$$\frac{\text{Let's go back to an impostant}}{\text{negative example.}}$$
Consider:
$$\int_{0}^{\infty} \int_{1}^{\infty} \int_{1$$

$$P_{n} = S_{z_{n}}; P = S_{o}$$

$$P_{n} = S_{z_{n}}; P = S_{o}$$

$$P_{n} \neq P_{o}$$
We showed that
$$P_{n}(A) \rightarrow P(A) \quad \forall A \in C_{f}$$
but
$$P_{n} \neq P.$$
Finite - dimensional distributions
converge but no weak convergence!

Theorem. (Appendix M)
The following are equivalent.
(i)
$$\overline{A}$$
 is compact.
(ii) Each sequence in \overline{A} has
a convergent subsequence.
(with limit in \overline{A}).
(iii) \overline{A} is totally bounded and
 \overline{A} is complete.

A family TT of probability
measures on
$$(S, S)$$
 is
relatively compact if each
sequence $\{P_n, n \ge i\}$ has a
Weakly convergent subsequence.
 $\{P_{n_j}, j \ge i\}$, that is, $\exists Q$
such that $P_{n_j} \Rightarrow Q$.

Similarly,
$$\{P_n, n \ge 1\}$$
 is
relatively compact if
every sub-sequence $\{P_{n_j}, j \ge 1\}$
has a weakly convergent
sub-sub-sequence:
 $\exists Q, \{P_{n_j(m)}, m \ge 1\}$ such that
 $P_{n_{j(m)}} \rightarrow Q$.

Theorem 5.1 (Fin. Dim. Conv + RC) => Weak. Conv.) Suppose probability measures Pn, Pon (C, C) are such that $P_{n} T_{t_{1}t_{2}\cdots t_{k}}^{-1} \Longrightarrow P_{t_{1}t_{2}\cdots t_{k}}^{-1}$ ____(]) If $\{P_n, n \ge i\}$ is RC, then $P_n \Longrightarrow P_i$

heorem 5.1 Proof Sketch Since Philo RC, JQ, Phil s.t. $P_{i(m)} \longrightarrow Q$. (2) and hence (by mapping thm) $P_{\substack{n_{j(m)} \neq t_{1} \neq \dots \neq k}} \xrightarrow{P} Q_{\substack{\tau_{1} \neq \dots \neq k}} \xrightarrow{P} Q_{\substack{\tau_{1} \neq \dots \neq k}}$ Vk, t1, t2, ... tk (3) (1) and (3), and since Cf is a seponating class, we have P=Q.

Theorem 5.1 Proof Sketch
contd...
Therefore, from (1), every
sub-sequence of
$$\{P_n, n \ge 1\}$$

has a sub-sub-sequence
converging weakly to P.
(*) Hence,
 $P_n \Longrightarrow P$.

Theorem 5.1 does not assume too much because $P_n \Longrightarrow P$ implies $\{P_n, n \ge i\}$ is RC.

Notice that Thm. 5.1 postulates
the existence of a measure
P on (C, E). What if we
only know that
$$P_n T_{t_1...t_k}^{-1} \Longrightarrow_n \mathcal{M}_{t_1...t_k}$$

on $(\mathbb{R}^k, \mathbb{R}^k)$?

Theorem 5.2 (Existence) Suppose { Pn, nzi? on (C, C) is RC and $P_{n} \stackrel{\top}{\underset{t_{1} }{}^{-1}} \xrightarrow{}_{n} \mathcal{M}_{t_{1} } \stackrel{}{\underset{t_{2} }{}^{\cdots} } \stackrel{}{\underset{t_{k}}{}^{-1}} \xrightarrow{}_{n} \mathcal{M}_{t_{1} } \stackrel{}{\underset{t_{2} }{}^{\cdots} } \stackrel{}{\underset{t_{k}}{}^{-1}} \xrightarrow{}_{k} \mathcal{M}_{t_{1} } \stackrel{}{\underset{t_{k}}{}^{\cdots} } \stackrel{}{\underset{t_{k}}{}^{-1}} \xrightarrow{}_{k} \mathcal{M}_{t_{1} } \stackrel{}{\underset{t_{k}}{}^{\cdots} } \stackrel{}{\underset{t_{k}}{}^{-1}} \xrightarrow{}_{k} \mathcal{M}_{t_{1} } \stackrel{}{\underset{t_{k}}{}^{\cdots} } \stackrel{}{\underset{t_{k}}{$ Where Mt. is a probability measure on (R^k, R^k). Then, J P on (C, C) s.t. $P \operatorname{TT}^{-1} \Longrightarrow \mathcal{M}_{t_1 t_2 \cdots t_k}$

Theorem 5.2 Proof Sketch
Since
$$\{P_n, n \ge 1\}$$
 is RC,
 $P_n \prod_{i=1}^{-1} \implies P \prod_{i=1}^{-1} t_i$
 $\forall k, t_i, ..., t_k$.
Therefore $P \prod_{i=1}^{-1} = \mathcal{M}_{t_i t_2 \cdots t_k}$
for all $t_i, ..., t_k$.

Another example.

$$M_{n} := \text{unif}[-n, n]$$

$$P_{n} := \begin{cases} S_{o} & \text{even } n \\ \frac{1}{3}S_{o} + \frac{2}{3}A_{n} & \text{odd } n \end{cases}$$
Notice that $\{P_{n}, n \ge 1\}$ is not RC.
The limit of P_{n} has distby

$$F(x) = \begin{cases} \frac{1}{3}s & x < o \\ \frac{2}{3}s & x \ge o \end{cases}$$
Mass Escape!

Tightness is the answer.
A family T of probability
measures is tight if for every

$$\varepsilon > 0$$
, \exists a compact set such that.
 $P(K) > 1-\varepsilon$.
(No mass escape!)

Prohorov's Thm Proof Sketch
We will not prove (a).
Let's prove (b).
Consider open
$$G_n \uparrow S$$
. For each
 $\varepsilon > 0$, $\exists n \quad s \cdot t \cdot$
 $P G_n > 1 - \varepsilon$
 $\forall \ P \in TT.$ (*)

Prohorov's Thm Proof Sketch
contd...
Since S is separable we
can find open balls
$$A_{k1}, A_{k2}, ...$$

 $O_{k1}, ..., A_{k2}, ...$
of radius V_{k} overing S.
From before, $\exists n_{k} s.t.$
 $P(\bigcup_{i \in n_{k}} S_{i}) > 1 - \frac{e}{2^{k}}$
V PETD.

Proborov's Thm Proof Sketch
contd...
Lets now construct the compact
set:
$$K = \bigcap_{k=1}^{n} \bigcup_{i=n_k}^{n} A_{ki}$$

K is totally bounded and complete,
and $P(K) > 1-\varepsilon$.