Review: Weak Convergence

Review: $O_{p}(1)$

We say that a real-valued
sequence
$$X_n = O_p(1)$$
 if
for each $\varepsilon > 0$, $\exists N(\varepsilon), T(\varepsilon) s t$:
 $\forall n \ge N(\varepsilon),$
 $P(X_n \notin [-T(\varepsilon), T(\varepsilon)]) \le \varepsilon.$

We say
$$X_n = O_p(Y_n)$$
 if
 $X_n/Y_n = O_p(I)$.

$$(X_n = O_p(I) \equiv X_n \text{ is tight})$$

f is uniformly continuous of and
only if
$$\lim_{\delta \to 0} W(f, \delta) = 0$$
.

Review: Totally Bounded (g, ||·||) is totally bounded if H(s, g, P) < ~ Y 8>0.

(i) Recall Uniform LLN

$$g$$
 satisfies ULLN \dot{q}
 $\sup_{g \in g} \left| \int g dP_n - \int g dP \right| \xrightarrow{a.s.} o$
 $g \in g \mid \int g dP_n - \int g dP \mid \xrightarrow{a.s.} o$
 $(Jf \; Gie \; L_i(P) \; and \; \pm H(S, g, P_n) \xrightarrow{P} o \; \pm hn \\ g \; satisfies \; ULLN)$
(ii) What is Uniform CLT ?
 $Classic \; CLT : \; \sqrt{n} \; (X - \mu) \stackrel{d}{\rightarrow} N(o \sigma^2)$
 $\mathcal{P}_n := \left\{ \sqrt{n} \; \int g \; d(P_n - P), \; g \in g \right\}$
 $e mpinical process labeled by g.$

For optimization

$$y_n := \left\{ \int_{n} \int_{n} F(x, Y) d(P_n - P) \right\}_{x \in X}$$

 $g \left(labeling is by z \right)$

Does the process
$$\{\lambda_n, n \ge 1\}$$

Converge to anything weakly?
 $\lambda_n \xrightarrow{d} \lambda$

Uniform CLT or P-Donsker
The class
$$G$$
 is P -Donsker
if $\gamma_n \stackrel{d}{\longrightarrow} \gamma$ where
 $\gamma_n := \left\{ \int \int g d(P_n - P), g \in G \right\}$
and γ is a mean-zero
Graussian process.

What are some conditione?

Theorem (Dudly, 1984)
Suppose
(A) (G, ||·||) is totally bounded
(B) for each
$$\eta > 0$$
, $\exists \delta(\eta) s.t.$
 $\lim_{n} P(\sup_{\substack{||g|=g, || < s}} |\gamma_n(g_i) - \tilde{\gamma}_n(g_2)| > \eta) < \eta$.
Then, G is P-Donsker.

Ø

The order
Suppose
(C)
$$G_1 \in L_2(P)$$

(D) $\exists H : [o,] \rightarrow \mathbb{R}^+ \text{ non-decreasing stemperature}$
(i) $\int_0^1 \sqrt{H(u)} \, du < \infty$
(ii) $\lim_{t \to \infty} \lim_{n} \mathbb{P}\left(\sup_{s} \frac{H(s, g, P_n)}{H(s)} > t\right) = 0$
Then, G is P -Donsker. Is unifold
 $g(H)$.

Proof Sketch

$$G_{n}$$
 G_{n} G_{n}

Now use Theorem 5.3 on the empirical process $\tilde{\mathcal{P}}_n$ to see that (B) is satisfied.

Also, since $\tilde{G} \in L_2(P)$ and $\frac{1}{2} H(s, \tilde{g}, P_n) \xrightarrow{p} o, \tilde{g}$ satisfies ULLN: $\sup_{g_1,g_2} \left\| \begin{array}{c} g_1 - g_2 \\ g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ g_1 - g_2 \\ \end{array} \right\| \left\| \begin{array}{c} a \cdot s \cdot \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \end{array} \right\|_{0} - \left\| \begin{array}{c} g_1 - g_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right\|_{0} - \left\| \left\| \begin{array}{c} g_1 - g_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right\|_{0} - \left\| \left\| \left\| \begin{array}{c} g_1 - g_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right\|_{0} - \left\| \left\| \left\| \left\| \left\| \left\| \left\| \left\| \left\| \right\|_{0} \right\|_{0} \\ \\$ There pre, finite wp1 because of (ii) $H(S, G, P) \leq H(S_2, G, P_n)$ a.s. fr large enough n. Flence & is totally bounded. 1