A metric space (S,P) is defined by a space S and a metric P. The metric P is a function $f: S \times S \longrightarrow \mathbb{R}^{+}$ such that ∀ x, y, z ∈ S (i) P(x, y) = 0 iff x = y(ii) f(x, y) = f(y, x)(III) $f(x,y) \leq f(x,z) + f(z,y)$

Examples
(i) Euclidean plane
$$\mathbb{R}^2$$

For each $x, y \in \mathbb{R}^2$
 $P(x, y) = \sqrt{(x_i - y_i)^2 + (x_2 - y_2)^2}$
(ii) Function Space $C[a, b]$
(each "point" is a sual-valued
function on $[a, b]$)
 $P(x, y) = \sup_{t \in [a, b]} |x(t) - y(t)|$

For a subset
$$A \subseteq S$$
,
we denote
(i) A for closure;
(ii) A° for interior;
(iii) $\partial A = A - A^{\circ}$ for boundary.
Also,
 $P(x, A) = \inf \{ P(x, y) \}$
 $y \in A$
 $P(\cdot, A)$ is uniformly continuous.

For a subset
$$A \subseteq S$$
,
we denote
(i) A fr closure;
(ii) A° fr interior;
(iii) $\partial A = A - A^{\circ}$ fr boundary
Also,
 $P(x, A) = \inf \{ P(x, y) \}$
 $y \in A$
 $P(\cdot, A)$ is uniformly continuous.

The metric P is said to be finer than P' if the open sets genuated by I subsume those of P, that is, $0 \supseteq 0'$ Where O, O' are the classes of Open sets generated by P and P'

Two metrics
$$P_1$$
 and P_2
are said to be equivalent
if each is fine than the
other.
 (S, P_1) and (S, P_2) are then
homeomorphic.

The space S is separable if it has a countable dense subset. The following are equivalent. (i) S is separable (ii) S has a countable base (iii) Each open cover of each subset of S has a countable subcover.

The space S is complete
if Cauchy sequences are
convergent with limit in S,
that is,

$$\sup_{i,j=n} f(x_i, x_j) \to o$$

$$\sup_{i,j=n} x \in S.$$

Separability is a topological property; completeness is not a topological property. (Loosely, separability does not depend on the metric but completeness does.)

An E-net for A is a set {xk} such that for each x E A, J x, such that $f(x, x_k) < \varepsilon$. The set A is called totally bounded if for each E>O, it has a finite E-net.

Examples for Intuition First, recall the concepts. (i) Separability: the space S is separable if it has a countable dense subset. (ii) Completeness: the space (S,P) is said to be complete if Cauchy sequences are convergent.

Examples for Intuition First, recall the concepts. (III) Compactness: S is said to be compact if for each {xk} ? ⊆ S there exists $\{\chi_{k_i}\} \longrightarrow \chi \in S$. in s y $P(A) = Q(A) \forall A \in \mathscr{S}'$ => $P(A) = Q(A) \forall A \in \mathscr{S}$.

Examples for Intuition
() Separable but not
complete:
the space
$$S = [1, \infty)$$
 is
clearly separable, but not
complete under
 $P(z, y) = \left\lfloor \frac{1}{z} - \frac{1}{y} \right\rfloor$.
 $S = [1, \infty)$ is not compact.

(2) The space

$$\begin{aligned}
\sum_{n=1}^{\infty} \sum_{x \in X} \sum_{x \in Y_{n}, Y_{n}, Y_{n}} \sum_{y \in Y_{n}, Y_{n}} \sum_{y \in Y_{n}} \sum_{y \in Y_{n}} \sum_{y \in Y_{n}} \sum_{z \in Y_{n}} \sum_{y \in Y_{n}} \sum_{z \in Y_{n}} \sum_{y \in Y_{n}} \sum_{z \in Y_{n}} \sum_{z \in Y_{n}} \sum_{y \in Y_{n}} \sum_{z \in Y_$$

Define $\mathcal{G}(\mathbf{x}) := \begin{cases} \mathbf{y} \in \mathbb{R}^k : \mathbf{y}_i \leq \mathbf{x}_i, i \leq k \end{cases}$ Considu $\mathcal{G} := \begin{cases} \mathcal{G}(\mathbf{z}) : \mathbf{z} \in \mathbb{R}^k \end{cases}$ We can show that G is a TT-system that generates $B(\mathbb{R}^k)$. Hence G is a separating class.

(4)
$$\mathbb{R}^{\infty}$$
 is the space of
sequences $\chi = (\chi_1, \chi_2, ...)$
equipped with
 $f(\chi, \chi) = \sum_{i=1}^{n} \frac{b(\chi_i, \chi_i)}{z^i};$
 $b(\chi, \beta) = 1 \wedge |\chi - \beta|.$
 \mathbb{R}^{∞} is separable and
complete

(4) contd...
Define
$$\pi: \mathbb{R}^{\infty} \to \mathbb{R}^{k}$$

 $\pi_{k}(2) = (x_{1}, x_{2}, \dots, x_{k})$
and the finite-dimensional class
 $\mathbb{R}_{f}^{\infty} := \sum \pi_{k}^{-1}(H), H \in \mathbb{B}(\mathbb{R}^{k})_{f}^{2}$
 \mathbb{R}_{f}^{∞} is a π -system generating
 $\mathbb{B}(\mathbb{R}^{\infty})$; hence a separating
Class.