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 Econometrica, Vol. 57, No. 5 (September, 1989), 1027-1057

 SIMULATION AND THE ASYMPTOTICS OF
 OPTIMIZATION ESTIMATORS

 BY ARIEL PAKES AND DAVID POLLARD1

 A general central limit theorem is proved for estimators defined by minimization of the
 length of a vector-valued, random criterion function. No smoothness assumptions are
 imposed on the criterion function, in order that the results might apply to a broad class of
 simulation estimators. Complete analyses of two simulation estimators, one introduced by
 Pakes and the other by McFadden, illustrate the application of the general theorems.

 KEiywoRDs: Computationally intractable probabilities, discrete choice, aggregation,
 simulation estimators, discontinuous objective functions, Vapnik Cervonenkis classes,
 empirical processes.

 1. INTRODUCTION

 CONSIDER A MODEL in which the true value, 00, of a parameter vector is implicitly
 defined as the unique solution to an equation G(0) = 0, for a suitable vector-value

 function, G. A natural way to estimate 00 is to construct a sequence {GJ} of
 random functions that converges to G in some sense, then find the 0,f that makes

 G"( 0,) as close to zero as possible. This paper presents conditions under which
 such a 0,f converges to 00 and n ( 0 - 0f) satisfies a central limit theorem. We
 avoid smoothness assumptions on G, so that G, can be a discontinuous function
 of 0.

 Our analysis is motivated by a desire to obtain the asymptotic properties of a
 broad class of simulation estimators: estimators that arise in cases where simula-
 tion experiments are used to provide estimates of complicated functions that
 otherwise could not (or could not easily) be evaluated. As our examples will

 illustrate, the simulation process often generates a discontinuous G,(-).
 To illustrate the usefulness of simulation estimators, consider a simple econo-

 metric model which specifies a set of conditions on population moments

 G(O) = fh(x, )P(dx),

 and assumes they equal zero at the true 00. Characteristically, estimators of 00
 would be obtained by drawing a random sample of size n from the population of
 interest, and then finding that value of 0 that makes the sample moment,

 n

 gn(0) = n h(xi, 0),

 as close as possible to zero.

 1 We are grateful to Daniel McFadden for discussions of his preprint on simulated moment
 estimators, which persuaded us to make several revisions in our original working paper. We are also
 grateful to two referees and an editor of this journal for constructive criticism. This research was
 supported in part by NSF Grants No. SES-8520261 and DMS-8503347.
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 1028 ARIEL PAKES AND DAVID POLLARD

 This can only be done if it is easy, or at least practicable, to evaluate g"(0).
 For many models of current interest, particularly those whose restrictions involve
 multi-dimensional integrals, this computational problem is extremely burden-
 some, or impossible, even with the most sophisticated of computing equipment.
 Simulation can often be used to circumvent this problem. If simulation experi-
 ments can be used to produce a good estimate, G(0), of g(0), then one feasible

 estimator of 00 is the value of 0 that makes GJ(0) as close as possible to zero.
 In the moment example, if h(x, 0) were difficult to calculate but it had an

 interpretation as a conditional expectation of a tractable function,

 h(x, 0) = JH(x, , )P(d'Ix),

 with P(- lx) a known family of distributions, then a simulation estimator would

 be easy to construct. One could generate observations ti1j,l.' j from the
 distribution P(. Ixi), form the average

 s

 h (xi, 0) = s-1 E H(xig Dijj 0)
 j=1

 for each 0, then estimate 00 by making

 n

 Gn(0) = n E h(xi, 0)
 i=l

 as close as possible to zero.

 Section 4 provides a detailed analysis of two examples, one introduced by
 Pakes (1986), and the other by McFadden (1989), where this method of simula-
 tion can be used. The examples illustrate how one can verify the conditions of the
 general limit theorems that are presented in Section 3. They also show how
 simulation can be used to circumvent two familiar types of computational
 problems: evaluating intractable aggregation formulae, and evaluating discrete
 response probabilities.

 In Pakes (1986), the function H(-, 0) determined an individual's responses to a
 stimulus conditional on a vector of parameters (0) from a microeconomic
 behavioral model, and P provided the distribution of the stimulus in the
 population of interest. The problem was to estimate the true value of the micro
 parameters, 00, by explicitly aggregating the micro responses into the totals (or
 economy-wide aggregates) predicted by different values of 0, and then fitting the
 aggregate predictions to aggregate data. For each different value of the stimulus
 the individual responses were easy to evaluate. However, the integral required to
 derive the aggregate implications of 0, that is h (-, 0), proved intractable. To
 circumvent this problem, Pakes drew a random sample from P, calculated
 H(-, 0) for each draw, and then estimated 00 by minimizing a distance between
 the simulated aggregates and the aggregate data. In Pakes's model H(-, 0) was a
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 OPTIMIZATION ESTIMATORS 1029

 discontinuous function of 0, and, since the function minimized was a sum of

 these functions, it was also discontinuous. Pakes's problem is our Example 4.1.
 In the discrete response problem studied by McFadden (1989), individual

 choices were a function of an only partially observed vector of deviates, and a
 vector of parameters to be estimated. In principle, for any given value of the
 parameter vector, 0, the probabilities of alternative choices could be evaluated by
 determining the choice made for every possible realization of the unobserved
 deviates, and then taking the conditional expectation of the indicator functions
 for the different choices. In practice, the desired integral is often too complicated
 to evaluate. Earlier, Lerman and Manski (1981) had proposed simulating the
 response probabilities for the discrete choice problem, and then finding that value

 of 0 that maximized a likelihood function in which the simulated frequencies
 replaced the intractable true choice probabilities. Lerman and Manski's (1981)

 heuristic argument for the limit properties of their estimators required s, the
 number of simulation draws per observation, to grow large as well as n. However,
 examples in which both s and n were kept large required an impractical amount
 of computer time. McFadden (1989) noted that by combining moment conditions
 in which the theoretical choice probabilities enter linearly with a simulation
 estimator for those probabilities, one could obtain a simulation estimator for the
 parameters of the discrete response model that could be expected to have

 desirable asymptotic properties when the number of simulation draws per sample

 observation is held fixed, and sample size tends to infinity. This works because
 linearity allows the errors in the simulation to be averaged out over the sample.
 McFadden's problem will be our Example 4.2.

 Given the insights provided by these articles, it is easy to generate numerous
 other examples where simulation can be used to solve an otherwise intractable
 computational problem. Most seem to fit in the moment framework outlined
 above, or something very similar.

 Section 3 of this paper provides conditions under which 0,Y, the estimator of 00
 obtained from a random criterion function G(0), is consistent and asymptoti-
 cally normal. The theorems of this section are general enough to cover a broad
 class of simulation estimators. All but one of the conditions underlying each
 theorem are standard and require little explanation. The difficult (yet critical)
 condition insures that G(0) - G(0) is small uniformly in 0. For consistency
 arguments something like a uniform law of large numbers is needed. For the finer
 asymptotics of the central limit theorem a more stringent bound is needed, but
 uniform only in small neighborhoods of 00.

 Section 2 summarizes one method for checking the uniformity conditions of

 the theorems in Section 3. The method is particularly useful for applications such
 as the study of simulation estimators, where the criterion function can have
 discontinuities. It is heavily dependent upon independence assumptions, which
 makes it unsuitable for many time series applications. In the presence of
 dependence, methods based on smoothness assumptions are more successful.
 These methods correspond roughly to the empirical process technique of bracket-
 ing (see Section 6 of Pollard (1985), or Pollard (1989b)).
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 1030 ARIEL PAKES AND DAVID POLLARD

 A reader who prefers to get an overview of the limit theorems before plunging
 into the details of their uniformity conditions could read Section 3 before Sec-
 tion 2.

 Notation

 Throughout the paper we use the Op(.), op(-) notation of Mann and Wald
 (1944), as exposited by Chernoff (1956). When applied to vectors and matrices,
 the symbols should be interpreted entry by entry.

 The symbol 11 11 denotes not only the usual Euclidean norm but also a matrix
 norm: II(b,j)II = (Ej, jb2)1/2. It has the useful property that IIBXII < IIBiI llxll for
 each vector x and each conformable matrix B.

 If x is a k x 1 vector, we will write diag(x) for the k x k diagonal matrix with
 the elements of x along its principal diagonal.

 The symbol -+ denotes convergence in distribution.

 2. EMPIRICAL PROCESS METHODS

 This section describes a specialized technique that is particularly useful for
 deriving limit theorems for estimators obtained by minimizing random criterion
 functions with discontinuities.

 Let 41, 42"... be independent observations sampled from a distribution P on a
 set 8. The empirical measure Pn is defined as the probability measure that places
 mass l/n at each of 4 ,,. For each measurable subset D of X, the strong
 law of large numbers implies that P D converges almost surely to PD, and the

 central limit theorem implies that Vn(PnD - PD) has an asymptotic normal
 distribution. There is now a large literature devoted to uniform extensions of
 these results for classes of sets and classes of functions. Some of these extensions
 provide ready-made ways of checking the uniformity conditions that will underlie
 the theorems in Section 3.

 The simplest uniformity problem was solved most elegantly by Vapnik and
 Cervonenkis (1971). They gave conditions for a class 9 of measurable subsets of
 X to satisfy a uniform strong law of large numbers:

 (2.1) sup I PD - PD - 0 almost surely.

 Amongst their results was a very simple combinatorial condition on -9 that
 guarantees (2.1) for every distribution P. An exposition of their approach,
 modified to take advantage of recent refinements, appears in Section 11.4 of
 Pollard (1984).

 Classes of sets that satisfy the combinatorial condition of Vapnik and
 Cervonenkis are called VC classes (or polynomial classes by Pollard (1984)). In
 the next definition #(-) denotes cardinality.
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 OPTIMIZATION ESTIMATORS 1031

 (2.2) DEFINITION: A class of sets 9 is called a VC class if there exist

 constants A and V such that: if S is a finite subset of ( then

 #{SnD: D _9} <A(4S)v.

 The VC property requires that the number of distinct subsets picked out by 9
 from an S of size n grows much more slowly than 2', the maximum number of

 distinct subsets of S. Thus the class of all finite subsets of 2 containing 3 or
 fewer points is a VC class, because the number of subsets of S that it can pick
 out grows like n 3. A less obvious example is the VC class of all closed balls in
 S 2; the number of subsets it picks out also grows like n3. Notice that subclasses
 of a VC class are VC classes.

 The VC property guarantees a very strong form of (2.1). The proof of the next

 lemma, and the proofs of other results about VC classes in this section, may be
 found in Pollard (1984).

 (2.3) LEMMA: If 9 is a VC class, then the uniform strong law of large numbers

 (2.1) holds for every P.

 Strictly speaking, the statement of this lemma is incomplete because it omits
 the necessary measurability qualifications. It would be sufficient to add the
 assumption that . be permissible in the sense of Appendix C of Pollard (1984).
 In practice one checks permissibility by showing that the set of indicator

 functions of sets in 9 can be represented as { f(, t): t e T }, where f (x, t) is a
 function jointly measurable in its arguments and T is a Borel subset of a compact
 metric space. Other assertions in this section could be modified similarly to
 ensure complete measure theoretic veracity.

 There are several very simple methods for constructing VC classes. The most
 basic of these shows that the VC property is closely related to finite dimensional-

 ity. Recall that a class of functions C, is said to be finite dimensional if each g in
 C can be expressed as a linear combination of a fixed, finite set of basis functions

 g1,..., gk in 9. For example, the class of all polynomials of degree 3 on the real
 line is finite dimensional; every such polynomial is a linear combination of the
 basis functions 1, x, x2, and X.

 (2.4) LEMMA: If C is a finite dimensional vector space of real-valued functions
 on X, then the class of all sets of the form { g > t} or { g > t}, with g E 9 and
 t eG , is a VC class.

 Typically one constructs VC classes by first generating a basic class using the
 last lemma, and then combining the basic sets using a fixed finite number of

 Boolean operations. The second step is justified by the next lemma. (In the fourth
 assertion the superscript c denotes a complement.)
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 1032 ARIEL PAKES AND DAVID POLLARD

 (2.5) LEMMA: If if and 9 are VC classes, then so are

 (i) fU?

 (ii) { C U D: C E- i, D E- }-,

 (iii) {C n D : C E= if D E- -9 }

 (iv) {Cc: C 6}.

 Our final lemma for classes of sets proves that the VC property is preserved by

 the operation of taking inverse images. It gives us a way to prove limit theorems
 for sequences { T(t)} obtained by applying a fixed transformation to each {i. It
 also shows why the sets in a VC class need not have smooth boundaries nor have
 simple connectedness properties: such regularity can be destroyed by a highly
 irregular map T.

 (2.6) LEMMA: If T is a map from a set X into a set MY, and if 9 is a VC class of

 subsets of MY, then { T-1D: D E -9 } is a VC class of subsets of X.

 PROOF: Let S be a finite subset of X. Suppose D1 and D2 are sets in 9 whose
 inverse images pick out different subsets from S:

 (T-ID1) n S o (T-1D2) n s.
 Then D1 and D2 pick out different subsets from the image of S under T:

 (Ts) n D1 (Ts) n D2.

 Thus

 #{Sn (T-1D): D e}

 < #?{(TS)nD:D }

 < A ( #TS)v

 < A(#S) v.

 The results for VC classes of sets admit several generalizations to classes of

 functions. Nolan and Pollard (1987) have introduced the concept of a Euclidean

 class as one possibility; Dudley (1987) has studied a multitude of other plausible
 generalizations. We consider only Euclidean classes in this paper.

 Let J be a class of real-valued functions on X. An envelope for Y is any

 function F such that Ifl < F for all f in Y. If u is a measure on X for which F
 is integrable, it is natural to think of Y as a subset of 21(p), the space of all
 ,u-integrable functions. This space comes equipped with a distance defined by the

 Y'(,u) norm. The closed ball with center fo and radius R consists of all f in
 Y'(/L) for which fIt - fo1 d,u < R.

 (2.7) DEFINITION: Call Y Euclidean for the envelope F if there exist positive
 constants A and V with the following property: if 0 < E < 1 and if ,u is a measure
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 OPTIMIZATION ESTIMATORS 1033

 for which fFd1i < o0, then there are functions fl,'**, fk in F such that

 (i) k<Ae-V,

 (ii) Y is covered by the union of the closed balls with radius eJFdy and

 centers fl'....Ifk. That is, for each f in Y, there is an fi with
 f If- i dI A efFd4.

 The constants A and V must not depend on IL.

 Implicit in this definition is the assumption that the functions in Y and the

 envelope F are measurable with respect to a fixed a-field on ., and that the
 measure ji lives on this a-field.

 If a class of functions is Euclidean it is necessarily manageable in the sense of
 Pollard (1989a), which provides the necessary proofs for this section. A class Y
 that consists of the indicator functions of sets in a class .9 is Euclidean (for the

 envelope F 1) if and only if -9 is a VC class. Thus theorems for Eucidean
 classes will always include results for VC classes as special cases. For example,
 the next lemma generalizes Lemma 2.3.

 (2.8) LEMMA: If Y is Euclidean for the envelope F and if JFdP < so, then

 sup ffdP - ffdP -*0 almost surely.

 Here are some examples of Euclidean classes. They all involve some sort of
 smoothness or finite dimensionality, but not necessarily in the way required by
 traditional proofs of uniform limit theorems.

 (2.9) EXAMPLE: Let {gl, ..., gk} be a finite set of functions on T. For each
 positive, finite M write FM for the class of all linear combinations Ejajg&(.)
 with j I ai < M. It is Euclidean for the envelope F = M maxi gi . Without the
 bound on the coefficients the class would still be Euclidean, but only for the

 trivial reason that an infinite envelope excludes all but trivial I measures from
 Definition 2.7. Of course such classes are amenable to traditional techniques.

 (2.10) EXAMPLE: Let K(.) be a function of bounded variation (but not neces-
 sarily continuous) on the real line. Let Y consist of all rescaled translates of K:
 that is, functions of the form

 f, y(x) =K(Y-),

 where y ranges over 9 and a > 0. It is Eucidean for the constant envelope
 F =sup I KI. Such classes are useful in the study of nonparametric smoothing
 procedures. See Nolan and Pollard (1987).
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 1034 ARIEL PAKES AND DAVID POLLARD

 (2.11) EXAMPLE: Let jZk denote the class of all real functions on 9 that are

 bounded in absolute value by a fixed function F and satisfy: for each f in Fk
 there is a partition of v into k intervals on each of which f is linear. The class

 Fk is Eucidean for the envelope F. The possibility that f might have discontinu-
 ities at the partitioning points makes this class difficult to analyze by traditional
 methods.

 In each of the last three examples the Euclidean property could be verified by
 application of the lemmas that follow. As with VC classes, the best strategy for
 identifying Euclidean classes is to combine simpler classes according to the rules
 that preserve the Euclidean property. The starting point is usually one of the next
 two lemmas.

 To each real valued function on a set -T there corresponds a subset of the
 higher dimensional set ?e 9, its subgraph:

 subgraph(f ) = { (x, t) c- TO : O < t < f(x) or O > t >Jf(x)}.

 For example, the subgraph of any of the piecewise linear functions in Example
 2.11 is made up of a union of k subsets of M2, each of which is a quadrilateral or
 a union of two triangular regions. The next lemma shows that all polynomial
 classes of functions, in the sense of Pollard (1984), are Euclidean.

 (2.12) LEMMA: If {subgraph(f):feY} is a VC class of sets, then Y is
 Euclidean for every envelope.

 The second basic method deduces the Euclidean property from an analogous
 property of bounded subsets of the ordinary Euclidean space d.

 (2.13) LEMMA: Let = {f(., t): t E T} be a class of functions on . indexed
 by a bounded subset T of Md. If there exists an a > 0 and a nonnegative function
 4( ) such that

 if(x,t)-f (x, t') |<+(x)lit-t'lla forx E9 and t,t' ET,

 then F is Euclidean for the envelope lf( to) I + MO(.), where to is an arbitrary
 point of T and M = (2Vd SUPT llt - toll)a.

 PROOF: For simplicity we consider the case d = 2. Write D for supT lIt - to0I
 Enclose T in a square S of side 2D. Given E with 0 < E < 1, choose an integer k
 with 1 < kela/ < 2. Partition S into k2 subsquares of side 2D/k. From each
 subsquare that intersects T choose, arbitrarily, a point in the intersection. Let

 {tl, ..., tN) be the set of all such points. Of course N < k2 < 4e2/, which is the
 right rate of growth for a Euclidean class.

 Each t in T belongs to at least one of the subsquares. The corresponding ti lies
 a distance no greater than A = F5i2D/k from t. Write F for the given envelope.

This content downloaded from 
������������69.174.157.214 on Wed, 26 Oct 2022 01:42:44 UTC������������� 

All use subject to https://about.jstor.org/terms



 OPTIMIZATION ESTIMATORS 1035

 Then, for all x,

 If (x, t) - f (x, tj) I < f (x) AX < ?F(x).

 When both sides are integrated with respect to a measure I this gives the bound
 required by Definition 2.7.

 The closure properties for Eucidean classes are determined by pointwise
 algebraic operations analogous to the Boolean operations that preserve the VC

 property.

 (2.14) LEMMA: If Y is Euclidean for an envelope F, and C is Euclidean for an
 envelope G, then

 (i) { f + g: f EY, g E C } is Euclidean for the envelope F + G;

 (ii) { fg: f E i, g C W } is Euclidean for the envelope FG;

 (iii) both {max(f, g): f EY, g E G) and {min(f, g): f e F, g E G) are
 Euclidean for the envelope max( F, G);

 (iv) for each positive M the class { af: f EYi, a e M, I a < M } is Euclidean
 for the envelope MF.

 (2.15) LEMMA: If T is a measurable map from - into @/, and if Y is a class of
 functions on 3' that is Euclidean for an envelope F, then the class of composed
 functions { f o T: f eY ) is Euclidean for the envelope F o T.

 PROOF: Given a measure ,u on -T, write 1T for its image measure on C under
 the map T. If fi,..., fk are the functions for which

 min Jff-fA d1T<~eJFdtLT,

 then fi o T,..., fk o T are appropriate for ,u, because

 fgd1T= goTdjt

 for every nonnegative, measurable g on C.

 As an illustration of how these lemmas may be applied, we will prove that the

 class Jk from Example 2.11 is Eucidean for its envelope F. From Lemma 2.12,
 it is good enough to prove that the subgraphs form a VC class. Each subgraph is
 a union of at most 2k triangular regions in M2. Each triangular region is the
 intersection of three open or closed halfspaces in 2. So, with 2k application of
 Lemma 2.5(ii) followed by three applications of Lemma 2.5(iii), the problem is
 reduced to proving that the class of all halfspaces is a VC class. Every halfspace

 can be represented as { g ,8 > t } or { g ,/ > t } for some real numbers a, /B, t,
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 1036 ARIEL PAKES AND DAVID POLLARD

 where gz (x, y) = ax + ,By. The class of all ga,f3 functions is a two dimensional
 vector space. Lemma 2.4 completes the argument.

 Lemma 2.8 is a uniform analogue of the strong law of large numbers. The
 empirical process literature also contains uniform analogues of the central limit
 theorem. These are expressed in terms of the standardized empirical process

 Pn, = n(P - P). This process acts linearly to produce a standardized sum for
 each f in Y2(p),

 vn(f )n - n1/2 [f - ffdPj]

 which converges in distribution to a normal with variance ff2 dP -[ ff dP]2 and
 zero mean. The empirical central limit theorems give conditions under which the
 convergence is locally uniform in f, in the sense that small Y2(P) perturbations

 of f have only a small effect on vn(f ). We do not need a precise statement of the
 limit theorem (Section VII.5 of Pollard (1984)) in this paper, because it is only
 the perturbation property that we need in order to check the uniformity condi-
 tions of the theorems in Section 3.

 (2.16) LEMMA: Let Y be a Euclidean class with envelope F for which JF2 dP <

 xo. For each q > 0 and E> 0 there exists a 8 > 0 such that

 lim sup P SUP Vn (f1) - V( 2) > 'q} <,
 []

 where [8] denotes the set of all pairs of functions in Y with ff -12)2 dP < 82*

 The assertion of the lemma translates into a smoothness property for a class

 { f ( -, 0): 0 E 6)) if the parameterization is continuous at 00 in the 2,2(p) sense,
 that is, if

 [Lf(., @)_f(_, ,0)]2dP __* 0 as 00.

 If the envelope F is square-integrable with respect to P, a simple sufficient

 condition for Y2(p) continuity at 00 is continuity of the function f(x, ) at 00,
 for P almost all x. This follows by the Dominated Convergence Theorem
 because [ f(x, 0) - f(x, 0O)]2converges almost-surely to zero and it is bounded by
 the integrable function 4F2. When f(, 0) is the indicator function of a set D(8)
 the almost-sure convergence is usually verified by showing: (i) each x in the
 interior of D(0O) belongs to D(8) for all 0 close enough to 0H; (ii) each x in the
 interior of the complement of D(0O) belongs to the complement of D(8) for all 0

 close enough to 00; (iii) the boundary of D(0O) has zero P measure. Conditions
 (i) and (ii) merely restate the definition of continuity of indicator functions at
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 OPTIMIZATION ESTIMATORS 1037

 each x not on the boundary of D(0O). Condition (iii) anticipates that it is only
 the boundary points where the convergence of the indicator functions might fail.

 The combination of almost sure continuity and domination will be familiar to
 those readers who have studied uniform laws of large numbers, such as the one
 proved by Hansen (1982). For us the combination plays a completely different
 role; it is a sufficient condition for translating a uniform central limit theorem,
 which is a more powerful local result than a law of large numbers, into a
 parametric form. To get uniform central limit theorems directly from the domina-
 tion condition one needs more detailed information about rates of convergence of
 local oscillations of the functions. In empirical process theory, this is made
 precise by the bracketing method described in Section 6 of Pollard (1985), or in
 Pollard (1989b).

 (2.17) LEMMA: If {f(-, 0): G 6? } is a Euclidean class with envelope F for

 which fF2dP < oo, and if the parameterization is Y2(p) continuous at 60, then,
 for each sequence of positive numbers { 3,, } converging to zero,

 sup I J ( ) - J ( 00) o ?l) )
 It - ,,t <'an

 PROOF: Fix e > 0 and q > 0. We need to prove that

 limsupP{ sup Iv0f(? 0)-v0f(.,00)I>B}<e.
 110 - o01 < an

 Choose 8 according to Lemma 2.16. When n is large enough,

 sup J[f(_,0) _f(.,00)I2 dP<82,
 110- 0011 < an

 by virtue of the y2(p) continuity of the parameterization. That is, the class [8]

 eventually contains all the pairs f(-, 0), f(., 0%) for which 1/j - O0lj < 3n. The
 assertion of Lemma 2.16 is then stronger than the requirement of the present
 lemma.

 3. GENERAL LIMIT THEOREMS

 In this section we state and prove a consistency theorem and a central limit

 theorem for an estimator 0n that comes close enough to minimizing the length
 jGn( ) jj of a random, vector-valued function. This function is defined on a subset
 !9 of some Md. It should be thought of as an estimate of a deterministic,

 vector-valued function G(*) that is also defined on 6R. The true value 00 is defined
 implicitly as the unique point in 6i for which G(00) = 0.

 The requirements for the theorems usually include a uniformity condition for

 G": a condition that prescribes the rate at which G,, - G must converge to zero

 uniformly over particular neighborhoods of 00. These uniformity conditions are
 in a form well suited to the application of the uniform limit theorems from
 Section 2.
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 1038 ARIEL PAKES AND DAVID POLLARD

 The section concludes with two lemmas that state conditions under which the

 Euclidean norm 11 11 can be replaced by random norms that depend on 0, without
 disturbing the main limit theorems.

 Consistency is a global property. It makes an assertion about an estimator that
 potentially could be anywhere in the parameter space. The conditions needed to
 establish consistency are, therefore, necessarily global. Theorem 3.1 spells out one

 possible set of conditions. The estimator O,, is taken as any value that comes close
 enough (condition (i)) to providing a global minimum for JIG,( .)II. Since O0 is
 included in the set over which the minimum is taken, IIGn(On)II cannot be much
 bigger than IIGn(0o)JJ. If Gn(O) is eventually (condition (ii)) close to zero, the
 assumed value of G(0O), it follows that Gn(On) must also get close to zero. If
 small values of IIGn(O)II can occur only near O (condition (iii)), this forces On
 close to 00. No direct use is made of the assumption that G(00) is zero; the
 theorem applies to any 00 in 49 satisfying (ii) and (iii).

 (3.1) THEOREM: Under the following conditions On converges in probability to O0.

 (i) On op(1) + inf jGn(O) jj1
 0e9

 (ii) Gn(60) = op('),

 (iii) sup IIGn(()II|'=Op(1) foreach 8>0.
 110 -0011> 8

 PROOF: Fix E > 0 and 8 > 0. Condition (iii) means that there exists a finite M

 for which

 lim sup P sup 1IGn (0)11II>M }<
 110 -doll> 8

 As the range of the infimum on the right-hand side of (i) includes 0S,

 ||Gn(6n ||A < op(i) + jjGn(00) jj =o

 and hence

 P(IGn(OA) 11 > M} -*1.

 It follows that, with probability of at least 1 - 2e for all n large enough,

 ||Gn( A ) ||-1 > M) > sup jjGn(0)j11
 110 - doll > 18

 These inequalities force On to lie within a distance 8 of 00. That is,

 limsup P{ IIO -O011 > 8<} 2?.

 As e and 8 can be chosen arbitrarily close to zero, the asserted convergence in
 probability is established.
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 OPTIMIZATION ESTIMATORS 1039

 Conditions for the strong consistency of 6O would be obtained by replacing the

 op( ) and Op( ) quantities in (i), (ii), and (iii) by their almost sure analogues.
 Since our main goal is a distributional result for 06, we omit the proof of the
 stronger theorem.

 Condition (iii) says roughly that, outside a neighborhood of 60, there is

 probability close to one that IIG,(O)II stays bounded away from zero. A sufficient
 condition for this is that the deterministic IIG(0)II has a similar property and that
 Gn is everywhere relatively close to G, as shown by the next corollary.

 (3.2) COROLLARY: Under the following conditions On converges in probability to
 the unique 00 in e for which G(0O) = 0:

 (i) s|Gn ( ) || < op (1) + inf IIjGn() jj,

 (ii) inf GIG(0)II>O foreach 8>0,
 110-0011> 8

 IIGn(0) -G(0) 11~ () (iii) sup 1G 0 G()
 ( 1 + IIGn(0) 11 + IIG(0) 11 = op

 PROOF: The result could be deduced from the previous theorem, but it is just

 as easy to prove it directly by an argument similar in spirit to Huber's (1967) case
 B consistency proof.

 Fix 8 > 0. Write E for the corresponding infimum on the left-hand side of (ii).
 Then

 PIt110n - 0011> O} { VG(on)

 so it will suffice to show that IIG(0n)11 = op(l). To do this, invoke the triangle
 inequality and (iii) to get

 JIG( ^ ) || < |Gn( 1)| + JIG( n)-Gn() 1)

 sI |Gn( ^ ) || + op(l)[l + |IGn(n) + JIG(6) |] ,

 which rearranges to

 JIG( ^ ) 11 [I -op(l)] < op(l) + ||Gn( 11 |[I + op(l)].

 The right-hand side is of order op(l) because, from (i) and (iii) and the require-
 ment G(00) = 0,

 On onp(1) + jGn(00) = op(1).

 The assertion of the theorem follows.

 For the purposes of direct verification, the slightly more stringent requirements

 of Corollary 3.2 are often more convenient than the general condition in
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 1040 ARIEL PAKES AND DAVID POLLARD

 Theorem 3.1. The assumptions of Hansen's (1982) Theorem 2.2 imply the (almost
 sure analogues of the) conditions assumed for our corollary; but Huber's (1967)
 case B assumptions correspond to a generality somewhere between our theorem
 and its corollary. As the discussion that will follow our Lemma 3.4 will show, we
 sometimes do need the greater generality of Theorem 3.1.

 Once 0,6 is known to converge to 00, further limiting properties of the estimator
 require only local assumptions on the behavior of Gn and G in small neighbor-
 hoods of 00. Not only does this relieve local limit theorems of the burden of the
 global conditions in the preceding theorem and corollary, but it also leaves open
 the possibility that consistency might be established by some other ad hoc
 argument.

 The next theorem gives conditions under which 0, which is now assumed to
 converge in probability to 00, satisfies a central limit theorem. The argument
 breaks naturally into two steps. First we establish Vn-consistency by means of a

 comparison between IIGn(0n)II and IIGn(0o)II. Informally stated, the new equicon-
 tinuity condition (iii) implies that

 IIG(0) 11 <s Op(IIGn(0) 11) + OP(IIGn(00) ||) + op(n-1/2)

 uniformly near 00. Since 0On comes close to minimizing IIGn( )l, the quantity
 IIGn(0n)II cannot be much larger than IIGn(00)II, which is of order OP(n-' ).
 Approximate linearity of G near 00 transfers the same rate of convergence to
 On - 0. The argument for the second step need concern only values of 0 in a
 OP(n- 1/2) neighborhood of 00. There conditions (ii) and (iii) combine to show Gn
 is uniformly well approximated by a linear function Ln. The On* that minimizes
 IIL(.)II has an explicit form, from which asymptotic normality of F (0On* - f0 ) is
 easily established. A comparison between IIGn(0n)II and JIGn(On*)l) shows that On
 must lie within op(n-1/2) of On*, which implies the desired central limit theorem.

 (3.3) THEOREM: Let 6n be a consistent estimator of 00, the unique point of 69 for
 which G(00) = 0. If:

 (i) 01Gn ( ) 11 < op(n-1/2) + inf IGGn() 11; W On ~~~~~~~~~~0

 (ii) G(.) is differentiable at 00 with a derivative matrix r of full rank;

 (iii) for every sequence { On } of positive numbers that converges to zero,

 IIGn(0) - G(0) - Gn(00) II
 sup n172 + +p

 jj-_0,,j,&, n- + IIGn(8) II + IIG(O) 11

 (iv) VnGn (00) -* N(O, V);
 (v) 00 is an interior point of 9;

 then

 iFn,l- o0) --o-N(O, (rr)f-lr'vr(r<r)-1).
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 OPTIMIZATION ESTIMATORS 1041

 PROOF: First we prove Vn-consistency. The assumed consistency allows us to
 choose a sequence { n } that converges to zero slowly enough to ensure

 I { II6,n - 0011 > IaI n } ?* 0.

 With probability tending to one for this sequence, the supremum in condition

 (iii) runs over a range that includes the random value On. Thus

 |Gn(0,") - G(0,)) - Gn(00)

 < + p(|nGn(6n) |) + op(|G(Gn) 1)

 By the triangle inequality, the left-hand side is larger than

 -G ) ||-|lGn(0,n) ||- IIG(Gn)(0)

 Thus

 JIG(0,) [I - op(l)] < op(n1/2) + |Gn(0,2) |[1 + op(1)] + IIGn(oo0) 11

 From conditions (i) and (iv)

 |Gn ( 6) || < IIGn (00) || + op(n1-/2) = Op(n 1/2).

 It follows that

 JIG(n) = Op(n1/2).
 The differentiability condition (ii) implies the existence of a positive constant C
 for which (remember that G(0O) = 0)

 || G (09)j|| > C|| 9-0so l near 0o.

 In particular, II0n - 09o1 = Op(QIG(0n)II)= OP(n1"2).
 Next we establish asymptotic normality of xn (On - 90), by arguing that Gn( )

 is very well approximated by the linear function

 Ln(0) = r(o - o0) + Gn(o0)

 within a OP(n -1/2) neighborhood of 00. More precisely, we need the approxima-
 tion error to be of order op(n-1/2) at On and at the O9n* that minimizes IILn()II
 globally. For On this follows directly from (ii) and (iii) together with the
 4n -consistency results already established:

 O|n(6 )- n(6 n || < |IG n( n) G ( n G n(#90) 11

 JI|G(^ )r( oo8 ) 11

 < op(n-/2) + np( JGn( n) |) + op(JG() 11)

 +?p ( 10n A- oll)

 op(n n-1/2 )
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 1042 ARIEL PAKES AND DAVID POLLARD

 To correspond to a minimum of IILn(-)Hl the vector r(on* - 00) must be equal
 to the projection of - GJ(90) onto the column space r. Hence

 Fn (on* - 9o) = -n(r,r)-'r,Gn(oo).
 From (iv), the right-hand side has the asymptotic normal distribution specified in

 the statement of the theorem. Consequently On* = 00 + Op(n - 1/2), and the { An }
 sequence can be assumed to satisfy

 Because 90 is an interior point of 9 this implies that O'n* lies in 9 with probability
 tending to one. To simplify the argument slightly we shall act as if I I n* - f9JI1 <3an
 and On* belongs to 9 always. A more precise treatment would show that the
 contributions from those values of O'n* not satisfying these two requirements are

 eventually absorbed into an op(l) error term.
 From the differentiability condition (ii) we get

 JIG(9n*) II <, jjr(o9n* - ) II + o(lion* - ooll) = Op(n-1/2).

 From (iii) we get

 |I Gn (9n*) ||- G(On*) G 1-11 Gn (90) II

 op(n- + op(IIGn (on*) 11) + op(lIG(on*) 11),

 which rearranges to give II Gn (On*)= Op (n- 1/2). Then we can argue as for O2 to
 deduce that

 jGn(0(n*) - Ln(9n*) II = ?p(n /2

 We now know that Gn and Ln are close at both On, which almost minimizes
 IGnll, and On*, which minimizes IILnll. This forces O,n to come close to minimizing

 IlLnll:

 |L7(,l ||op(n -1/2 ) < JIG(@)|

 < jjGn(9n*) jj + op(n-1/2)

 < jjLn(OR') jj + op(n-1/2).
 That is,

 On = nLn(n*) II + op(n1/2).
 Squaring both sides we get

 jL (A9) 11 = jL(19*) +op(n
 the cross product term being absorbed into the o (n 1) because Ln( 9*) is of

 order OP(n- 1/2). The quadratic form IILn(9)2 has the simple expansion

 jLn((9) 112 = jjLn (9n*) 112 + jjr(o -O9*) II2,
 about its global minimum. (The cross-product term vanishes because the residual

 vector, Ln( 9n*), must be orthogonal to the columns of r.) Put 9 equal to On, then
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 OPTIMIZATION ESTIMATORS 1043

 equate the two expressions for jLj(0,j) 12 to deduce that

 ||r( 6n- on*) || = op(n 1/2).

 As r has full rank, this is equivalent to

 n ( 6n-- ) = 00 ( n- 00) + op(l)

 from which the asserted central limit theorem follows.

 Notice that the equicontinuity condition (iii) is in a form to which Huber's

 (1967) Lemma 3 (or Lemma 4 of Pollard (1985)) can be applied if Gn(-) happens
 to be an average of the form Pnh(-, 0). For if IIGn(0)II + IIG(0)II is reduced to
 ChIO - 0011, the quantity within the supremum in condition (iii) increases to

 ||4n(Pn -P) [h (, ) - h (- 0o)] 1
 I + FnCIIO - 0oll

 The limiting normal distribution involves the matrices r and V, which depend
 implicitly upon the unknown 00. In practice one would need consistent estimators
 of these matrices before the limit distribution could be used as an approximation.
 For r, its interpretation as a derivative of G suggests an estimator

 ?ni= Ent [Gn(06n + EnUi) -Gn ( n)]

 for the ith column of r, where ui is the unit vector with 1 in its ith place and
 { En }is a sequence that converges in probability to zero. The uniformity condi-
 tion (iii) of Theorem 3.3 implies that this equals

 En [ G ( + enu) -G( 6n )] + E-1[o (n-12) +

 which converges in probability to rui provided n-1/2E -1 - O(l). For example,
 En= n would lead to a consistent estimator for r provided 8 < 1/2.

 The statement of the theorem gives little explicit information about the
 dependence of V on 00. For the moment example in the introduction there is,
 however, a natural estimator for V. For notational simplicity consider the case
 where s = 1, so that

 Gn (0) = PnH(- ' #)

 where Pn is the empirical measure for the vectors (xi, t 4 Lemma 2.17, which we
 use to establish the uniformity condition (iii) of the asymptotic normality
 argument (Theorem 3.3), requires the class

 94"= {H(, ,0):Oe9}
 to be Euclidean with square integrable envelope and H(, ,0) to be ? 2(p)
 continuous at 0 = 00. This makes

 Y= { H(. , * ,)H(., , 0 )': 0 E 9}
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 1044 ARIEL PAKES AND DAVID POLLARD

 Euclidean with an integrable envelope (Lemma 2.14), and

 V(0) =PH(., *, )H(., *, )'

 continuous at 0 = 00 with V= V(00). Consequently, if we define

 Vn(62) =PnH(- @,*,)H(-, *, ),

 Lemma 2.8 insures that

 |Vn ("n) - v|| < sup IIVn(0) - V(0) jj + 1|V(00 - V(00) 11 = op(1).
 0

 That is, Vn( 0n) is a consistent estimator of V.
 The asymptotic distribution in Theorem 3.3 is determined by both the behavior

 of ?nGn(00) and the solution of a minimization problem for the Euclidean norm
 1 11 If a different norm is used the asymptotic variance matrix is changed. With

 the proper choice of norm the asymptotic efficiency of On can be improved-the
 discussion for the multinomial problem of Example 4.1 will elaborate. The next
 two lemmas specify appropriate constraints on the choice of the norm.

 For each nonsingular matrix A a new norm 11I IA is defined by setting
 IIXII A = IlAxll. The choice of A for the limit theorems in this section could depend
 on both 0 and the data from which the random Gn(-) is constructed. That is, the
 norms could be defined by matrices { An()) whose elements are random
 variables that depend on 0. A typical example is the method of minimum
 chi-square for the classical multinomial model, where the difference between
 observed and expected cell counts is weighted using a diagonal matrix with
 elements inversely proportional to the square root of estimated cell counts.

 The first lemma gives conditions on the random matrices that preserve the

 consistency conditions of Theorem 3.1. If An(0) became too nearly singular for
 values of 0 not near 00, the norms IIAn(0)Gn( 0)1 could be close to zero outside
 neighborhoods of 00. Condition (b) of the lemma prevents this degeneracy by
 placing a bound on the matrix norm of the inverse of An(0) Condition (a)
 ensures that An(0O)Gn(0O) converges in probability to zero.

 (3.4) LEMMA: Let { An(#(): 0 e 6} be a family of sequences of nonsingular,
 random matrices for which

 (a) jAn (00) jj = Op(l),

 (b) sup ||An(01 | = Op(l).
 o~e

 If Gn(-) satisfies conditions (ii) and (iii) of Theorem 3.1 then these conditions also
 hold with Gn(0) replaced by An(0)Gn(0).

 PROOF: From (a) and condition (ii) of the theorem:

 IIAn(00)Gn (00) jj <s IIAn(00) jj IIGn (00) jj = Op(1)op(1) = op(1).

This content downloaded from 
������������69.174.157.214 on Wed, 26 Oct 2022 01:42:44 UTC������������� 

All use subject to https://about.jstor.org/terms



 OPTIMIZATION ESTIMATORS 1045

 For the analogue of (iii), first notice that, from the definition of the matrix norm,

 11A,(0) lxll < |A,(0) llljjxjj for all x

 Put x equal to AJ(O)GJ(0), then rearrange to get

 ||An(t})Gn (t) II < 11 AJOYt} I1 |Gn(t0) 11|

 Thus, for each 8 > 0,

 sup IIAn(O)Gn(o) II < sup ||An(0)111 sup jjGn(9n)ji|
 11 -0Roll> 8 0 E e 110 -0011> 8

 On the right-hand side, both factors are of the order Op(1).

 Notice that the lemma imposes no uniform upper bound on IIAn(O)II. If Gn
 were replaced by AnGn in condition (iii) of Corollary 3.2 the ratio on the left-hand
 side could get close to 1 if IIAn(O)II were unbounded. Corollary 3.2 would suffice
 if we were to restrict ourselves to bounded An, but in some cases that would be
 an unnatural restriction. For example, with the method of minimum chi-square in
 the multinomial problem, it would amount to an assumption that all cell
 probabilities were bounded away from zero. We discuss this further in Ex-

 ample 4.1.

 Once consistency has been established, only the behavior of {An(8)} in
 shrinking neighborhoods is relevant. The final lemma requires that An(8) be
 close to a fixed nonsingular matrix A uniformly over these neighborhoods. It is
 this matrix A that will be passed through to the limiting variance matrix.

 (3.5) LEMMA: Let {An(0:0 Ce 9)} be a family of sequences of nonsingular,
 random matrices for which there exists a nonsingular, nonrandom matrix A such
 that

 sup II (A ) -A II = op(1)
 11-111 ol< an

 whenever {8n} is a sequence of positive numbers that converges to zero. If
 conditions (ii), (iii), and (iv) of Theorem 3.3 are satisfied by Gn(.) and G(.), then
 they are also satisfied if the Gn(0) is replaced by An(0)Gn(0), the G(0) by AG(0),
 the V by A VA', and the rby Ar.

 PROOF: The convergence in distribution of the pair (An(00), n Gn (00)) to the
 pair (A, N(O, V)) implies that x/-An(00)Gn(00) -N(O, A VA'). (A formal argu-
 ment would use Theorem 4.4 of Billingsley (1968) and the Continuous Mapping

 Theorem.) Existence of a derivative with full rank for AG(0) at 00 is a trivial
 consequence of the nonsingularity of A.

This content downloaded from 
������������69.174.157.214 on Wed, 26 Oct 2022 01:42:44 UTC������������� 

All use subject to https://about.jstor.org/terms



 1046 ARIEL PAKES AND DAVID POLLARD

 For the uniformity condition, subtract and add terms AJ(0)G(0) and
 AJ(O)Gn(O0), then invoke the triangle inequality to get the bound

 ||An(0)Gn(0)-AG(0) -An(OO)Gn(OO) II

 < IIjAn(() jj jjGn(0) - G(0) - Gn(O0) jj + IjAn(0) -Aj1 IIG(0) 11

 + tIAn(O) -An(90) jj IGn((00) jj

 s Op(1)IIGn(0) - G(O) - Gn(O0) jj

 +op(1)IIG(0) || + op(1)0 (n-//')

 - op(n-1/2) + oP(IIGn(0) 11) + op(IIG(0) 11)

 uniformly over the neighborhood { 110 - 0011 < an }. We need this to be less than
 op(1) times n-7/2 + IIAnGn(9)II + IIAG(0)I1, which is greater than

 n-1/2 + IIAGn( 0) j I-I IAn(0) -Aj IIGn(0) jj + IIAG(0) 11,

 again uniformly over the neighborhood. Because A is nonsingular, there exists a
 positive C for which this last expression is greater than

 n-1/2 + [C-op(1)] IIGn (0) II + CIIG(0) 11.

 The asserted analogue of the uniformity condition (iii) follows immediately.

 4. ANALYSES OF THE EXAMPLES

 This section provides a detailed examination of the asymptotic behavior of the

 estimators introduced by Pakes (1986) and McFadden (1989). Both examples
 illustrate the effect of replacing an intractable function by a random function
 generated from a simulation sample s times as large as the original data sample.
 The linearity in the estimating equations makes the randomness from the
 simulation act like an extra additive source of randomness in the data, but scaled
 down by a factor of s-1. This is seen clearly in the form of the limit distribution
 for the simulation estimators.

 The analysis of both examples proceeds as follows. We begin by outlining the
 model and deriving the objective function to be minimized. Assuming the
 estimator is obtained by minimizing the objective function up to a term of order

 op (1/ n), we check for all but the uniformity conditions of the consistency and
 asymptotic normality theorems in Section 3. Finally we show that the required
 uniformity conditions are also satisfied.

 4.1. Example

 Pakes (1986) fit an optimal stopping model for the renewal of patents. Each
 year patentees had to decide whether to pay a renewal fee in order to keep their
 patents in force. The renewal decision was based on the expected discounted
 value of future returns from holding the patent. Since the stochastic process
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 OPTIMIZATION ESTIMATORS 1047

 generating those returns was assumed to be Markovian, the renewal decision

 depended only on current returns. The stopping rule specified a value that
 current returns had to exceed in order for the patent to be renewed. For any
 given value of the parameter vector determining the distribution of initial returns

 and the Markov process generating subsequent returns, say 6, the model deter-
 mined a vector, g(0), of the expected proportion dropping out at each age. The

 data contained the observed dropout proportions, pn. If g(-) had been an easily
 calculable function of 0, any of the usual estimation procedures for the multino-
 mial distribution could have been used to estimate 0. The elements of g(0) were,
 however, determined by the proportion of current returns greater than the
 stopping value, and the Markov and stopping processes combined to produce a

 distribution of current returns which was not tractable. This led Pakes to
 substitute a simulation estimator, T?(0), for g(0) in the likelihood equations used
 to estimate 00. For a fixed 0, the simulation estimate was obtained by taking ns
 random draws from the implied initial distribution, passing each through the

 process determined by the model, and then simply counting up the proportions

 that dropped out at each age. (Note that s need not be an integer in this
 example.)

 We discuss the asymptotic properties of simulated minimum distance estima-
 tors for this problem. (Minor modifications, along the lines of Pollard (1979),
 provide the properties of Pakes's simulated maximum likelihood estimator.) Our
 discussion begins by checking the consistency and asymptotic normality condi-

 tions of Theorems 3.1 and 3.3 for the estimator which minimizes

 11 Gn (#) || = 11 Pn - ^s (0) 11

 This is the simulated analogue of the estimator which minimizes gn (0) I Pn -
 g(0)II, an estimator which satisfies the conditions of Theorems 3.1 and 3.3 by
 virtue of the standard limit properties of gn(00) and the differentiability of g(0)
 at 0 = 00 (see below). Later we invoke Lemmas 3.4 and 3.5 to insure consistency

 and asymptotic normality when we minimize instead An(0)Gn(0), with An(@) =
 diag[ T?(0) - 1/2] and Apn() = diag[ p,7/2] (thus producing the simulated ana-
 logues of the traditional minimum chi-square and modified minimum chi-square
 estimators). Since

 |Gn() || S |Pn -S@ |1 + || 7J# VS )1

 the law of large numbers ensures that IIGn(00)II = op(l), which is condition (ii) of
 Theorem 3.1. To obtain (iii), and hence consistency, we assume, as did Pakes
 (1986), the identification condition that

 110-ol0>11 ( )11 110 Ooll>8 (

 Now note that

 inf IIGn(0) > inf IIG(0) -sup IIGn(0) - G(0)|
 110-0011 ~110-0011>86 8
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 1048 ARIEL PAKES AND DAVID POLLARD

 The right-hand side of this expression will be bounded away from zero with

 probability tending to one, and (iii) will be satisfied, provided sup091IGn(0) -
 G(0)II = op(l). This is the uniform law we verify below.

 To ensure asymptotic normality we check the conditions of Theorem 3.3. Pakes
 proved that g(0) was differentiable at 0 = 00 and assumed that its derivative
 matrix r was of full column rank. Also 0 was specified to be an open subset of
 Euclidean space so that 00 was trivially in its interior. Left to check are the limit
 properties of the objective function evaluated at 0 = 00, and the stochastic
 equicontinuity condition, or (iii) and (iv) of Theorem 3.3.

 The multivariate central limit theorem (Theorem 11.10 of Breiman (1968))
 guarantees that

 [ pn -,(f0)] - N(0, V),
 where V = diag[,g(00)] - g(0),g(O0)'. Now recall that at the true 00 the simula-
 tion mimics the data generation process for a sample of size sn. Consequently
 Vn[ L (00) - TT(90)] has the same limit distribution as n[pn - 7T(Oo)]: normal
 with mean zero and variance s-1V. Moreover, since the data generation and
 simulation processes are independent,

 xb~G,(0o)=b7[p~~(00) -xn[T(0o) --7(0o)] FnG.,(00) =n [ Pn-_'(00)] 4[T5(i) )

 N(0, (I + s ) V)

 So the limit distribution of n Gn (00) differs from that of n7gn (00) = nIPn-
 ,g( 0)] only through the presence of the scalar (1 + s-1), which reflects the extra
 independent source of randomness generated by the simulation process. Theorem
 3.3 then insures that the limit distribution of the simulated minimum distance

 estimator of 0 differs from that of the estimator which minimizes II Pn - g(t)II
 (the estimator that would be obtained were we able to calculate g(-)) only by the
 fact that the covariance matrix of the former is (1 + s1) times that of the latter.

 Since

 IIGn (0) - G (0) - Gn (00) 1/2
 -1/2 + IG() IG0 11 Jn '[Gn(O) -G(O) -Gn(00)]JJ

 condition (iii) of Theorem 3.3 will be satisfied provided

 sup II4[ts(0) - T(09)] - x47[T?n(00) -(0o)] = oP(1)
 11-111 ol< an

 for every sequence { n } converging to zero. If independent simulation draws are
 used to evaluate A (0) for each different 0 then this condition will never be
 satisfied, since the left-hand side will always be more variable than n[ (00) -
 T(00)]. We show below, however, that the condition will be satisfied if the same
 simulation draws are used to evaluate fr(0) for different values of 0.

 The conditions discussed thus far also ensure the consistency and asymptotic

 normality of the estimator formed by minimizing IIAn(0)Gn(0)II, where
 {A(J0):0 E i} is a family of nonsingular random matrices satisfying the
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 OPTIMIZATION ESTIMATORS 1049

 conditions of Lemmas 3.4 and 3.5. That is, if 0,, is such an estimator and A is the
 nonsingular probability limit of AJ(00), then

 VH( A-00) *N(0,(1+s-l)M(A)), where
 M(A) = (r'A'Ar) 'r'A'A VA'Ar(r'A'Ar) 1.

 We check the conditions of Lemmas 3.4 and 3.5 for An(@) = diag[A ()- 1/2] and
 for An(o) = diag(p - 1/2). These are the weighting matrices that provide the
 simulated analogues of the method of minimum chi-square and modified mini-
 mum chi-square, respectively, and in both cases A = diag[g(00) -1/2]. A modifi-
 cation of Aitken's theorem (Theil (1984)) shows that M(A) - M(diag[,g(00)-1/2])
 is positive semi-definite for every nonsingular A, so the use of an A =

 diag[g (O0) -1/2] leads to an asymptotically efficient estimator for any fixed value
 of s.

 Pakes (1986) assumed that g(OO) > 0. Thus the law of large numbers ensures
 that II1An(0o)11 = OP(l). Moreover, since all the elements An()-f1 are bounded by
 one, supoIIAn(0)1II1= OP(1), and we have verified the conditions of Lemma 3.4.
 Note that we have not required supllAn(O)II to be stochastically bounded. Thus,
 the minimum chi-square estimator can contend with elements in the parameter

 space that generate cell probabilities that get arbitrarily small. This is a possibil-
 ity we would have difficulty excluding a priori, and it generates a need for the

 generality of Theorem 3.1 that is not available in Corollary 3.2 (see the discussion

 following Lemma 3.4). Finally, since g(0O) > 0, the continuity of the map from 0
 to g(0) at 0 = 00 together with the condition that supeIs(0) - Ts(O)II = op(l),
 both of which are verified below, suffice for Lemma 3.5.

 We now come back to the problem of verifying the uniformity conditions (iii)
 of Theorems 3.1 and 3.3. More detail on the underlying model for patent
 renewals is required for this. That model assumes that the sequence of returns

 earned from holding a patent, should that patent be kept in force, is determined
 by a random draw of the vector of independent random variables

 4, = (Z, X1, ...,9 XL, Y1 yi9. YL)

 which has distribution P on X= ? S (0, 00)2L. Here Z has a standard normal

 distribution and the Xi and Yi have exponential distributions with unit means
 (i = 1, ..., L). For a given value of 0, where 0 = (y, a, X, 8, ,B, 4, y) is in e = S ?

 (0, x)6, the returns in year j, say Rj, are generated from t by putting

 R, = exp (t + aZ), and Rj= {X Rj- 1> Yj} max [ Rj-1,I 3jXj--y]

 for 2 <j< L, where /j3= 4Jf, and { } is notation for the indicator function
 which takes the value of one if the logical condition inside it is satisfied, and zero

 elsewhere. A patent is renewed in year j if it was renewed in all previous years,

 and Ri is greater than the stopping value, Tj(O). Pakes proved that the Tj(-) are
 differentiable functions of 0(1 6j < L).

 The original data are generated by this mechanism with 0= 00 from indepen-
 dent vectors h,..., f. The simulation is constructed from a further sample of
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 1050 ARIEL PAKES AND DAVID POLLARD

 size sn from the ( distribution. Note that each 0 in 9 partitions the set .T into

 L + 1 subsets, the first L corresponding to those realizations of t for which Ri is
 less than for the first time [1 <j < LI, and the last set corresponding to those
 values for which R> iTj, for all L years. As we vary 0 over &9 these partitions
 generate a class of subsets of 9. Our proof of the uniformity conditions consists
 of verifying that this class is a VC class of subsets of 8 and then applying the
 results on VC classes listed in Section 2.

 This procedure is described best in empirical process terms. Let

 X = (Z, X1,..., XL, Y1,*... YL)

 be the generic point in -T, and put

 rl(x, O) = exp (,u + az)

 and

 rj(x, 0) = { Xri>i(x, 0) >yj) max [Srj-1(x, 0), 3xj - y]

 for 2 <j <L.
 For each 0 define L + 1 subsets of -T by

 Di(m) = f {ri(x, H) > Ti ()} n { rj(x, 0) <Tj(0)}
 i<j

 and

 DL+1(0)= U Dj()
 j< L

 Finally set

 j =D{ ( 0 OE- e },for I <j < L + 1.
 Then the class of all subsets of -( generated by varying 0 is

 9= U9j. i.

 Let Pn be the empirical measure of the original sample, and Qn be the
 empirical measure of the simulation sample. Then Pn has jth component

 Pn Dj(00), and 7i(0) has jth component Qn Dj(0). Note that

 sup I(0)-s(O) || < (L + 1) max sup (?) _ 1J5j()

 Thus, to prove the uniform law required for consistency it will suffice to show

 that sup iTj(0) - 's, i(0) l = &(1) for each j. But, from the definition of Q,

 sup kj(0)_S, j (0) j sup IPD -QnDI.
 0 D e.

 Lemma 2.3 guarantees this last term goes to zero almost surely if 9 is a VC class,
 a condition we establish below.

This content downloaded from 
������������69.174.157.214 on Wed, 26 Oct 2022 01:42:44 UTC������������� 

All use subject to https://about.jstor.org/terms



 OPTIMIZATION ESTIMATORS 1051

 The argument for the equicontinuity condition required to complete the

 asymptotic normality proof is similar. Provided the parameterization for the class
 9 iS 92(p) continuous at 00, and 9 is indeed a VC class, Lemma 2.17 implies
 that for each j

 SUP|< I ['i (O) - - [i( - T?(o0)] | A (1),
 for every sequence { n } that converges to zero. We sketch a proof of the Y 2(p)
 continuity of the 0-parameterization of 9 below. Pakes (1986) provides an
 alternative proof of continuity.

 Verifying that 9 is indeed a VC class is an exercise in applying the criteria of
 Section 2. Let

 rj* (x, O) = max max [Sj-q(Xq.q -y)], -lri}

 rj*(x, 0) is the maximum current return a patent with a draw of x could earn
 and, as can be verified by repeated substitution into the formulae given above, if

 this patent is still in force in year j, its returns will be rj*(x, 0). A patent in force
 in j - 1 will be in force in year j if rj* > Tj and Xrj* 1 < yj, so, omitting the
 dependence of the return function on 0 and x we have

 Dj1() = [{rj* < Tj} U { rj* 1 < yj}]
 j-1

 n n[ f X rj* 1 -i Yj-} n { rj*- >_ Yj-}]
 i=1

 where

 {j > Tj} U {ij(fqxq-Y)>X}U{3i1r>T},
 2 < q <j

 and an analogous expression can be written for { rj* 1 > yj }, for j = 1, . .., L.
 Since Lemma 2.5 ensures that classes of sets formed from the intersection (or
 union) of the elements of one VC class with those from another are VC classes, it

 will suffice to show that each generating set of the form { aj(0)xj + a2(0)yi +
 a3(0) > 0), or {b1(0)r1(z, 0) + b2(0) > 0), or {b3(0)r1(z, 0) >y1}, traces out a
 VC class of subsets of X as 0 ranges over 6. Note that the aj(.) and bj(.) are
 continuous functions of 0 (j = 1, 2, 3). Also because the class of functions
 generated from r1(z, 0) = exp (az + ,) by varying 0 is not a finite dimensional
 vector space, use of Lemma 2.4 by itself does not complete the proof.

 Write T for the map from Y into M3L+1 that takes x onto the vector

 (x, log yl,... , log yL). Let C be the vector space of all real-valued functions on
 m3L+l , and recall that Lemma 2.4 ensures that the class ' of all subsets of
 R3L+1 of the form {g> t}, with ge E and t E, is a VC class. Then each of
 the generating sets can be written as

 { dj(0)xi + d2(0)yi + d3(0)Z + d4(0) log Yi + d5(0) > 0},
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 1052 ARIEL PAKES AND DAVID POLLARD

 with the dj( ) continuous functions of 9. As 9 ranges over 9 these sets trace out
 a subset of 9, and since subclasses of a VC class are a VC class, each forms a VC
 class. But then Lemma 2.6 ensures that the inverse images of these sets trace out
 a VC class of subsets of X, which completes the proof that -9 is a VC class.

 The proof of continuity of 9 -- Dj(9), as a map from 9 into y'2(p), can be
 built up in a similar fashion. Since continuity is preserved by the formation of
 intersections and unions, it suffices to prove the continuity of the map for the
 generating sets. Since each of the generating sets is a closed halfspace whose
 boundary has zero P measure, the argument after Lemma 2.16 establishes their
 S2(P) continuity with respect to 9 at 9 = 90.

 4.2. Example

 McFadden (1989) proposed a simulation method for estimating the parameters
 of a multinomial probit model. We will show that his estimator fits into the
 framework outlined in this paper. To simplify the analysis needed to verify
 the uniformity conditions, we will substitute combinatorial assumptions for the
 various smoothness assumptions of McFadden. Our methods will depend on the
 empirical process theory described in Section 2, whereas McFadden's methods
 allowed him to deduce the asymptotic distribution of his estimator by means of
 an elegant limit theorem due to Huber (1967).

 An individual has m alternatives to choose between. His choice is determined
 by a set of m vector covariates zl,..., zm and a random vector a of weights.
 Alternative i is chosen if z-a is bigger than all the other Z2'a. The vector a is
 generated as a k x 1 vector function h (q, 00) of an r-dimensional random vector
 ,q with known distribution; the unknown value 00 is an interior point in a
 k-dimensional parameter space 9. If the covariates are stacked as the rows of an
 m x k matrix Z, the choice is specified by the response vector

 d = D [ Zh (q, 90)],

 where D(*) maps Mm into {0,1)m, putting a one in the position of the largest
 component and zeros elsewhere. The choice corresponds to the position in the
 vector d that contains the one. Ties would be indicated by a one in multiple
 positions of d. Following McFadden we assume a zero probability for ties.

 The choices of n individuals are determined in this fashion from random pairs
 (Zi,,qi) for i = 1,..., n. These are assumed independent and identically dis-
 tributed. From the observed response vectors di and matrices of covariates Zi,
 we must estimate the unknown 90.

 Write g7(Z, 9) for the conditional expectation of D[Zh(,q, 9)] given Z. For a
 k x m matrix W(Z, 9) of instruments, define

 G(9) = JW(Z, 9) [d-7T(Z, )] dP

 = f W(Z, 0) [T(Z, 0) - (Z, 0)] dP.

 Clearly, G(90) = 0.
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 If w(Z, 0) were easily calculable, a reasonable estimator of 00 would be the

 value that minimized 11gn(O)II, where
 n

 gn(O) = n ?W(Zi, 0) [di -7r(Zi 0)]
 i=l

 If the g(Z, 0) were intractable it could be replaced by a simulation estimator.

 For each individual generate s new random variables qjj,..., ,qj, then replace
 n(Zi, 0) by

 ITSA(zi,0) =5 s E D [Zih (7ij,0)]
 j=l

 When qi is independent of Zi the simulation is carried out by generating s new
 independent observations from the same distribution. However, such indepen-
 dence is not required for the application of the limit theorems. Writing

 (i = (Zi, 71i, 71ii, ** 71 'is)

 for the (mk + r + rs)-dimensional vector of data on the i th individual, we assume

 only that: the {( } are independent and identically distributed; and the condi-
 tional expectation of D[Zih(q1ij, 0)] given Zi is 7r(Zi, 0). By permitting depen-
 dence between the components of (i we leave open the possibility of using
 variance reduction techniques in the generation of the simulation sample. With
 these assumptions it becomes plausible to use

 n

 GM(0) = n W(Zi, 0)[di - (Zi, 0)]
 i=l

 to replace gn(0) as the estimator for G(0). We define O2n to be any estimator for
 which IGn (On)II comes within op(n -1/2) of minimizing IIGn(*)11

 We assume the identification condition:

 inf JIG(0) 11 > 0 for each 8 > 0.
 110-0011> 6

 Following McFadden, we could deduce this from lower level assumptions such
 as: & is compact, G( ) is continuous, and 00 is the unique point at which
 G(0 ) = 0. We will also require, as did McFadden, that:

 G ( * ) has a nonsingular derivative matrix, say R, at 00.

 These assumptions take care of all but condition (iii) of Corollary 3.2 (for
 consistency), and conditions (iii) and (iv) of Theorem 3.3 (for asymptotic normal-
 ity). To ensure that these conditions are satisfied we will impose additional
 regularity conditions on the instruments. We assume first that

 fsup IIW(Z,0)IIdP < m.

 As IIW(Z,0)II is bounded by (km)1/2 maxIWij(Z,0)I, this is equivalent to an
 assumption that the components of W(Z, 0) are dominated by a function that

This content downloaded from 
������������69.174.157.214 on Wed, 26 Oct 2022 01:42:44 UTC������������� 

All use subject to https://about.jstor.org/terms



 1054 ARIEL PAKES AND DAVID POLLARD

 does not depend on 0 and has a finite first moment. This assumption is used in
 the proof of consistency. (It also guarantees that G(O) is well-defined for every
 0.) For the central limit theorem we will need an analogous second moment

 condition near 00. Assume that for some positive 8:

 f sup IIW(Z,O) 12 dP<oo.
 110-0011< 6

 Certainly McFadden's uniformly bounded instruments satisfy these moment

 conditions.
 To check the remaining requirements of Corollary 3.2 and Theorem 3.3 we

 recast G( (.) as an empirical process indexed by a class of functions, upon which

 we impose further regularity conditions. Write x = (X, y, Yl,'.., y,) for the
 generic point in (mk + r + rs)-dimensional Euclidean space, the first coordinates
 being rearranged into the m X k matrix X, and the other coordinates being

 partitioned into the r x 1 vectors y and yj. Define

 f(x, 0) = W(X, 0)[D[Xh(y, 0o)] -s1 E D[Xh(yj,)I].

 If Pn denotes the empirical measure of the { j} and P denotes their common
 distribution, we have

 GM(0) = Jf(x, 0) dPn, and G(0) = ff(x, 0) dP.

 Notice how the assumption about the conditional expectations for the simulation

 sample is used to get the representation for G(0).
 The asymptotic normality of

 V4-Gn(00) = Vn[J(x 0) dPn - f(x 00) dPj

 follows from the multivariate central limit theorem for standardized sums of
 independent random vectors with finite second order moments (Theorem 11.10 of
 Breiman (1968)). The asymptotic variance matrix, V, equals

 var [f(tj, 00)] = Jf(x, OO)f(x, 00)'dP.

 In the special case where qj and the qij are conditionally independent given Zi,
 the expression for V simplifies to (1 + s -1) times

 fW(X, 0O)[diag [iT(X, 0O)] - iT(X, 00)iT(X 00)] W(X, 00)'dP.

 It remains only to check the two uniformity conditions. We will give two
 combinatorial conditions that will make the class of vector-valued functions
 .F= { f( *, 0): 0 E &9 } Euclidean, in the sense that the class of all the component
 real-valued functions satisfies Definition 2.7. Application of Lemma 2.8 to each
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 component then implies that

 sup || Gn (0) - G (0) jj 0 almost surely,
 0

 from which condition (iii) of Corollary 3.2, and hence consistency, follows.

 Lemma 2.17, applied to the components of f(*, 0) for 0 in a small enough
 neighborhood of 00, will imply a stronger result than the equicontinuity condition

 (iii) of Theorem 3.3 if f(*, 0) is Y2(p) continuous at 00. For the ?'2(p)
 continuity, assume that for P almost all X, each component of W(X, 0) is

 continuous in 0 at 00, and assume that there is zero probability of a tie at 0 = 00
 for each of the simulations. Because D[ Xh (yj, 0)] is continuous in 0 except at
 those (X, yj) pairs for which there is a tie, it follows that f(x, 0) is almost surely
 continuous in 0 at 00. The second moment condition on the instruments converts

 almost-sure continuity to y2(p) continuity, as explained at the end of Section 2.
 The Eucidean property for F is a consequence of more basic assumptions

 about h(., 0) and the instruments W(., 0). For each 0 in 6 define a subset of
 Mk ?& Mr by

 B(0) = {(Z, y) E=J k ?r: z'h(y, 0) >0 .

 Assume that {B(0): 0 E 69} is a VC class in the sense of Definition 2.2. In
 special cases this assumption is readily checkable. For example, McFadden
 checked his regularity conditions for the function

 h(y, 0) = 1(0) + A(0)y,

 when each component of /3(0) and A(0) depended smoothly on 0. With our
 assumption the smoothness is irrelevant. As 0 ranges over 6 the functions

 go(z, y) = z',S(0) + z'A(0)y

 range over a subset of a finite dimensional vector space C of real-valued

 functions on Sk ?& r. Lemma 2.4 establishes the VC property for the class of all
 sets of the form {g > 0), with g in 9; hence the subclass { B(0): 0 E 69) is also a
 VC class. We assume also that { W(*, 0): 0 E 69 } is Euclidean in the sense that
 the class of all component functions satisfies Definition 2.7. This assumption can
 be further reduced by means of the methods of Section 2. For example, if 69 is
 bounded and if each W(X, 0) satisfies a Lipschitz condition of the type described
 in Lemma 2.13, then the Eucidean assumption holds.

 Now the criteria from Section 2 lead us directly to the Euclidean property for
 S. Each component of f(x, 0) is a bounded linear combination of products
 involving the components of W(X, 0) and the components of the two choice
 functions. By Lemma 2.14, it suffices to establish the Euclidean property for each
 individual component. For W(X, 0) the property holds by assumption. The
 components of the choice functions are indicator functions for sets, so it will
 suffice to show that these sets generate a VC class as 0 ranges over 69. Consider,
 for example, the first component of D[ Xh(y, 0)]. Write xl,..., x' for the rows
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 1056 ARIEL PAKES AND DAVID POLLARD

 of X. Then the set that corresponds to an individual choosing alternative 1 is the
 intersection of the sets

 A 1(O) ={(X, y): (xl-X )h(y, O) > 0}, for I <j < m.

 By Lemma 2.5, it suffices to show that the class of all Alj(O) sets is a VC class.
 Define a map Tlj from Mmk ? Mr into lk ? r by putting T1j(X, y) =

 (xl - xj, y). Then Alj(O) = T1j1B(O). Lemma 2.6 shows that the class of all such
 inverse images, as B(O) ranges over its VC class of sets, is also a VC class. A

 similar argument could be invoked for the sets corresponding to the choice of any
 of the other alternatives. The proof that Y is Euclidean is complete.

 Department of Economics, Yale University, New Haven, CT 06520, U. S.A.

 and

 Department of Statistics, Yale University, New Haven, CT 06520, U.S.A.

 Manuscript received October, 1987; final revision received March, 1989.
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