THE SPACE C

OVERVIEW:
ultimate agenda: prove donsker's THEOREM.

RECALL CENTRAL LIMIT THEOREM.

Let $\left\{\left\{1, z_{2}, \ldots\right\}\right.$ be a sequence of id random variables with

$$
E Z_{1}=0 \quad \& \quad E\left|Z_{1}\right|^{2}=\sigma^{2}<\infty .
$$

Then,

$$
\frac{S_{n}}{\sigma \sqrt{n}}:=\frac{\eta_{1}+\eta_{2}+\cdots+\eta_{n}}{\sigma \sqrt{n}} \Rightarrow_{n} \mathcal{N}(0,1)
$$

Donsker's Theorem extends this result (roughly speaking) to random walks. Specifically, consider the "interpolated" random walk path,

$$
x_{t}^{n}=\frac{1}{\sigma \sqrt{n}} S_{[n t]}+\left(n t-\lfloor(n t\rfloor) \frac{x_{(n t)+1}}{\sigma \sqrt{n}}\right.
$$

where $t \in[0,1]$. Let $C \equiv C[0,1]$ be the Space of real-valued continuous functions with domain $[0,1]$. Clearly, the interpolated path $x^{\wedge} \in C$. Then, Donsker's Theorem shows that,

$$
x^{n} \Rightarrow_{n} w
$$

where W is a C-valued random variable. Specifically,
W has the so-called wiener measure as its "distribution" over C.

We will leverage our understanding of weak convergence over metric spaces to prove this result.

WEAK CONVERGENCE IN C
Equip C with the uniform topology defined by the uniform metric, $\forall x, y \in C$,

$$
\rho(x, y):=\sup _{t \in[0,1]}|x(t)-y(t)| .
$$

Recall that weak convergence in C does not follow from weak convergence of finite dimensional distributions ($f d t^{\prime} s$), but also requires relative compactness.

By Proknorov, compactness \Longleftrightarrow tightness on complete \& Separable metric spaces. So, we have:

THEOREM 7.1 Let $\left\{P_{n}\right\}, P$ be probability measures on (C, C). If the $f d d s$ of $\left\{P_{n}\right\}$ converge to those of P x if $\left\{P_{n}\right\}$ is tight, then $P_{n} \Rightarrow_{n} P$.

We require a characterization of tightness on (c, C). Note, relative compactness is not a good criterion to verify. We appeal to the Arzela. Ascoli (AA) theorem:

THEOREM 7.2 The set $A \subset C$ is relatively compact if
(i) $\sup _{x \in A}|x(0)|<+\infty$
(ii) $\lim _{\delta \rightarrow 0} \sup _{x \in A} w_{x}(\delta)=0$,
where, $w_{x}(\delta):=\sup |x(s)-x(t)|, 0<\delta \leq 1$. $|s-t| \leq \delta$

Note: $1 . W_{x}(8)$ is the so-called modulus of continuity.
2. AA says a set of coutinuesus functions is rel. comp. if the functions are
(i) bounded, and
(ii) uniformly equicontinuous.

THEOREM 7.3 A sequence of measures $\left\{P_{n}\right\}$ on (c, c) are tight if f
(i) $\forall \eta>0, \exists$ an $a \in \mathbb{R} \& n_{0} \in \mathbb{N}$ s.t.,

$$
P_{n}(x:|x(0)| \geqslant a) \leq \eta, \forall n \geqslant n_{0} .
$$

(ii) $\quad \forall \in>0, \eta>0, \exists \quad 0<\delta<1$ \& $n_{0} \in \mathbb{N} s+$.

$$
P_{n}\left(x: w_{x}(\delta) \geqslant \varepsilon\right) \leq \eta \quad \forall n \geqslant n_{0} \text {. }
$$

Proof:

WEAK CONVERGENCE OF C-VALUED RANDOM VARIABLES.

Let (Ω, F, P) be a probability space.

Let $x: \Omega \rightarrow C$ be a C-valued $R \cdot V$.

Let $\left(x_{t_{1}, \ldots,} x_{t_{k}}\right)=\pi_{t_{1}, \ldots t_{k}}(x)$ represent the k-dimensional projection of x onto

$$
\left(t_{1}, \ldots, t_{k}\right) \in[0,1]^{k} .
$$

Let x, x^{1}, x^{2}, \ldots be a sequence of R.V.'s.

THEOREM 7.5
If $\left(X_{t_{1}}^{n}, \ldots, X_{t_{k}}^{n}\right) \Rightarrow n \quad\left(X_{t_{1}}, \ldots, X_{t_{k}}\right)$
$\forall\left(t, \ldots, t_{k}\right) \in[0,1]^{k} \quad \& \quad \forall k \geqslant 1$, and if

$$
\lim _{\delta \rightarrow 0} \overline{\lim }_{n \rightarrow \infty} P\left(w\left(x^{n}, \delta\right) \geqslant \varepsilon\right)=0 \quad \forall \varepsilon>0,
$$

then

$$
x^{n} \Rightarrow_{n} X
$$

$\underline{\text { Proof: }}$

Theorem's 7.3 a 7.5 set us up to prove Donsker's theorem:

THEOREM 8.2
If ξ_{1}, ξ_{2}, \ldots are $i s d \quad \mathbb{E} \xi_{1}=0, \mathbb{E}\left|\xi_{1}\right|^{2}<+\infty$.
Define,

$$
x_{t}^{n}=\frac{1}{\sigma \sqrt{n}} S_{[n t]}+(n t-L(n t]) \frac{x_{(n t)+1}}{\sigma \sqrt{n}} \forall t \in[0, n]
$$

where $S_{n}:=\sum_{i=1}^{n} \xi_{i} \quad \& \quad S_{0}:=0$.
Then, $X^{n} \Longrightarrow{ }_{n} W$, where W is C-valued Gaussian R.V. that induces the Fiend meas.

LEMMA Suppose $\left\{z_{n}\right\}$ is a stationary sequence

$$
k \lim _{\lambda \rightarrow \infty} \overline{\lim }_{n \rightarrow \infty} \lambda^{2} P\left(\max _{k \leq n}\left|S_{e}\right| \geqslant \lambda \sigma \sqrt{n}\right)=0 \text {. }
$$

Then $\left\{x^{\wedge}\right\}$ is tight.

Proof of Th. 8.2: Verify Th. 7.5, assuming the existence of the Wiener measure.

Observe : $\left.\left(x_{s}^{n}, x_{t}^{n}-x_{s}^{n}\right) \Rightarrow w_{s}, w_{t}-w_{s}\right)$ by the Malfivariate CCT.

The $\operatorname{map}(x, y-x) \longmapsto(x, y)$
is continuous on \mathbb{R}^{2}, So by the continuous mapping theorem, it follows that,

$$
\left(x_{s}^{n}, x_{t}^{n}\right) \nRightarrow_{n}\left(w_{s}, w_{t}\right)
$$

for any s\&t. This can be easily extended to any f.d.d.

To prove tightness we verify the Leman:

LEMMA Suppose $\left\{\xi_{n}\right\}$ is a stationary sequence

$$
k \lim _{\lambda \rightarrow \infty} \overline{\lim }_{n \rightarrow \infty} \lambda^{2} P\left(\max _{k \leq n}\left|S_{e}\right| \geqslant \lambda \sigma \sqrt{n}\right)=0 \text {. }
$$

Then $\left\{x^{\wedge}\right\}$ is tight.

Useful result: Etemadi's inequality

$$
P\left(\max _{u \leq m}\left|S_{u}\right| \geqslant \alpha\right) \leq 3 \max _{u \leq m} P\left(\left|S_{u}\right| \geqslant \frac{\alpha}{3}\right) .
$$

Then it suffices to show that,

$$
\lim _{\lambda \rightarrow \infty} \overline{\lim }_{n \rightarrow \infty} \lambda^{2} \max _{k \leqslant n} P\left(\left|s_{e}\right| \geqslant \lambda \sigma \sqrt{n}\right)=0 .
$$

Fix λ. observe,

$$
P\left(\left|s_{k}\right| \geqslant \lambda \sigma \sqrt{n}\right) \leq P\left(\left|s_{k}\right| \geqslant \lambda \sigma \sqrt{k}\right) .
$$

By the central limit theorem, if $k_{\lambda} \leq k \leqslant n$,

$$
P\left(\left|S_{k}\right| \geqslant \lambda \sigma \sqrt{k}\right) \leqslant P(|N| \geqslant \lambda)
$$

By Markov's inequality,

$$
\begin{aligned}
P(|N| \geqslant \lambda) & \leq \frac{E N^{4}}{\lambda^{4}} \\
& =\frac{3}{\lambda^{4}} . \\
\Rightarrow \quad P\left(\left|S_{k}\right| \geqslant \lambda \sigma \sqrt{n}\right) & \leq 3 \lambda^{-4} .
\end{aligned}
$$

OTOH, if $k \leq k_{\lambda}$, by chebyshev's inequality

$$
\begin{aligned}
P\left(\left|S_{k}\right| \geqslant \lambda \sigma \sqrt{n}\right) & \leq \frac{\operatorname{Var}\left(S_{k}\right)}{\lambda^{2} \sigma^{2} n} \\
& \leq \frac{k_{\lambda}}{\lambda^{2} n} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \max \\
& P\left(\left|s_{k}\right|>\lambda k \sqrt{n}\right) \\
& \max _{k \leqslant n}\left\{\frac{3}{\lambda^{4}} \vee \frac{k_{\lambda}}{\lambda^{n} n}\right\} . \\
& \Rightarrow \lim _{\lambda \rightarrow \infty} \overline{\lim }_{n \rightarrow \infty} \max _{k \leqslant n} P\left(\left|s_{k}\right|>\lambda k \sqrt{n}\right)=0 .
\end{aligned}
$$

By the Lemma, it follows $\left\{x^{n}\right\}$ is tight.
Since F.D.D.'s converge, it follows from Theorem 7.5 that $x^{n} \Rightarrow_{n} W$.

