Metric Space
$$(S, f)$$

"universe" "metric"
Four Stipulations:
(1) $f: S \rightarrow \mathbb{R}^+$
(2) $f(x,y) = 0$ iff $x = y$.
(3) $f(x,y) = f(y,x)$
(4) $f(x,z) \leqslant f(x,y) + f(y,z)$

Examples of Metric Spaces
(i) Euclidean plane
$$\mathbb{R}^2$$
 with
 $P(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$
(ii) Function space $C[a, b]$
 $P(x, y) = \max_{t \in [a, b]} |x(t) - y(t)|$
 $t \in [a, b]$
(iii) Sequence space l^∞
 $x = \{\xi_{n}^x, n \ge 1\}, |\xi_{n}^x| \le c_x < \infty$
 $P(x, y) = \sup_{n} \{|\xi_{n}^x - \xi_{n}^y|\}$

For the metric space
$$(s, P)$$

& denote the Borel σ -field
For a probability measure
P on (s, S) , we write
Pf to mean $\int f dP$
for bounded, continuous
real-valued f .

For probability measures
P and P_n, we say
"P_n converges weakly" to
P and write

$$P_n \Rightarrow P$$

 Y
 $P_n f \Rightarrow Pf$
 $fr f \in BC(S)$ where,
 $BC(S) := \begin{cases} bounded continuous \\ real f on S \end{cases}$

heorem |· | Every probability measure Pon (S, &) is regular, that is, for each AES, J closed F = A and open GIZA such that $P(G-F) < \varepsilon$ E>0 arbitrary.

Proof of Thm 1.1
Lets identify a class
$$\mathcal{G}$$
 of eets
in S that satisfies the prop.
() (Put the closed sets in.)
Suppose A is closed.
Choose $F = A$, and define
 $G_1^8 := \{z \in S : f(z, A) < s\}$.
Then,
 $P(G_1^8 - F) = P(G_1^8) - P(F)$
However, \mathcal{G} $S \neq 0$, then
 $\bigcap_{S} G_1^8 \neq F = F$ *

and hence $P((S)G^{s}) \downarrow P(F) as S \downarrow D. *$ Note: S is open and closed. (ii) (closed under complements) Suppose A E S satisfies the assertion. Then A^c does as well. (iii) (closed under countable) additivity. Suppose $A_n \subseteq S$ satisfies the assertion, that is, for E>0

I Fr closed and Gr open so that $F_n \subseteq A_n \subseteq G_n, n \ge 1$ and $P(G_{1_n}-F_n) \in \mathcal{E}_n$. Choose $\mathcal{E}_n = \mathcal{E}_{2^{n+1}}$. Hena, $\bigcup F_n \subseteq \bigcup A_n \subseteq \bigcup G_n$ (not nec. closed) V (open) Find no so that $P(UF - UF) \leq \frac{\varepsilon}{2}$ and notice that $UF \subseteq UA_n \subseteq UG_n$

A subclass & C & is called a separating class if a probability measure is "completely decided" by its values on sí, that is, Y $P(A') = Q(A') \forall A' \in \mathscr{S}'$ then $P(A) = Q(A) \forall A \in S$

Theorem 1.1 implies that the closed sets in S form a separating class, that is, they completely decide the probability measure.

Theorem 1.2

Probability measures P and Q on S wincide if $Pf = Qf \forall f \in BC(S).$

Proof of Theorem 1.2 Suppose that for any closed AES we are able to find a function $f \in BC(S)$, such that I a = f = I a where $A^{\varepsilon} := \{ \chi \in S : f(\chi, A) \leq \varepsilon \}$ lhen, notice: $P(A) = PI_{A} \leq Pf_{A} = Qf_{A} \leq Q(A^{\epsilon})$ Since $Q(A^{\epsilon}) \downarrow Q(\overline{A})$ as $\epsilon \downarrow \circ$, above implies $P(A) \leq Q(A)$ if A is closed. Similarly, Q(A) < P(A).

A probability measure Pon (S, &) is tight if for each E>O, I a compact set K such that $P(K) \ge 1-\varepsilon$.

A family TT of probability measures on (S, \mathcal{L}) is fight if each Measure in TT is tight. We will show later that if TT is tight, then it is relatively compact.

Theorem 1.3 If S is separable and complete, then each probability measure on (S, S) is tight.

Proof of Thm 1.3

Since S is separable we can
find a countable number of
balls
$$A_{jk}$$
, $j = 1, 2, ...$ each of
radius $\frac{1}{k}$ that covers S.

We can find n_k so that $P(\bigcup_{j \le n_k} A_{jk}) \ge 1 - \frac{\varepsilon}{2^k}$ - Also, notice that since S is complete, the closure of () U Ajk is complete kær jen, Jk is complete - The set $\bigcap_{k \ge i} \bigcup_{j \le n_k} A_j$ is totally bounded. Conclude K= U A jk has compact closure. Also P(K) > 1-E Since $\mathbb{P}(\mathbb{K}^{c}) = \mathbb{P}(\bigcup_{k \geq 1} \left(\bigcup_{i \neq n_{k}} A_{i,k}\right) \leq \varepsilon.$