Random Elements S-volued random
Novimble.
Suppose
$$(\mathcal{D}, \mathcal{F}, \mathcal{P})$$
 is
probability space, and let
 $X : \mathcal{D} \rightarrow S$ be measurable
 \mathcal{F}/\mathcal{S} , where S is a metric
space.

random variable
random vector
random sequence X on \mathcal{D}
X in S
random function

The distribution of X is
the measure
$$Q := PX^{-1}p$$

on (S, S) defined as
 $Q(A) := PX^{-1}(A)$
 $= P(w: X(w) \in A)$.
 $= : P(X \in A)$.
P is defined on an arbitrary \Im .
Q is defined on the Borel $\sigma(S)$.

Notice I. Suppose fis measurable &/R', then $\mathbb{E}[f(X)] = \int (X(w)) dP(w)$ $= \left[f(z) dQ(z) \right]$ $\int \int \int \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \left(\sum_{i=1}^{n$ $\frac{W}{d(P(X(x)))} = Qf$ I. Each prob. measure on each metric space is the distribution of some random variable on some probability space. $(\Omega, \mathcal{F}, \mathcal{P}) = (S, \mathcal{L}, \mathcal{O})$

X = ___. Notice Suppose X, has diston. P. and X has distby. P. We say X => X ("conv. in distbr." or "conv. weakly") $i_{P_n} \rightarrow P_{P_n}$ The underlying prob. spaces almost never enter the fray.

Portmanteau Theorem $(i) \quad X_n \Longrightarrow X$ (ii) $\mathbb{E}[f(x_n)] \longrightarrow \mathbb{E}[f(x)]$ for bounded unif. cont. f. (III) for closed F, $\lim \sup P(X \in F) \leq P(X \in F) (*)$ (IV) for open GI, ... $(v) P(X_n \in A) \longrightarrow P(X \in A), A \in \partial X.$

Just symbols! $P_n \implies P$ $X_n \Longrightarrow X$ $X_n \Longrightarrow P$ $P_n \Longrightarrow X$

For an element
$$a \in S$$
,
We say $X_n \xrightarrow{P} a$ if
""conv. in prob."
 $P(f(X_n, a) > \varepsilon) \rightarrow 0$ VE>0.
- "a" is a const-valued 9...
- For the above, X_n , $n \ge 1$ all
live in the same space Ω .

Theorem 3.0 $X_{n} \Longrightarrow S_{a} \quad \text{iff} \quad X_{n} \xrightarrow{P} a$

Theorem 3.0 Proof Sketch
Suppose
$$X_n \xrightarrow{P} a$$
.
Take Open G and suppose $a \in G$.
 $\lim \inf P_n(G_1) \ge \lim \inf P(P(X_n, a) \le e)$
 $= 1$.
(If $a \notin G = P_n(G_1) \ge 0 = P(a \in G_1)$)
Now suppose $X_n \Longrightarrow a$. Then.
 $P(P(X_n, a) > e) =: P_n(B^c(a, e))$
 $\longrightarrow P(B^c(a, e)) = 0$.

Theorem 3.1 "Slutsky"
Suppose
$$(X_n, Y_n)$$
 are handom
elements of SxS. If
 $X_n \Longrightarrow X$ & $f(X_n, Y_n) \xrightarrow{P} o$
then
 $Y_n \Longrightarrow X$
 $(\underbrace{Slutsky's Thm: X_n \Longrightarrow X and A_n \xrightarrow{P} A, B_n \xrightarrow{P} B, then A_n X_n + B_n \Longrightarrow A X + B)}_{(*)}$

Theorem 3.1 Proof Sketch Take F closed in \mathcal{S} . F^{ε} $F^{\varepsilon} := \{ \chi : \mathcal{P}(\chi, F) \leq \varepsilon \}$ Notice: $(Y_n \in F) \subseteq (X_n \in F^{\epsilon}) \cup (\mathcal{P}(X_n, Y_n) > \epsilon)$ Therefore, $P(Y_n \in F) \leq P(X_n \in F^{\epsilon}) + P(P(X_n, Y_n))$ Take lim sup and apply Portmanteau, and then EVO.

Theorem 3.2
Suppose
$$(X_{un}, X_n)$$
 are random
elements of $S \times S$. If
 $X_{un} \Longrightarrow_n Z_u \Longrightarrow_u X$
and
 $\lim_{n} \limsup_{n} P\left(P(X_{un}, X_n) \ge \varepsilon\right) = 0$
for $\varepsilon > 0$, then $X_n \Longrightarrow_n X$.

Theorem 3.2 Proof Sketch
Following the proof of Thm. 3.1,

$$P(X_n \in F) \leq P(X_u \in F^{\epsilon})$$

 $+P(P(X_un,X_n) > \epsilon)$
 $\lim_{n} \sup P(X_n \in F)$
 $+\lim_{n} \sup P(P(X_un,X_n) > \epsilon)$
 $-\sum_{n} P(X \in F^{\epsilon})$.
Now send $\epsilon \neq 0$.

Integration to the Limit
If
$$X_n \Longrightarrow X$$
, what can
we say about $E[X_n]$ in
relation $E[X]$?

Theorem 3.4 (Fatou's Lemma) For <u>handom variables</u> Xn, X $if X_n \Longrightarrow X, \text{ then}$ $\mathbb{E}||X|| \leq \liminf \mathbb{E}[|X_n|]$ To get the inequality direction: $X_n = \begin{cases} n & wp \\ o & ow \end{cases}$ $\xrightarrow{n} \xrightarrow{} \\ \xrightarrow{n} \\ \xrightarrow{$

$$\begin{array}{l} \hline Theorem 3.4 \ Proof Sketch \\ \hline Due to mapping thm, \\ P(|X_{n}|>t) \rightarrow P(|X|>t). \\ -(1) \\ \hline E[|X] \stackrel{(*)}{=} \int P(|X|>t) \\ \stackrel{(1)}{=} \int Lim P(|X_{n}|>t) \\ \stackrel{(1)}{\leq} \int Lim inf \int P(|X_{n}|>t). \end{array}$$

Theorem 16.3. For nonnegative f_n ,

(16.6)
$$\int \liminf_{n} f_n \, d\mu \leq \liminf_{n} \int f_n \, d\mu.$$

The random variable sequence SXn, n≥1 { is uniformly integrable (U·I) if $\lim_{\alpha \to \infty} \sup_{n \to \infty} \int |X_n| dP = 0.$ $|X_n| \ge \alpha$ X_2 If $\{X_n, n \ge 1\}$ is U.I., then $|\mathbf{E}[|\mathbf{X}_n|] \leq 1+\alpha \quad \forall n$

Theorem 3:5 Proof Sketch $\mathbb{E}[X_n] \leq 1 + \alpha \quad \forall n.$ $Flence, E[X] < \infty$ and X is integrable. Also, it is okay to prove $\mathbb{E}[X_n] \longrightarrow \mathbb{E}[X] \text{ assuming}$ Xn, X are non-negative. Why?

Theorem 3:5 Proof Sketch $\mathbb{E}[X_n] = | X_n \mathbb{I}(X_n < \alpha) dP$ $+\int_{X \ge x} X_n dP$ $= \int_{0}^{\infty} P(t < X_{n} < \alpha) dt + \int_{X_{n} \ge \alpha} X_{n} dP$ $= \int_{0}^{\infty} P(t < X_{n} < \alpha) dt + \int_{X_{n} \ge \alpha} Y_{n} = \int_{0}^{\infty} P(t < X < \alpha) dt + \int_{X_{n} \ge \alpha} X > \alpha$

heorem 3:5 Proof Sketch

And, there are at most countable number of t, x such that

 $\mathbb{P}(t \prec X_n \prec \alpha) \not\to \mathbb{P}(t \prec X \prec \alpha)$

Use bounded convergence than (*) to conclude.

Theorem 16.5. If $\mu(\Omega) < \infty$ and the f_n are uniformly bounded, then $f_n \to f$ almost everywhere implies $|f_n d\mu \to |f d\mu$.

$$\begin{split} & \underbrace{\text{llseful U·I Condition.}}_{\text{J} \text{sup}} \mathbb{E}[[X_n]^{\text{H} \epsilon}] < \infty, \text{ some } \epsilon > 0 \\ & \underbrace{\text{Hen}}_{n} \mathbb{E}[X_n]^{n+\epsilon}] < \infty, \text{ some } \epsilon > 0 \\ & \underbrace{\text{Hen}}_{n} \mathbb{E}[X_n, n \ge 1] \text{ is U·I.} \\ & \underbrace{\text{Notice}}_{n} \mathbb{E}[[X_n]^{\text{H} \epsilon}] = \int |X_n|^{\text{H} \epsilon} dP + \int |X_n|^{\text{H} \epsilon} dP \\ & \underbrace{|X_n| \ge \alpha}_{n} \mathbb{E}[X_n]^{\text{H} \epsilon} \frac{1}{\alpha} \mathbb{E}[X_n]^{\text{H} \epsilon}_{n} \mathbb{E}[X_n]^{\text{H} \epsilon} dP \\ & \underbrace{|X_n| \ge \alpha}_{n} \mathbb{E}[X_n]^{\text{H} \epsilon} \mathbb{E}[X_n]^{\text{H} \epsilon} \frac{1}{\alpha} \mathbb{E}[X_n]^{\text{H} \epsilon} \mathbb{E}[X_n]^{\text{H} \epsilon} \mathbb{E}[X_n]^{\text{H} \epsilon} \frac{1}{\alpha} \mathbb{E}[X_n]^{\text{H} \epsilon} \mathbb{E}[X$$