2), . . . , v(m)} be the set of vectors as defined in Lemma 8. For any matrix
σ ∈ {0, 1}n×k and b ∈ {0, 1}k, we denote Hb

σ = {x ∈ {0, 1}n : σT · x = b}. For each v(i) ∈ V , we

define σi =

[
σ

vi

]
. So Hb,j

σi = {x ∈ {0, 1}n : σT
i · x = (b, j)}.

ALGORITHM 2: Locate
Input: Query access to f , degree d, sparsity parameter s, weight threshold τ

Output: A list L = {S ⊆ [n] :
∥∥∥f̂(S)∥∥∥2

2
⩾ τ}

L = ∅;Mb = ∅ for each b ∈ {0, 1}k
Sample k = log s+ 6 vectors in {0, 1}n uniformly randomly and form σ
Get measurement vectors V = {v(1), v(2), ..., v(d logn)}
for each v(i) ∈ V do

Estimate weight(Hb
σ) simultaneously with log(sd logn)

16τ2
samples for all b ∈ {0, 1}k

Estimate weight(Hb,0
σi) simultaneously with log(sd logn)

16τ2
samples for all b ∈ {0, 1}k

for each b ∈ {0, 1}k do
if weight(Hb

σ) ⩾
τ
2 then

for each v(i) ∈ V do

if weight(Hb,0
σi) ⩾

τ
2 then

Set ⟨v(i), ·⟩ = 0 and add the measurement to Mb

else

Set ⟨v(i), ·⟩ = 1 and add the measurement to Mb
Recover some Sb from measurements in Mb and add Sb to L

Return L

The algorithm first selects m = O(log(s)) random vectors from {0, 1}n and then concatenates
them to form a matrix σ ∈ {0, 1}m∗n. Then all Fourier bases are divided into 2m buckets Bj = {S ∈
{0, 1}n|σ · S = j} for each j ∈ {0, 1}m. It will later be shown that if the entries of σ are generated
uniformly i.i.d, with high probability bucket Bj contains only one significant Fourier base S such

that
∥∥∥f̂(S)∥∥∥2

2
⩾ τ and weight(Bj \ S) ⩽ τ

16 . Next, concatenate σ with vi to form a new matrix

σi =

[
σ

vi

]
. So we have formed a new bucket system with twice the number of buckets. That is,

each bucket Bj = {S ∈ {0, 1}n : σ · S = j} is split into two buckets Bj,0 = {S ∈ {0, 1}n|σ · S =
j, v(i) · S = 0}, Bj,1 = {f ∈ {0, 1}n|σ · S = j, v(i) · S = 1}. We estimate the weight of each bucket
Bj,0. If weight(Bj,0) ⩾ τ , we can conclude that ⟨v(i), S⟩ = 0 and ⟨v(i), S⟩ = 0 otherwise. In this
way, we can use estimations of L2 Fourier weights to obtain all measurements and consequently
recover S.

In the one-dimensional case of Amrollahi et al. (2019), the linear measurements ⟨v(i), S⟩ are
estimated via a combination of the random hashing technique and the Walsh-Hadamard transform.
To be more specific, given a bucket B, they obtain the corresponding linear measurement through

14

sign(
∑

S∈B f̂(S)), which can be computed using the Walsh-Hadamard transform. On the other
hand, we compute these linear measurements through random hashing and estimation of the L2

Fourier weights of the buckets. The main advantage of using L2 estimations is that we can handle
both multi-dimensional output space and our sample oracle query model. This is a crucial step in
our analysis to extend Amrollahi et al. (2019) to our setting. It is worth noting that the GL/KM
algorithm also utilizes L2 estimations, but it does not employ either the random hashing technique
or the low-degree structure

For the rest of this section, we shall prove that Locate (Algorithm 2) is correct and efficient.
We first introduce some notations about Fourier hashing.

Fourier Hashing. Let f : {0, 1}n → Rn be a function. Let H be a subspace of {0, 1}n. Let
H⊥ := {x ∈ {0, 1}n : x · h = 0 for every h ∈ H} be the dual of H. Given a ∈ H, the coset
a + H is defined by a + H := {a + h : h ∈ H}. Then the L2 Fourier weight of a coset a + H is

weight(a+H) :=
∑

S∈a+H

∥∥∥f̂(S)∥∥∥2
2

The following fact about the L2 Fourier weight of a coset will be useful for our learning algorithm.

Claim 2. For any function f : {0, 1}n → Rn, it holds that∑
S∈a+H

∥∥∥f̂(S)∥∥∥2
2
= E

x∈{0,1}n,z∈H⊥
χa(z)⟨f(x), f(x+ z)⟩.

It implies that the L2 Fourier weight of a coset can be estimated using query access to f .

Claim 3. For 0 < ε, δ ⩽ 1, the L2 Fourier weight of the coset a +H can be estimated within an

error of ε with a probability of at least δ using (1+γ)2

ε2
queries access to f with noise N (γ).

Hashing is an important technique in machine learning and theoretical computer science. In
our context, a hashing function h : {0, 1}n → {0, 1}b is associated with a matrix σ where all entries
are generated uniformly i.i.d. We would like to highlight some notable properties of hashing that
are crucial for our algorithm. The first one is pairwise independence.

Fact 2. Let σ be a random hashing matrix. Then for any S, T ∈ {0, 1}n,

Pr(∃α ∈ {0, 1}n s.t. S ∈ α+ null(σ), T ∈ α+ null(σ)) =
1

2m
.

Here 2m gives the number of cosets. This essentially says that given any two vectors in {0, 1}n,
they will be hashed to different cosets with high probability if the number of cosets is big enough.
This allows us to obtain linear measurements for each of them without being influenced by the
other.

Another crucial observation is that when σ is full rank, each coset corresponds to a bucket, and
vice versa. We will demonstrate that if σ is generated with uniformly independent and identically
distributed (i.i.d.) entries, full-rankness is satisfied with high probability. Our algorithm critically
depends on this duality. The bucket structure enables us to execute splitting and consequently
acquire linear measurements, while the coset structure facilitates efficient L2 weight estimation.

The following claims are needed for the proof of Theorem 6.

Claim 4. Let f : {0, 1}n → Rn be ε-close to an s-sparse function. Let S ⊆ [n] be such that∥∥∥f̂(S)∥∥∥2
2
⩾ ε

s . Suppose a sub-space H of co-dimension 16s is drawn uniformly at random and

S ∈ a+H. Then the following events happen with a probability of at least 3
5 :

15

(1) there does not exist another T with
∥∥∥f̂(T)∥∥∥2

2
⩾ ε

s such that T ∈ a+H.

(2)
∑

U ̸=S,
U∈a+H

∥∥∥f̂(U)
∥∥∥2
2
⩽ ε

16s .

Intuitively, this lemma conveys that significant Fourier bases do not interfere with each other,
and insignificant ones within each coset do not overshadow the significant ones.

Additionally, we must demonstrate that σi is full-rank with high probability, thus ensuring the
validity of the bucket-coset duality.

Claim 5. Given a fixed set of vectors v1, v2, ..., vdlogn ∈ Fn
2 . Suppose we sample 2log(s) vectors

uniformly randomly from Fn
2 and form matrix σ ∈ Fn∗s

2 . Then it happens with negligible probability
that for any vi, σi is full-rank.

Claim 6. Suppose that f is ε-close to being s sparse. Let τ ⩾ ε
s be given. For any S ⊆ [n] such

that
∥∥∥f̂(S)∥∥∥2

2
⩾ τ. The Locate (Algorithm 2) can recover S with a probability of at least 1

2 . The

sample complexity of the procedure is O
(
dlog(n)

τ2

)
and the time complexity is O

(
ndlog(n)

τ2

)
.

4.3.2 Learning Algorithm

We present our algorithm for learning sparse and low-degree functions as follows.

ALGORITHM 3: LearningSparseLowDegree

Input: Random access to f , confident parameter δ, accuracy parameter ε
Output: g : {0, 1}n → Rn such that ∥g − f∥2 ⩽ ε with constant probability
L = ∅
for i ⩽ log(s) do

Li = Locate(f, d, s, ε/s)
L = L ∪ Li

for each S ∈ L do
ĝ(S) = Estimate(f, δ, ε, S)

Let g =
∑

S∈L ĝ(S)χS(x).
Return g

Observe that as long as we repeat Locate (Algorithm 2) sufficiently number of times, we can
recover all significant Fourier bases.

Proof of Theorem 6 . Let S be a given significant Fourier base and use 1S,t to denote the random
vector indicating whether S is already successfully recovered at round t. Since i.i.d random vectors
are produced for hashing in each round, 1S,t is independent across different rounds. By Claim 6,
1S,t ⩾ 1

2 for any t. Then by independence, the probability that S fails to be recovered and included
in L for T rounds is 1

2T
. And by union bounds, the probability that there exists one significant

Fourier that fails to be recovered is s
2T

. Then setting T = log(sδ) gives the desired confidence
parameter. Then as for time/sample complexity, we plug τ = ε into Claim 6 and scale the results
by log(sδ)

Now, leveraging the bounds provided in Theorem 4, it readily follows that the efficient estimation
of any non-parametric choice model can be achieved using Fourier methods.

Theorem 7. Let f be an arbitrary choice function. For every 0 < ε < 1, f is learnable with error

at most ε with time complexity O(n, 1/ε) and sample complexity Õ
(
logn
ε4

)
.

16

4.4 Learning Ranking Models by Uniform Sampling

This section is dedicated to illustrating that the Fourier spectrum of a ranking model exhibits a
favorable inductive structure. This structure enables us to learn the function using the straight-
forward strategy of uniform sampling which, similar to Estimate (Algorithm 1), involves sampling
uniformly random choice sets and averaging over the returned results.

Our first observation is on the Fourier coefficients of the sum of two ranking functions.

Lemma 9. Given two ranking functions f, f ′ : {0, 1}n → Rn, g = f + f ′ and S ⊆ [n], it follows

∥ĝ(S)∥1 =
∥∥∥f̂(S)∥∥∥

1
+
∥∥∥f̂ ′(S)

∥∥∥
1

Proof. Fix an item j ∈ S, then it suffices to show

|ĝ(S)j | = |f̂(S)j |+ |f̂ ′(S)j |.

Recall that f can be written as a sum of indicator functions corresponding to paths. Among
them, only 1Pj , the path having j as the last stop, has a non-zero value at the j-th coordinate.
Therefore, we have

f̂(S)j = 1̂Pi(S)j .

Notice that on this path Pj = {x1, x2, ..., xj} with corresponding labels i1, i2, ..., ij , we have ij = 1
and ik = 0 for any k ̸= j. We can assume S ⊂ P , since otherwise, it must be the case that
1̂Pi(S)j = 0 and the claim trivially follows. Now we expand 1̂Pi(S)j as in Section 3 and obtain

1̂Pi(S)j =

{
(−1)|S|−1 · 1

2|S|+1 , if i ∈ S

(−1)|S| · 1
2|S|+1 , otherwise

We can see that the sign depends only on whether i ∈ S and the oddity of S. This is the same
for both f and f ′ and therefore we have

sign(f̂(S)j) = sign(f̂ ′(S)j)

Then the claim follows.

An immediate consequence of the fixed sign patterns as seen in Lemma 9 is that the L1 weight
of a Fourier base can now be estimated easily as an expectation.

Claim 7. Let f be a ranking model. Given S ⊆ [n],∥∥∥f̂(S)∥∥∥
1

= E
x∈{0,1}n

n∑
i=1

f(x)i · χS(x) · (−1)|S|+1(i∈S)

Claim 8. For any ranking model f and S ⊆ T ⊆ [n],
∥∥∥f̂(S)∥∥∥

1
⩾
∥∥∥f̂(T)∥∥∥

1
.

Proof. We will show that for each ranking r in the model,
∥∥∥f̂(S)∥∥∥

1
⩽
∥∥∥f̂(T)∥∥∥

1
. Then the result

follows from Lemma 9. Without loss of generality, assume the ranking is {1, 2, 3, ..., n}. Then given
j ∈ [n], we want to show |r̂(S)j | ⩾ |r̂(T)j |. There are three cases.

Case 1: j is smaller than the largest element of S. In this case, we have r̂(S)j = 0 = r̂(T)j .

17

Case 2: j is larger than the largest element of S but smaller than the greater element of T . In
this case, we have |r̂(S)j | = 1

2j
while r̂(T)j = 0

Case 3: j is larger than the largest element of T . In this case, we have r̂(S)j =
1
2j

= r̂(T)j .

Thus |r̂(S)j | ⩾ ||r̂(T)j | in all cases and this completes the proof.

Claim 8 naturally suggests a simple inductive procedure to recover Fourier bases with L1 weight
greater than a threshold τ and of degree at most d. We start from Ψ0 = {∅}, where Ψi = {S ⊆
[n] :

∥∥∥f̂(S)∥∥∥
1
⩾ τ, |S| ⩽ i}. Then by Claim 8, if a Fourier base S′ has an L1 weight greater than

τ , it must also be the case for all S ⊆ S′. Therefore, given Ψi, we can recover all bases in Ψi+1

by looping through Ψi and evaluating the L1 norm of all bases in the set {S ∪ {i}|S ∈ Ψi, i ∈ [n]}
with uniformly random samples. It is easy to verify the correctness of this procedure and therefore
we do not include a proof here.

ALGORITHM 4: RankingLocate

Input: Access of m uniform samples to the ranking model f , degree bound d, weight
threshold τ

Output: A list Ψ = {S ⊆ [n] :
∥∥∥f̂(S)∥∥∥

1
⩾ τ, |S| ⩽ d}

Ψ0 = {∅},Ψi = ∅ for any i ∈ [d], Ψ = Ψ0

for i = 0 to d− 1 do
for S ∈ Ψi, j = 0 to n do

S′ = S ∪ {j}
L1(S

′) = 0
for k = 0 to m do

sample a uniform random x ∈ {0, 1}n
L1(S

′) = L1(S
′) + 1

m

∑n
l=1 f(x)i · χS′(x) · (−1)|S

′|+1(l∈S′)

if L1(S
′) ⩾ τ then

add S′ to Ψi+1
Ψ = Ψ ∪Ψi+1

Return Ψ
It then follows that ranking models can be learned from O(log(n), 1ε) uniform samples with poly-
nomial time complexity.

Theorem 8. Let f be an arbitrary ranking model and ε ∈ (0, 1). Then f is learnable with error ε
using poly(log(n), 1ε) uniform samples and poly(n, 1ε) time complexity.

Proof. By Theorem Theorem 4, it suffices to identify all Fourier bases with L1 weight ε
log(1

ε
)
and

degree at most log(1ε). Therefore, it suffices to run RankingLocate (Algorithm 4) with d = log(1ε)

and τ = ε
log(1

ε
)
. There are at most

log2(1
ε
)

ε such Fourier bases. So we need to estimate the L1 weights

of at most n · log2(1
ε
)

ε Fourier bases. By Hoeffding inequality, it then requires poly(log(n), 1ε) to
estimate the L1 weights of all those bases within ε. And since updating the L1 weight of one base
takes O(n) operations, the total time complexity is poly(n, 1ε) and this completes the proof.

5 Implementation and Numerical Experiments

5.1 Implementation for Ranking Models

The algorithms in Section 4.3 and Section 4.4 identify a set of Fourier bases S and coefficients
incurring provably small L2 error, which corresponds to the uniform distribution and squared loss.

18

In this section, we aim to demonstrate that the method can also be adapted to obtain superior
performance under other distributions/metrics for the ranking model. Suppose we have already
obtained a set of Fourier bases S and now we are given a new loss function L and a dataset
XP generated from another distribution P, a straightforward extension is to solve the following
optimization problem:

min
f̂S

∑
(x,y)∈XP

L
(
y,
∑
S∈S,
i∈[n]

f̂S,iχS,i(x)
)

s.t.
∑

S∈S,i∈[n]

|f̂S,i| ⩽ d

where d = max
S∈S

|S| and χS,i denotes the coordinate of vector χS corresponding to item i.

The L1 norm constraint is cumbersome to work with. To avoid this problem, we recall from
Section 4.4 that the Fourier coefficients of a ranking model have a fixed pattern.

Thus we now define χ̄S,i(x) =

{
(−1)|S|+1χS,i(x), if i ∈ S

(−1)|S|, otherwise
. Then we can scale all coefficients

to have sum 1 and rewrite the optimization problem as

min
f̂S , f̂0

∑
(x,y)∈XP

L

(
y, f̂0 ·

−→
0 +

∑
S∈S,
i∈[n]

f̂S,i ·
χ̄S,i(x)

d

)

s.t.
∑
S∈S,
i∈[n]

f̂0 + f̂S,i = 1,

f̂0, f̂S ⩾ 0 ∀S ∈ S

where d = max
S∈S

|S| and χS,i denotes the coordinate of χS corresponding to item i.

In case S is not sufficient, we can also start from S and adopt a column generation strategy
similar to Jagabathula and Venkataraman (2022), whose objective is to find a distribution over
rankings that best fits data. They observe that since the parameter space is a convex hull over
rankings, at each point the steepest direction of descent at each point must correspond to a single
ranking. Similarly, since we require the sum of coefficients in our formulation to be 1, the steepest
direction corresponds to a single Fourier base. In practice, it is sufficient to just find a descending
direction at each step rather than the steepest one and halt at a local minimum. We refer the readers
to Jagabathula and Venkataraman (2022) for a more detailed discussion of column-generation
strategies for non-parametric choice models.

5.2 Computational Studies on Simulated Data

We use the ranking model as the ground truth and follow a set-up similar to Francisca et al. (2022).
There are n products and K major rankings, which correspond to major customer groups, with
weights added up to 0.9. There are also 100 “noisy” rankings with a total weight of 0.1. We select
K = {10, 15, 20, 25} and n = {20, 25, 30, 35, 40, 45, 50}. Major rankings and “noisy rankings” are
all generated uniformly and the coefficients are drawn from the Dirichlet distribution. The ”no-
purchase” threshold is set to be d = 4. This is a reasonable choice since, as pointed out by Hauser
(2014), there are many scenarios in which customers will only consider a small number of items
before making the final decision.

19

To demonstrate the effectiveness of the Fourier-based approach across different distributions,
for each n,K we create 5 product distributions over choice sets, where the mean probability of each
item is generated uniformly in [0, 1]. For each of those distributions we generate 500,000 transactions
(2,000 choice sets and 250 transactions for each) as training samples.

For each choice function fn,K , we first use algorithm Algorithm 4 to obtain a set of Fourier
bases S with L1 weight greater than 0.003. We limit the number of queries to 100, 000. Then we
apply the procedure as outlined in section 5.1 on training samples generated from the choice set
distributions.

Apart from the standard MNL model, we also compare our approach against two common
heuristics used when estimating ranking-based models. The first one is random sampling (RS) as
proposed by Farias et al. (2013), which first selects a uniformly random collection of rankings R
and then finds the distribution on R that best fits the data. We set |T | = 1000. The second one
is heuristic column generation (HCG) Chen and Mǐsić (2022), which starts from a small set of
rankings (often single-item rankings) and then iteratively incorporates new ones into the set.

We use two popular metrics for comparisons: root mean squared error (RMSE) and mean
absolute percentage error (MAPE). Given a choice set x, the ground truth choice function f , an
estimator f ′, the RMSE/MAPE errors of f ′ with respect to f at x are defined to be

RMSE(f ′(x)) =

√∑n
i=1(fi(x)− f ′

i(x))
2

n

MAPE(f ′(x)) =
1

n
·

n∑
i=1

|fi(x)− f ′
i(x)|

fi(x)
.

We then sample 400 assortments from the choice set distribution for testing and compute the
average RMSE/MAPE error.

In Figure 5, we plot the RMSE/MAPE errors of the Fourier-based method, MNL, and the
better of the two ranking heuristics as n, k varies. we can see that as n varies, the Fourier-based
method consistently outperforms MNL and the two ranking heuristics. There are two noteworthy
trends. First, we notice that as n increases, the performance of two ranking heuristics deteriorates
in the sense that the error becomes close to the vanilla MNL model. This is not surprising since
when the parameter size becomes big, it is much more likely that the randomly selected rankings
for RS and the starting ranking set for HCG are from the true model. Second, the error incurred
by the Fourier-based method is very stable as n stable, which shows that the performance of the
Fourier-based method depends mainly on the inherent complexity of the choice function rather
than on n.

5.3 Computational Studies on the Sushi Dataset

To illustrate that our method is effective with data exhibiting a high level of heterogeneity, charac-
terized by a larger number of rankings, and where the set of rankings is not necessarily generated
uniformly, we conduct computational studies on real data.

The dataset, as documented by Kamishima et al. (2005), consists of rankings provided by
5,000 Japanese respondents across 10 distinct types of sushi. This dataset has been used in a large
number of papers, including Francisca et al. (2022), Desir et al. (2021), and Vitelli et al. (2014). It is
noteworthy that, in addition to the rankings, the dataset records valuable demographic information
of the respondents such as age, gender, and the prefectures (analogous to states in the U.S.) of their
residence. This info enables practitioners to explore choice behaviors among different subgroups
within the dataset.

20

Now we describe how to generate the choice functions of different subgroups from the dataset.
Given a respondent i, we use f i to denote the choice function corresponding to his/her ranking
over sushi types. Then for a subset S of respondents, we give each respondent a unit weight and
produce the aggregate choice function

fS(x) =
1

|S|
·
∑
i∈S

f i(x).

Our objective in this section is to learn the choice functions corresponding to the top 15 populous
prefectures. Then we follow the same setup as in Section 5.2 except for one difference. Since
the choice functions are generated from much more diverse populations, we double the size of the
allowed queries for the Fourier algorithm to 200,000 and the number of transactions for each testing
distribution to 1,000,000 (2,000 choice sets and 500 transactions for each).

Before heading to the result section, we want to note that the Sushi dataset overcomes the two
limitations of the synthetic dataset as mentioned at the beginning of this section. On the one hand,
the choice function corresponding to each prefecture exhibits a high degree of heterogeneity: the
average number of rankings over the top 15 prefectures exceeds 200 and there are even 764 rankings
in Tokyo, the most populous prefecture. On the other hand, the rankings in each prefecture are far
from being uniformly generated. This is evident in the observation that certain sushi types, such
as tuna and fat tuna, are significantly more likely to appear on the top of lists than other types,
for instance, cucumber and egg.

In Table 1, we record the percentage drop of the Fourier-based method in RMSE/MAPE errors
compared to the best of MNL and the two ranking heuristics. Across the prefectures, we can
see that the Fourier-based method exhibits a consistent advantage over other methods. While we
expected that the improvement would be more significant in the case of sparse rankings, we are
surprised to find that the steepest drop in error occurs in Tokyo, where there are 764 rankings.
These results demonstrate that the Fourier-based approach has the potential to be effective not
only in simulated environments but also in real settings with heterogeneous customer preferences.

5.4 Computational Studies on the Electoral Reform Society Dataset

Given that there are only ten different types in the Sushi dataset, it is natural to wonder whether
the Fourier-based method can also deliver good performance in real settings with more alternatives.
To address this concern, we also conduct computational studies on the Electoral Reform Society
(ERS) datasets.

The ERS datasets, which are publicly available on PrefLib Mattei and Walsh (2013), contain
the results of 86 separate ranked-choice elections held by non-profit organizations, trade unions,
and professional organizations. Each dataset records the partial rankings of voters over candidates
in the corresponding election. Since our objective is to investigate the efficacy of the Fourier-based
method in high-dimensional, real choice settings, we run experiments on the 5 datasets with more
than 20 alternatives: ERS4, ERS5, ERS7, ERS16, and ERS78.

For each dataset, we produce the corresponding choice function in the same way as in Section 5.3.
The rest of the setting is kept identical.

We again record the improvements in the percentage of the Fourier-based method over the three
other approaches in Table 2. Overall the Fourier-based method delivers superior performance, with
the reduction in MAPE error more significant. These results further establish discrete Fourier
analysis as a practical tool for choice estimation.

21

6 Conclusion

Our paper presents a new approach to modeling and estimating non-parametric choice models
through discrete Fourier analysis. The key advantage of our approach lies in its flexibility, accom-
modating a wide range of choice models. Additionally, we provide theoretical guarantees on both
algorithm performance and sample complexity for learning. Computational studies demonstrate a
substantial reduction in errors compared to existing methods.

As part of our future work, we aim to explore more specific classes of choice models to enhance
sample and time complexity. Further computational studies are planned to validate and extend
our findings.

Notes

1. The L2 error based on uniform distribution is standard in the Fourier literature Amrollahi et al. (2019); O’Donnell
(2014) etc. and has also been previously employed in management science literature (Chen and Mǐsić (2022)) to
derive theoretical bounds. While our theoretical guarantee is obtained with L2 error, our method can be combined
with other heuristics to deliver good performance under other metrics and distributions, as demonstrated in Section 5.

Appendix

A Omitted Proofs in Section Section 4.2

A.1 Proof of Theorem 5

First, by Lemma 6, the algorithm runs the extended Goldreich-Levin algorithm on f with threshold
τ = ε

2s to obtain a list L of significant Fourier bases. Next, approximate each f̂(S) for S ∈ L by

f̃(S) to within error α (to be chosen later) by Lemma 7. Define

g(x) =
∑
S∈L

f̃(S)χS(x).

We claim that ∥f − g∥22 ⩽ ε. We have

∥f − g∥22 =
∑
S⊆[n]

∥∥∥f̂(S)− ĝ(S)
∥∥∥2
2

(Parseval’s identity)

=
∑
S∈L

∥∥∥f̂(S)− ĝ(S)
∥∥∥2
2
+
∑
S/∈L

∥∥∥f̂(S)∥∥∥2
2

(ĝ(S) = 0 for S /∈ L)

⩽ α2|L|+
∑
S/∈L

∥∥∥f̂(S)∥∥∥2
2

We upper bound the sum over S /∈ L by∑
S/∈L

∥∥∥f̂(S)∥∥∥2
2
⩽ max

S/∈L

∥∥∥f̂(S)∥∥∥
2
·
∑
S/∈L

∥∥∥f̂(S)∥∥∥
2
⩽

ε

2s
·
∑
S/∈L

∥∥∥f̂(S)∥∥∥
1
⩽

ε

2s
· s = ε/2.

Choosing α =
√
1/(2ε|L|) gives ∥f − g∥22 ⩽ ε.

Next, we compute the number of queries needed. By Claim 1, |L| ⩽ 2s. Finding the set

L requires O
(
ns3

ε3
log(ns/ε)

)
. For each S ∈ L, we approximate f̂(S) to within α with except

22

probability γ (chosen later). This requires O
(
log(1/γ)

α2

)
samples. If we choose γ = 1/10|L|, then by

union bound the probability that we estimate all Fourier coefficients in L to within accuracy α with

except probability 1−|L| ·γ = 9/10, and the number of random samples needed is O
(
s2

ε log(s2/ε)
)
.

Therefore, the sample complexity is O
(
ns3

ε3
log(ns/ε)

)
+O

(
s2

ε log(s2/ε)
)
= O

(
ns3

ε3
log(ns/ε)

)
, and

the running time is polynomial in (n, s, 1/ε).

A.2 Proof of Lemma 7

We shall use the following concentration bound for the proof.

Definition 11. Let X = (X1, X2, . . . , Xm) be a sequence of random vectors such that Xi : Ω → Rd,
X0 = 0, and for every j < i, E[∥Xi∥] < ∞ and E[Xi|Xj] = Xj. Then, we call X a weak martingale
sequence.

Theorem 9 (Hayes (2005)). Let X = (X1, X2, . . . , Xm) be a weak martingale sequence taking value
in Rd such that X0 = 0 and for every i, ∥Xi −Xi−1∥2 ⩽ 1. Then for every ε > 0,

Pr[
1

m
∥Xm∥22 ⩾ ε] ⩽ 2e2e−2m·ε.

Fact 3. For any non-empty S ⊆ [n], it holds that E
x∈{0,1}n

χS(x) = 0.

Proof of Lemma 7 . First, we show how to estimate f̃(S) using query access to f without noise.
Recall that f̂(S) = E[f(x)χS(x)]. The main idea is to use m (chosen later) independent samples

of f , say f(x1), f(x2, . . . , f(xm), to empirically approximate f̂(S).
Let f̃(S) = 1

m

∑m
i=1 f(xi)χS(xi). Let Yi = f(xi)χS(xi)− f̂(S). First, observe that E[Yi] = 0 for

every i. Let X0 = 0, Xi = Y1 + Y2 + . . .+ Yi for every i > 0. It is easy to see that, for every j < i,

E[Xi|Xj] = Xj . Therefore, X = (X0, X1, . . . , Xm) is a martingale sequence. Furthermore, we have

∥Xi −Xi−1∥2 = ∥Yi∥2 =
∥∥∥f(xi)χS(xi)− f̂(S)

∥∥∥
2
⩽ ∥f(xi)χS(xi)∥2 +

∥∥∥f̂(S)∥∥∥
2

⩽ ∥f(xi)χS(xi)∥2 + E∥f(x)χS(x)∥2
⩽ ∥f(xi)χS(xi)∥1 + E∥f(x)χS(x)∥1
⩽ 1 + 1 = 2,

since ∥f(x)χS(x)∥1 = ∥f(x)∥1 ⩽ 1 for every x. Applying Theorem 9 for the sequence X/2 =
(X1/2, X − 2/2, . . . , Xm/2), we have, for every ε > 0,

Pr

∥∥∥∥∥ 1

m

m∑
i=1

f(xi)χS(xi)− f̂(S)

∥∥∥∥∥
2

2

⩾ ε

 ⩽ 4e2e−2m·ε.

Now, let f̃(S) = 1
m

∑m
i=1 f(xi)χS(xi), and choose m = 2 log(4e2/δ)

ε = O
(
log(1/δ)

ε

)
, we have

Pr

[∥∥∥f̃(S)− f̂(S)
∥∥∥2
2
⩾ ε

]
⩽ δ

Adding noise to the outputs. In this setting, on input x ∈ {0, 1}n, the output is f(x)+ρ(x),
where ρ(x) such that E[ρ(x)] = 0 and ∥ρ(x)∥22 is bounded by γ. For the sake of convenience, we

23

will shorten ρ(xi) as ρi. Define Yi = (f(xi) + ρi)χS(xi) − f̂(S), and the same for Xi. Then, it is
still the case that X is a martingale sequence since E[ρi] = 0.

E[Yi] = E[(f(xi) + ρi)χS(xi)− f̂(S)] = E[f(xi)χS(xi)− f̂(S)] + E[ρiχS(xi)] = 0 + E[ρi]E[χS(xi)]

If S ̸= ∅ then E[χS(xi)] = 0. If S = 0, then E[Yi] = E[ρi] = 0. So it always holds that E[Yi] = 0.
The only difference from no noise case is that

∥Xi −Xi−1∥2 = ∥Yi∥2 ⩽ ∥(f(xi) + ρi)χS(xi)∥2 +
∥∥∥f̂(S)∥∥∥

2

is bounded by a larger number but smaller than 2 + γ. Effectively, the number of samples needed

is still (2+γ) log(4e2/δ)
ε .

Comparison with a naive approach. Suppose we learn f̂(S) by approximating each coor-
dinate separately. Let f = (f1, f2, . . . , fn) where each fi : {0, 1}n → R for every 1 ⩽ i ⩽ n. For
every S ⊆ [n], if we use m independent samples to estimate f̂i(S) by f̃i(S), then

Pr

[∣∣∣f̃i(S)− f̂i(S)
∣∣∣2 ⩾ ε

]
⩽ 2e−2mε/4

A naive approach would require that
∣∣∣f̃i(S)− f̂i(S)

∣∣∣2 ⩾ ε/n for every i to ensure that
∥∥∥f̃(S)− f̂(S)

∥∥∥2
2
⩾

ε. Therefore, we have

Pr

[∥∥∥f̃(S)− f̂(S)
∥∥∥2
2
⩾ ε

]
⩽ Pr

[
∃i :

∣∣∣f̃i(S)− f̂i(S)
∣∣∣2 ⩾ ε/n

]
⩽

n∑
i=1

Pr

[∣∣∣f̃i(S)− f̂i(S)
∣∣∣2 ⩾ ε/n

]
(union bound)

⩽
n∑

i=1

2e−2mε/4n

= 2n · e−2mε/4n

To achieve δ confidence, one needs to choose m = O
(
n log(1/δ)

ε

)
.

A.3 Proof of Lemma 6

This section extends the Golreich-Levin/KM algorithm to vector-valued functions. To prove the
theorem we need the following results.

Theorem 10 (Hoeffding’s Bound). Let X1, X2, . . . , Xn be independent variables such that Xi ∈
[a, b]. Let X̄ = E[Xi]. Then for any ε ⩾ 0, the following bound holds

Pr[|X̄ − E[X̄]| ⩾ ε] ⩽ 2 exp(−2nε2/(b− a)2).

Proposition 2. Let f : {0, 1}n → Rd be a function in H. Let J ⊆ [n]. Given query access to f with
some random noise σ such that E[σ] = 0 and ∥σ∥2 ⩽ β and only depends on the current queried

point x. For any S ⊆ J , the quantity
∑

T⊆J̄

∥∥∥f̂(S ∪ T)
∥∥∥2
2
= Ez

∥∥∥f̂J |z(S)∥∥∥2
2
can be estimated with

error at most ε (except with probability at most δ) using 2(1+β)2 log(2/δ)
ε2

queries.

24

Proof. Treating each coordinate separately for each restriction function and then adding things up
gives us the following formula.∑

T⊆J̄

∥∥∥f̂(S ∪ T)
∥∥∥2
2
= E

z

∥∥∥f̂J |z(S)∥∥∥2
2

= E
z

n∑
i=1

f̂J |z(S)
2
i

=
n∑

i=1

E
z
f̂J |z(S)

2
i

=
n∑

i=1

E
z

E
y
[f(y, z)iχS(y)]

2

=
n∑

i=1

E
z

E
y,y′

[f(y, z)i χS(y) f(y
′, z)i χS(y

′)]

= E
z

E
y,y′

[
n∑

i=1

f(y, z)i χS(y) f(y
′, z)i χS(y

′)

]

= E
z∼{0,1}J̄

[
E

y,y′∼{0,1}J
f(y, z) · f(y′, z)χS(y)χS(y

′)]

]

Next, we will show that f(y, z) · f(y′, z)χS(y)χS(y
′) is a bounded real value.∣∣f(y, z) · f(y′, z)χS(y)χS(y

′)
∣∣ = ∣∣f(y, z) · f(y′, z)∣∣ (χS is {0, 1}-valued)
⩽ ∥f(y, z)∥2

∥∥f(y′, z)∥∥
2

(Cauchy-Schwartz inq.)

⩽ 1

Thus, f(y, z) · f(y′, z)χS(y)χS(y
′) is a bounded random variable that can be sampled by using

query access to f . By Hoeffding’s bound, we can estimate Ez

∥∥∥f̂J |z(S)∥∥∥2
2
with error at most ε except

with probability at most δ using 2 log(2/δ)
ε2

queries access to f .
Adding noise. Even in the presence of the noise, it still holds that

E
z,y,y′

(f(y, z) + σ) · (f(y′, z) + σ′)χS(y)χS(y
′) =

∑
T⊆J̄

∥∥∥f̂(S ∪ T)
∥∥∥2
2
.

This is an easy consequence of the law of iterated expectation. Once we fix y, y′, z, the only random
variables are σ, σ′ with E[σ] = E[σ′] = 0. Given that y, y′, z are now constants, we only need to
worry about E[σ · σ′]. Since σ, σ′ are mutually independent, it follows that E[σ · σ′] = 0 and the
desired equality is obtained.

The random variable (f(y, z) + σ) · (f(y′, z) + σ′)χS(y)χS(y
′) is bounded if ∥σ∥2, ∥σ′∥2 are

bounded. Once again, it only changes the constant in the big O notation.∣∣(f(y, z) + σ) · (f(y′, z) + σ′)χS(y)χS(y
′)
∣∣ = ∣∣(f(y, z) + σ) · (f(y′, z) + σ′)

∣∣
⩽ ∥f(y, z) + σ∥2

∥∥f(y′, z) + σ′∥∥
2

⩽ (∥f(y, z)∥+ ∥σ∥2)(
∥∥f(y′, z)∥∥+ ∥∥σ′∥∥

2
)

⩽ (1 + β)2

25

By Hoeffding’s bound, we can estimate Ez

∥∥∥f̂J |z(S)∥∥∥2
2
with error at most ε except with probability

at most δ using 2(1+β)2 log(2/δ)
ε2

queries access to f .

Proof of Lemma 6 . We begin with an overview of how the algorithm works.

Initialization: all 2n possible subsets of [n] are put in a single bucket. The algorithm then repeats
the following loop:
1. Select any bucket B (containing 2m sets for some m ⩾ 1).

2. Split B into two buckets B1 and B2 of 2m−1 sets each.

3. Estimate
∑

U∈Bi

∥∥∥f̂(U)
∥∥∥2
2
for each i = 1, 2.

4. Discard B1 or B2 if its weight estimate is at most τ/2.
The algorithm stops when all buckets contain only 1 set, and then outputs the list of these sets.

Bucket system. Next, we describe the bucketing system. For 1 ⩽ k ⩽ n and S ⊆ [n], we define

Bk,S = {S ∪ T : T ⊆ {k + 1, k + 2, . . . , n}}.

The initial bucket is B0,∅. The buckets at the end of the algorithm have the form Bk,S = {S}.
Note that |Bk,S | = 2n−k. The algorithms always split the bucket Bk,S into two buckets Bk+1, S and

Bk+1,S∪{k+1}. The weight of bucket Bk,S is exactly
∑

T⊆{k+1,...,n}

∥∥∥f̂(S ∪ T)
∥∥∥2
2
.

Correctness. Any set U with
∥∥∥f̂(U)

∥∥∥2
2
⩾ τ is never be discarded since it always contributes

at least τ ⩾ τ/2 to the bucket it’s in. On the other hand, any set U with
∥∥∥f̂(U)

∥∥∥2
2
⩽ τ/2 is always

be discarded since τ/4 ⩽ τ/2. Therefore, as long as the estimation is accurate within ±τ/4, the
algorithm is correct.

Running time. Any non-discarded bucket has a weight of at least τ/2 even assuming that
the weight estimate is only accurate within ±τ/4. The total weight of all non-discarded buckets

is at most
∑

S∈⊆[n]

∥∥∥f̂(S)∥∥∥2
2
⩽ 1. Thus, at any time, there are at most 2/τ non-discarded buckets.

Note that each bucket can be split at most n times. Therefore, the algorithm repeats at most
2n/τ loops. In each loop, the algorithm will need to estimate two buckets to accuracy ±τ/4 and
confidence 1 − δ, each requires O

(
log(1/δ)/τ2

)
queries. The algorithm overall needs to make at

most 4n/τ weighings. This implies that we need O
(
n log(1/δ)/τ3

)
queries. By union bound, the

probability that all weighings are accurate to within τ/4 is at least 1−4n/τ · δ. Choose δ = τ/40n,
we get that the probability is at least 9/10.

B Omitted Proof in Section 4.3

B.1 Proof of Claim 1

Suppose f is ε-close to an s-sparse function g. Then define Lg = {S ∈ [n]
∣∣ĝ(S) ̸= 0}. Obviously

|S ∩ Lg| ⩽ s. Now consider S ∩ L∁
g. Then by Parseval,

∑
S∈L∩L∁

g

∥∥∥f̂(S)∥∥∥2
2
=

∑
S∈L∩L∁

g

∥∥∥f̂(S)− ĝ(S)
∥∥∥2
2
⩽
∑
S∈[n]

∥∥∥f̂(S)− ĝ(S)
∥∥∥2
2
⩽ ε.

26

Then it follows
∣∣∣L ∩ L∁

g

∣∣∣ ⩽ ε
ε/s = s and |L| ⩽ 2s.

Now we need to give the accuracy of the approximation. We can easily calculate∑
S∈Lg∩L∁

∥∥∥f̂(S)∥∥∥2
2
⩽

ε

s
· s = ε

∑
S∈L∁

g∩L∁

∥∥∥f̂(S)∥∥∥2
2
⩽
∑
S∈L∁

g

∥∥∥f̂(S)∥∥∥2
2
=

∑
S∈L∩L∁

g

∥∥∥f̂(S)− g(S)
∥∥∥2
2
⩽ ε.

Now merging the two inequalities above and applying Parseval yields∥∥∥∥∥f −
∑
S∈S

f̂(S)χS

∥∥∥∥∥
2

2

=
∑
S∈L∁

∥∥∥f̂(S)∥∥∥2
2
⩽ 2ε

and the proof is complete.

B.2 Proof of Claim 3

Proof. Now noise is considered. We need to estimate the weight with

E
x,z,ρ,ρ′

[
χa(z)⟨f(x) + ρ, f(x+ z) + ρ′⟩

]
.

where x ∼ {0, 1}n, z ∈ H⊥. Using the fact that ρ, ρ′ are mutually independent and independent
from x, x+ z, we can obtain

E
x,z,ρ,ρ′

[
χa(z)⟨f(x) + ρ, f(x+ z) + ρ′⟩

]
= E

x,z,ρ,ρ′
[χa(z)⟨f(x), f(x+ z)⟩] = weight(a+H).

Thus the estimation is unbiased.
Now we show that the random variable is bounded. By triangle inequality,

∥f(x) + ρ∥2 ⩽ ∥f(x)∥2 + ∥ρ∥2 ⩽ 1 + γ

Then we can apply the Cauchy-Schwartz inequality to bound the inner product∣∣χa(z)⟨f(x) + ρ, f(x+ z) + ρ′⟩
∣∣ = ∣∣⟨f(x) + ρ, f(x+ z) + ρ′⟩

∣∣
⩽ ∥f(x) + ρ∥2∥f(x) + ρ∥2
⩽ (1 + γ)2

Using this bound with Hoeffding will yield the desired result.

B.3 Proof of Claim 4

First show (1). Since hashing is pairwise independent, the probability of S hashed into the same
bucket with another significant Fourier base is 1

2log s+6 = 1
64s . Since there are a total of s significant

Fourier bases, by union bound, collision happens with probability at most 1
64 .

Now let us show (2) We need to analyze the insignificant Fourier bases hashed into a+H. Then
by Parseval and claim Claim 1, we have

∑
U : ∥f̂(U)∥2

2
⩽ ε

s

∥∥∥f̂(U)
∥∥∥2
2
=

∥∥∥∥∥f −
∑
S∈S

f̂(S)χS

∥∥∥∥∥
2

2

⩽ ε.

27

Let V = {U : U ∈ a+H,
∥∥∥f̂(U)

∥∥∥2
2
⩽ ε/s}. We can calculate

E

[∑
U∈V

∥∥∥f̂(U)
∥∥∥2
2

]
= E

 ∑
U : ∥f̂(U)∥2

2
⩽ ε

s

∥∥∥f̂(U)
∥∥∥2
2
· 1(U ∈ a+H)


=

∑
U : ∥f̂(U)∥2

2
⩽ ε

s

∥∥∥f̂(U)
∥∥∥2
2
· E [1(U ∈ a+H)]

=
∑

U : ∥f̂(U)∥2

2
⩽ ε

s

∥∥∥f̂(U)
∥∥∥2
2
· Pr(U ∈ a+H)

⩽
1

64s
·

∑
U : ∥f̂(U)∥2

2
⩽ ε

s

∥∥∥f̂(U)
∥∥∥2
2

⩽
1

64s
· ε

Then it follows from Markov’s inequality that

Pr

[∑
U∈V

∥∥∥f̂(U)
∥∥∥2
2

]
⩽

1

4
.

Now by union bound (1), (2) fails with probability at most 2
5 .

B.4 Proof of Claim 5

Let us only consider a single vi and then the lemma follows from union bound. If we select a
h1 uniformly randomly from Fn

2 , then since |span(v)| = 2 and the probability of h1 /∈ span(v)

is 2n−21

2n . Now we select h2 uniformly from Fn
2 . Then since |span(v, h1)| = 22, the probability of

h2 /∈ span(v, h1) is 2n−22

2n . Continuing in this fashion, we can calculate the probability that σi is
full-rank is

2n − 21

2n
· 2

n − 22

2n
· · · ·2

n − 2log(s)+10

2n
,

which is extremely close to 1 since 2n ≫ 2log(s)+10 when n is big enough.

B.5 Proof of Claim 6

Let us first show correctness. For the recovery to be successful, three conditions must hold. Two
conditions given in Claim 4 hold with a probability of at least 3

5 . Another condition is that σi is

full rank for every i so that we can estimate weight(Hb,0
σi), weight(H

b,1
σi). Claim 5 has shown that

this holds with extremely high probability.
Suppose the three conditions hold. Then S is the single Fourier base with L2 weight ⩾ τ hashed

into some bucket Hb
σ. If < v, S >= 0, then S ∈ Hb,0

σi and therefore weight(Hb,0
σi) ⩾ τ. And since

with high probability, our estimation of the weight is accurate within τ
4 , the estimation is greater

than τ
2 . If < v, S >= 1, then Hb,0

σi contains only insignificant Fourier bases and the sum of weight
cannot be more than τ

16 . Then the estimation must be smaller than τ
2 . In this way, the algorithm

can always correctly obtain all measurements < v, S > .

28

The sample complexity and time complexity are straightforward. We need d log n linearly
measurements for successful recovery, and for each measurement log(sd logn)

16τ2
queries are used to

obtain the desired accuracy. Therefore, the sample complexity is d log(n) log(sd logn)
16τ2

. And the time
complexity is scaled by a n since we need to perform tasks such as calculating the inner product
between two vectors, which takes time n.

References

Amrollahi, A., A. Zandieh, M. Kapralov, and A. Krause (2019). Efficiently learning fourier sparse
set functions. In NeurIPS, pp. 15094–15103.

Ben-Akiva, M. and M. Bierlaire (1999). Discrete choice methods and their applications to short
term travel decisions. In Handbook of transportation science, pp. 5–33. Springer.

Blanchet, J., G. Gallego, and V. Goyal (2016). A markov chain approximation to choice modeling.
Operations Research 64 (4), 886–905.

Block, H. and J. Marshak (1959). Random orderings and stochastic theories of response. Technical
report, Cowles Foundation for Research in Economics, Yale University.

Blum, A. (1994). Relevant examples and relevant features: Thoughts from computational learning
theory. In AAAI Fall Symposium on ‘Relevance, Volume 5, pp. 1.

Chen, N., G. Gallego, and Z. Tang (2019, August). The use of binary choice forests to model and
estimate discrete choices. ArXiv e-prints.

Chen, Y.-C. and V. V. Mǐsić (2022). Decision forest: A nonparametric approach to modeling
irrational choice. Management Science.

Chierichetti, F., R. Kumar, and A. Tomkins (2018). Discrete choice, permutations, and reconstruc-
tion. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 576–586.

Desir, A., V. Goyal, S. Jagabathula, and D. Segev (2021). Mallows-smoothed distribution over
rankings approach for modeling choice. Operation Research 69 (4), 1206–1227.

Farias, V. F., S. Jagabathula, and D. Shah (2013). A nonparametric approach to modeling choice
with limited data. Management science 59 (2), 305–322.

Francisca, S., N. Golrezaei, E. Emamjomeh-Zadeh, and D. Kempe (2022, August). Active learning
for non-parametric choice models. ArXiv e-prints.

Goldreich, O. and L. A. Levin (1989). A hard-core predicate for all one-way functions. In Proceedings
of the twenty-first annual ACM symposium on Theory of computing, pp. 25–32.

Hauser, J. (2014). Consideration-set heuristics. Journal of Business Research 67 (8), 1688–1699.

Haviv, I. and O. Regev (2017). The restricted isometry property of subsampled fourier matrices.
In Geometric aspects of functional analysis, pp. 163–179. Springer.

Hayes, T. P. (2005). A large-deviation inequality for vector-valued martingales. Combinatorics,
Probability and Computing .

29

Jagabathula, S. and A. Venkataraman (2022). Nonparametric estimation of choice models. In
X. Chen, S. Jasin, and C. Shi (Eds.), The Elements of Joint Learning and Optimization in
Operations Mangement, pp. 177–209. Springer.

Kamishima, T., H. Kazawa, and S. Akaho (2005). supervised ordering-an empirical survey. In Fifth
IEEE International Conference on Data Mining (ICDM’05), pp. 4–.

Kolountzakis, M. N., E. Markakis, and A. Mehta (2005). Learning symmetric k-juntas in time nˆ
o (k). arXiv preprint math/0504246 .

Kushilevitz, E. and Y. Mansour (1993). Learning decision trees using the fourier spectrum. SIAM
Journal on Computing 22 (6), 1331–1348.

Linial, N., Y. Mansour, and N. Nisan (1993). Constant depth circuits, fourier transform, and
learnability. Journal of the ACM (JACM) 40 (3), 607–620.

Luce, R. (1959). Individual choice behavior: A theoretical analysis. Wiley.

Mattei, N. and T. Walsh (2013). Preflib: A library for preferences http://www.preflib.org. In
Algorithmic Decision Theory, pp. 259–270.

McFadden, D. et al. (1973). Conditional logit analysis of qualitative choice behavior.

Mossel, E., R. O’Donnell, and R. P. Servedio (2003). Learning juntas. In Proceedings of the
thirty-fifth annual ACM symposium on Theory of computing, pp. 206–212.

O’Donnell, R. (2014). Analysis of boolean functions. Cambridge University Press.

Stobbe, P. and A. Krause (2012). Learning fourier sparse set functions. In Artificial Intelligence
and Statistics, pp. 1125–1133. PMLR.

Vitelli, V., O. Sorensen, M. Crispino, A. Frigessi, and E. Arjas (2014). Probabilistic preference
learning with the mallows rank model. Foundations and Trends® in Machine Learning 18 (1),
5796 – 5844.

30

Tables

Prefecture RMSE Improvements MAPE Improvements

Tokyo 39.1 34.06

Osaka 27.18 24.53

Kanagawa 26.04 21.81

Aichi 7.99 7.01

Hyogo 22.45 18.24

Saitama 40.02 34.52

Hokkaido 30.69 28.06

Chiba 18.7 19.46

Fukuoka 38.17 30.91

Shizuoka 20.7 14.69

Kyoto 22.07 30.49

Hiroshima 20.09 19.61

Niigata 38.93 32.34

Ibaraki 38.05 32.17

Okayama 27.7 28.79

Table 1: Percentage Improvements of the Fourier-based method over MNL and ranking heuristics as measured
in RMSE and MAPE for the sushi dataset

Dataset RMSE Improvements MAPE Improvements

ERS4 40.79 52.29

ERS5 4.86 20.33

ERS7 39.28 47.73

ERS16 15.71 29.01

ERS78 0.29 9.9

Table 2: Percentage improvements of the Fourier-based method over MNL, HCG and RS measured in RMSE
and MAPE for ERS datasets

31

Figures

1

2 3

4 3 2 4

1 2 1 0 3 2 0 4

Figure 1: An example of a decision tree as formulated in Chen and Mǐsić (2022)

x1

x2 x3

x4 x3 x2 x4

e1 e2 e1 e0 e3 e2 e0 e4

1 0

1 0 1 0

1 0 1 0 1 0 1 0

Figure 2: Our formulation of the decision forest

Figure 3: Relationships between the choice models mentioned in Section 2.1

x1

e1 x2

e1 x3

e2 e4

1 0

0 1

0 1

Figure 4: An example of a binary choice tree

32

Figure 5: Comparison of the Fourier-based method with MNL and the best of HCG/RS for k =
{10, 15, 20, 25} and n = {20, 25, 30, 35, 40, 45, 50}

33

	Introduction
	Related works

	Preliminaries
	Choice functions
	Discrete Fourier Analysis

	Fourier Representation of Non-parametric Choice Models
	Decision Forest with Bounded Leaf-size
	Choice Models as Binary Choice Forests

	Fourier-based Learning
	Data Access Model
	Learning Sparse Functions
	Learning Sparse and Low-degree Functions
	Identifying Significant Fourier Bases
	Learning Algorithm

	Learning Ranking Models by Uniform Sampling

	Implementation and Numerical Experiments
	Implementation for Ranking Models
	Computational Studies on Simulated Data
	Computational Studies on the Sushi Dataset
	Computational Studies on the Electoral Reform Society Dataset

	Conclusion
	Omitted Proofs in Section [sec:learning-sparse]Section 4.2
	Proof of [thm:learning-sparse]Theorem 5
	Proof of [lem:fou-est-rand]Lemma 7
	Proof of [lem:GL-ext]Lemma 6

	Omitted Proof in [sec:learning-sparse-low]Section 4.3
	Proof of [clm:sig-bases]Claim 1
	Proof of [clm:bw-est]Claim 3
	Proof of [clm:hashing]Claim 4
	Proof of [clm:fullrank]Claim 5
	Proof of [clm:locate-rec]Claim 6

