Random Elements S-valued random Vwinhbe.

Suppose (Ω, \mathcal{F}, P) is probability space, and let
$X: \Omega \longrightarrow S$ be measurable F/S, where S is a metric space.
random variable random vector roundom sequence random function

The distribution of X_{p} is the measure $Q:=\stackrel{i}{P}^{-1} p$ on $(S, \&)$ defined as

$$
\begin{aligned}
Q(A): & =P X^{-1}(A) \\
& =P(w: X(w) \in A) \\
& =P(x \in A)
\end{aligned}
$$

P is defined on an arbitrary \mathcal{F}. Q is defined on the Bored $\sigma(S)$.

Notice
I. Suppose f is measurable s / R^{\prime}, then

$$
\begin{aligned}
\mathbb{E}[f(X)] & =\int f(X(w)) d P(w) \\
X & =\int f(x) d Q(x) \\
\int v^{\prime}(X(\underbrace{\left(X^{-1}(x)\right.}_{d})^{\prime}) & =\text { (P(X(x))})
\end{aligned}
$$

I. Each prob. measure on each metric space is the distribution of some random variable on some f probability space.

$$
\widetilde{(\Omega, \sigma, P)}=\widetilde{(S, l, Q)}
$$

$$
\lambda=1 .
$$

Notice
III. Suppose X_{n} has diston. P_{n} and X has distbn. P.
We say $X_{n} \xrightarrow{\Longrightarrow} X$
("cons. in disttan." or "cons. weakly") if $P_{n} \Longrightarrow P$.

The underlying prob. spaces almost never enter the fray.

Portmanteau Theorem
(i) $X_{n} \Longrightarrow X$
(ii) $\mathbb{E}\left[f\left(x_{n}\right)\right] \rightarrow \mathbb{E}[f(x)]$ for bounded unif. cont. f.
(iii) for closed F, limsup $P\left(x_{n} \in F\right) \leqslant P(X \in F)$
(iv) for open G,
(v) $P\left(X_{n} \in A\right) \rightarrow P(X \in A), A \in \partial X$.

Just symbols!

$$
\begin{aligned}
& P_{n} \Longrightarrow P \\
& X_{n} \Rightarrow X \\
& X_{n} \Rightarrow P \\
& P_{n} \Rightarrow X
\end{aligned}
$$

For an element $a \in S$, We say $X_{n} \xrightarrow{p} a$ if \longrightarrow "cons. in prob."

$$
P\left(\varphi\left(X_{n}, a\right)>\varepsilon\right) \rightarrow 0 \quad \forall \varepsilon>0
$$

- " a " is a const-valued rev.
- For the above, $X_{n}, n \geqslant 1$ all live in the same space Ω.

Theorem 3.0

$$
X_{n} \Longrightarrow \delta_{a} \quad \text { iff } \quad X_{n} \xrightarrow{p} a
$$

Theorem 3.0 Proof Sketch
Suppose $X_{n} \xrightarrow{P} a$.
Take open G and suppose $a \in G$.
$\liminf _{n} P_{n}(G) \geqslant \lim _{n} \inf P\left(P\left(x_{n}, a\right) \leqslant \varepsilon\right)$

$$
=1 .
$$

(If $a \notin G P_{n}(G) \geqslant 0=P(a \in G)$)
Now suppose $X_{n} \Longrightarrow a$. Then.

$$
\begin{aligned}
P\left(P\left(X_{n}, a\right)>\varepsilon\right) & =: P_{n}\left(B^{c}(a, \varepsilon)\right) \\
& \longrightarrow P\left(B^{c}(a, \varepsilon)\right)=0 .
\end{aligned}
$$

Theorem 3.1 "Slutsky"
Suppose $\left(X_{n}, Y_{n}\right)$ are random elements of $S \times S$. If

$$
X_{n} \Longrightarrow X \quad \& \quad \rho\left(X_{n}, Y_{n}\right) \xrightarrow{P} 0
$$

then

$$
Y_{n} \Longrightarrow X
$$

$\left(S\right.$ sent $k y^{\prime}$ The: $X_{n} \Rightarrow X$ and $A_{n}{ }_{n} A_{A}$, $B_{n} \xrightarrow{p}$, then $A_{n} x_{n}+B_{n} \Rightarrow A x+B$.

Theorem 3.1 Proof Sketch
Take F closed in \&

$$
F^{\varepsilon}:=\{x: \varphi(x, F) \leq \varepsilon\}
$$

Notice:

$$
\left(Y_{n} \in F\right) \subseteq\left(X_{n} \in F^{\varepsilon}\right) \cup\left(\varphi\left(X_{n}, Y_{n}\right)>\varepsilon\right)
$$

Therefore,

$$
P\left(Y_{n} \in F\right) \leq P\left(X_{n} \in F^{\xi}\right)+P\left(P\left(X_{n}, Y_{n}\right)<\varepsilon\right)
$$

Take limsup and apply Portmanteau, and then $\varepsilon \downarrow 0$.

Theorem 3.2
Suppose $\left(X_{u n}, X_{n}\right)$ are random elements of $S \times S$. If

$$
X_{u n} \Rightarrow_{n} Z_{u} \Rightarrow_{u} X
$$

and

$$
\lim _{u} \limsup _{n} P\left(P\left(X_{u n}, X_{n}\right) \geqslant \varepsilon\right)=0
$$

for $\varepsilon>0$, then $X_{n} \Longrightarrow_{n} X$.

Theorem 3.2 Proof Sketch
Following the proof of T_{m}. 3.1.,

$$
\begin{aligned}
& P\left(X_{n} \in F\right) \leqslant P\left(X_{u n} \in F^{s}\right) \\
& \quad+P\left(P\left(X_{u n}, X_{n}\right)>\varepsilon\right) \\
& \limsup _{n} P\left(X_{n} \in F\right) \quad \\
& \leqslant P\left(Z_{u} \in F^{\varepsilon}\right) \\
&+\limsup P\left(P\left(X_{u n}, X_{n}\right)>\varepsilon\right) \\
& \rightarrow{ }_{u} P\left(X \in F^{\varepsilon}\right) .
\end{aligned}
$$

Now send $\varepsilon \downarrow 0$.

Integratim to the Limit

If $X_{n} \Longrightarrow X$, what can we say about $\mathbb{E}\left[X_{n}\right]$ in relation $\mathbb{E}[x]$?

Theorem 3.4 (Fatou's Lemma)
For random variables X_{n}, X if $X_{n} \Longrightarrow X$, then

$$
\mathbb{E}[|x|] \leqslant \liminf _{n} \mathbb{E}\left[\left|x_{n}\right|\right] .
$$

To get the inequality direction:

$$
\begin{array}{ll}
{ }^{n}{ }_{n}^{n} & X_{n}=\left\{\begin{array}{lll}
n & w p & 1 / n \\
0 & o w
\end{array}\right. \\
\vdots & X=0 \quad w p 1
\end{array}
$$

Theorem 3.4 Proof Sketch
Due to mapping the,

$$
\begin{align*}
& P\left(\left|x_{n}\right|>t\right) \rightarrow P(|x|>t) \\
& \quad-(1) \tag{1}\\
& \mathbb{E}[|x|] \stackrel{(*)}{=} \int P(|x|>t) \\
& \stackrel{(1)}{=} \int \lim _{n} P\left(\left|x_{n}\right|>t\right) \\
& \text { Fatty(*) } \liminf _{n} \int P\left(\left|x_{n}\right|>t\right) . \\
&
\end{align*}
$$

The random variable sequence $\left\{X_{n}, n \geqslant 1\right\}$ is uniformly integrable (U.I) if $\lim _{\alpha \rightarrow \infty} \sup _{n} \int_{\left|x_{n}\right| \geqslant \alpha}\left|x_{n}\right| d P=0$.
If $\left\{X_{n}, n \geqslant 1\right\}$ is U.I, then

$$
\mathbb{E}\left[\left|X_{n}\right|\right] \leqslant 1+\alpha \quad \forall n .
$$

Theorem 3.5
If $\left\{x_{n}, n \geqslant 1\right\}$ are U.I and $X_{n} \Longrightarrow X$, then X is integrable and

$$
\mathbb{E}\left[x_{n}\right] \rightarrow \mathbb{E}[x] .
$$

$$
\left(\begin{array}{lll}
X & \text { is integrable if } & \mathbb{E}[|x|]<\infty \\
\Leftrightarrow & \| \mathbb{E}\left[X^{+}\right]<\infty & \text { o } \\
\mathbb{E}[x]<\infty
\end{array}\right)
$$

Theorem 3.5 Proof Sketch

$$
\mathbb{E}\left[\left|X_{n}\right|\right] \leqslant 1+\alpha \quad \forall n .
$$

Hence, $\mathbb{E}[|x|]<\infty$, and X is integrable.

Also, it is okay to prove $\mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$ assuming X_{n}, X are non-negative. Why?

Theorem 3.5 Proof Sketch

$$
\begin{aligned}
& \mathbb{E}\left[X_{n}\right]=\int X_{n} \mathbb{I}\left(X_{n}<\alpha\right) d P \\
& +\int_{x_{n} \geq x} x_{n} d P \\
& =\int_{0}^{\alpha} P\left(t<x_{n} \alpha \alpha\right) d t+\int_{x_{n}>\alpha} x_{n} d P \\
& \text { Similanly, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Similonly, } \\
& \mathbb{E}[x]=\int_{0}^{\alpha} P(t<x<\alpha) d t+\int_{x \geqslant \alpha}^{\leq \varepsilon f n \log \alpha} x d P
\end{aligned}
$$

Theorem 3.5 Proof Sketch
And, there are at most countable number of t, α such that

$$
P\left(t<X_{n}<\alpha\right) \nrightarrow P(t<x<\alpha)
$$

Use bounded convergence the $(*)$ to conclude.

Theorem 16.5. If $\mu(\Omega)<\infty$ and the f_{n} are uniformly bounded, then $f_{n} \rightarrow f$
almost everywhere implies $f f_{n} d \mu \rightarrow$ fid . almost everywhere implies $\int f_{n} d \mu \rightarrow \int f d \mu$.

Useful U.I Condition.
If $\sup _{n} \mathbb{E}\left[\left|X_{n}\right|^{1+\varepsilon}\right]<\infty$, some $\varepsilon>0$ then $\left\{X_{n}, n \geqslant 1\right\}$ is U.I.
Notice

$$
\begin{aligned}
\mathbb{E}\left[\left|X_{n}\right|^{1+\varepsilon}\right]= & \int_{\left|X_{n}\right| \geqslant \alpha}\left|X_{n}\right|^{1+\varepsilon} d P+\int_{\left|X_{n}\right|<\alpha}\left|X_{n}\right|^{1+\varepsilon} d P \\
& \geqslant \int_{\left|X_{n}\right| \geqslant \alpha}\left|X_{n}\right| \alpha^{\varepsilon} d P
\end{aligned}
$$

$$
\int_{\left|X_{n}\right| \geq \alpha}\left|X_{n}\right| d P \leqslant \frac{\mathbb{E}\left[\left|X_{n}\right|^{1+\varepsilon}\right]}{\alpha^{\xi}} .
$$

