THE SPACE C

OVERVIEW :

ULTIMATE AGENDA: PROVE DONSKER'S

THEOREM.

RECALL CENTRAL LIMIT THEOREM.

Let
$$\{2, 1, 22, \dots\}$$
 be a sequence
of i id random Variables with
 $E2_1 = 0$ & $E[2_1]^2 = \sigma 2 < \infty$.
Then,
 $\frac{Sn}{\sigma\sqrt{n}} := \frac{2_1 + 2_2 + \dots + 2_n}{\sigma\sqrt{n}} \Rightarrow N(0, 1)$.

Donsker's Theorem extends this result (roughly speaking)
to random walks. Specifically, consider the
"interpolated" random walk path,
$$X_{t}^{n} = \frac{1}{\sigma \sqrt{n}} S_{LAt} + (nt - LAt) \frac{X_{LA}(nt) + 1}{\sigma \sqrt{n}}$$
where $t \in [0,1]$. Let $C \equiv C[0,1]$ be the
Space of real-valued continuous functions with
domain $[0,1]$ clearly, the interpolated path $X^{A} \in C$.
Then, Donsker's Theorem Shows that,
$$X_{t}^{n} \Rightarrow W,$$

where W is a C-Valued Fandom Variable. Specifically

WEAK CONVERGENCE IN C

Equip C with the uniform topology defined long
the uniform metric,
$$\forall x, y \in C$$
,
 $f(x, y) := \sup_{t \in [0,1]} |x(t) - y(t)|$.

Recall that weak convergence in C does not
follow from weak convergence of finite dimensional
distributions (fdd's), but also requires relative
compactness.
By Prokhorov, compactness
$$\iff$$
 tightness on
complete & separate metric spaces. So, we have:
THEOREM 7.1 Let $\{Pn\}, P$ be probability measures on
 (C, C) . If the f dds of $\{Pn\}$ converge to those of P
 $\&$ if $\{Pn\}$ is tight, then $Pn \Longrightarrow P$.

We require a characterization of tightness on
$$(C, R)$$
.
Note, relative compactness is not a good criterion
to verify. We appeal to the Arzela - Ascoli (AA)
theorem:

THEOREM 7.2 The Set ACC is relatively
compact if f
(i)
$$\sup_{x \in A} |x(o)| < +\infty$$

(ii) $\lim_{x \in A} \sup_{x \in A} w_x(s) = 0$,
where, $w_x(s) := \sup_{s \to 0} |x(s) - x(t)|$, $0 < s \le 1$.
 $|s-t| \le s$

Note: 1. Wx (8) is the So-Called modulus of continuity.

THEOREM 7.3 A sequence of measures
$$\{P_n\}$$
 on
(C, e) are fight iff
(i) $\forall q_{20}$, $\exists an a \in iR q no \in iN S.t.,$
 $P_n\left(x : [x(o)] > a\right) \leq q$, $\forall n \ge no.$
(ii) $\forall e>0, 1>0, \exists o < 8 < 1 q no \in iN S.t.$
 $P_n\left(x : w_x(s) > e\right) \leq q \forall n \ge no.$

Proof:

Let
$$(\Omega, F, P)$$
 be a probability Space.
Let $X: \Omega \to C$ be a C-Valued R.V.
Let $(X_{t_1}, ..., X_{t_k}) = \pi_{t_1, ..., t_k}(X)$ represent
the k-dimensional projection of X onto
 $(t_1, ..., t_k) \in [0, 1]^k$.

THEOREM 7.5
If
$$(X_{t_1}^{n}, ..., X_{t_k}^{n}) \Rightarrow_n (X_{t_1}, ..., X_{t_k})$$

 $\forall (t_{1}, ..., t_k) \in [0, 1]^k \quad g \quad \forall \ k \ge 1, \ ond if$
 $\lim_{k \to \infty} \lim_{k \to \infty} \mathbb{P} (w(X_{1,k}^{n}) \gg \varepsilon) = 0 \quad \forall \ \varepsilon \ge 0,$
 $s \to 0 \quad n \to \infty$
then
 $X^{n} \Rightarrow_n X$.

Proof:

Theorem's 7.3 g 7.5 Set us up to
prove Donsker's Theorem:
THEOREM 8.2
If
$$Z_1, Z_2, \dots$$
 are isd $EZ_1 = 0$, $E|Z_1|^2 < +\infty$.
Define,
 $X_t^* = \frac{1}{r \sqrt{n}} \int_{latj} + (nt - latj) \frac{X_{(nt)+1}}{r \sqrt{n}} \forall te[0n]$
where $S_n := \sum_{i=1}^{n} Z_i$, $g = 0$.
Then, $X^n \Longrightarrow_n W$, where Wiss C-valued
Gaussian R.V. that induces the Wiend news.

LEMMA Suppose
$$\{3n\}$$
 is a stationary sequence
 R Uin Uim $\lambda^2 P(\max |Se| = \lambda - \sqrt{n}) = 0$.
 $\lambda \to \infty$ $n \to \infty$
Then $\{3n\}^2$ is tight.
Proof of The 8.2: Verify The 7.5, assuming
the existence of the Wiener neasure.
Observe : $(X_s^n, X_t^n - X_s^n) \Longrightarrow_n (W_s, W_t - W_s)$
by the Maltiveriate CCT.

The map
$$(x, y-x) \mapsto (x, y)$$

is continuous on \mathbb{R}^2 , so by the continuous
mapping theorem, it follows that,
 $(x_s^n, x_t^n) \Rightarrow_n (w_s, W_t)$,
for any set. This can be easily extended
to any f.d.d.

To prove tightness we verify the Lemma:
LEMMA Suppose
$$\{2n\}$$
 is a stationary sequence
 $\&$ lim lim $a^2 P(\max |S_e| > Ao Jn) = 0$.
 $A \rightarrow \infty$ $n \rightarrow \infty$
Then $\{x^n\}$ is tight.

Useful result: Etemadi's inequality

$$P\left(\max |S_{u}| > x\right) \le 3\max P\left(|S_{u}| > \frac{3}{3}\right)$$

Then it Suffices to Show that, $\lim_{\lambda \to \infty} \lim_{\lambda \to \infty} x^2 \max_{k \in \Lambda} P(|S_k| z, \lambda \sigma \int n) = 0.$

Fix A. Observe,

$$P(|S_k| \ge \lambda \sigma \int n) \le P(|S_k| \ge \lambda \sigma f k).$$

By the central limit theorem, if $k_{\lambda} \leq k \leq n$, $P(1Skl > \lambda \sigma \int k) \leq P(1Nl > \lambda)$

By Marbovis inequality,

$$P(IN | Z A) \leq \frac{E N^{4}}{A^{4}}$$

$$= \frac{3}{A^{4}}.$$

$$P(ISL > A r.Tn) \leq 3 A^{-4}.$$
OTOM, if $k \leq kA$, by chebyshev's inequality

$$P(ISL > A r.Tn) \leq \frac{Var(SL)}{A^{2} r Ln}$$

$$\leq \frac{kA}{A^{2} n}.$$

Thus,

$$f$$
 mar $\int_{x4}^{3} \sqrt{\frac{k_{x}}{x^{n}}} \int_{x4}^{1}$

$$\Rightarrow \lim_{n \to \infty} \max_{k \leq n} P(|S_k| > \lambda k \sqrt{n}) = 0.$$

By the Lemma, it follows
$$\{\chi^A\}$$
 is tight.
Since F.D.D.'s converge, it follows from
Theorem 7.5 that $\chi^A \Rightarrow_n W$.

QED.