σ-Field
Let Ω be an arbitrary set of points w.

A class F of subsets of Ω is called a o-field of
(i) $\Omega \in \mathcal{F}$
(ii) $A \in \mathcal{F} \Rightarrow A^{c} \in \mathcal{F}$
(iii) $A_{1}, A_{2}, \ldots \in \mathcal{F} \Rightarrow \bigcup_{j=1}^{\infty} A_{j} \in \mathcal{F}$.

Probability Measure
A set function $P: \mathcal{F} \rightarrow[0,1]$ is called a probability measure if
(i) $0 \leq P(A) \leq 1$ for $A \in \mathcal{F}$
(ii) $P(\Omega)=1$
(iii) if A_{1}, A_{2}, \ldots is a disjoint sequence of \mathcal{F}_{∞}-sets,

$$
P\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} P\left(A_{j}\right)
$$

Probability Space

If f is a σ-field in Ω and P is a probability measure on \mathcal{F}, then the triple (Ω, f, P) is called a probability space.

Random Variable

A random variable (r.v.)
is a real-valued measurable
functim on a probability space (Ω, \mathcal{F}, P), that is,
$X: \Omega \longrightarrow \mathbb{R}$ such that

$$
X^{-1}((-\infty, x]) \in \mathcal{F} \forall x \in \mathbb{R}
$$

Discrete Random Variable
X is called discrete r.v. if there exist countable distinct $x_{1}, x_{2}, \ldots \in \mathbb{R}$ s.t.

$$
\sum_{j=1}^{\infty} P\left(X=x_{j}\right)=1
$$

Continuous Random Variable

If $P(X=x)=0 \quad \forall x \in \mathbb{R}$
then X is called a continuous random variable.

Density Function
If there exists a function
$f: \mathbb{R} \rightarrow \mathbb{R}$ such that the cumulative distribution function (cdf)

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t,
$$

then f is called the probability density of X.

Expectation
For measurable $g: \mathbb{R} \rightarrow \mathbb{R}$, and random variable $X, g(X)$ is a random variable.

If X is discrete with values x_{1}, x_{2}, \ldots

$$
\mathbb{E}[g(X)]=\sum_{j=1}^{\infty} g\left(x_{j}\right) P\left(X=x_{j}\right)
$$

provided the series converges absolutely.
If X has a density $P_{x}(\cdot)$,

$$
\mathbb{E}[g(x)]=\int_{-\infty}^{\infty} g(x) P_{x}(x) d x
$$

Expectation

For a "general" r.v. X having $\operatorname{cdf} F_{x}$ and measurable $g: \mathbb{R} \rightarrow \mathbb{R}$, we write

$$
\begin{aligned}
& E[g(x)]= \int_{-\infty}^{\infty} g(x) d F_{x}(x) \\
& \downarrow \\
& \text { Lebesgue -Stieltjes }
\end{aligned}
$$

Joint Distributions

Given a pair of r.v.s (X, Y), the joint cdf

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y) \text {. }
$$

The marginals

$$
\begin{aligned}
& F_{X}(x)=P(X \leq x)=F_{X, Y}(x, \infty) \\
& F_{Y}(y)=P(Y \leqslant y)=F_{X, Y}(\infty, y)
\end{aligned}
$$

Joint Distributions
(X, Y) has a density $P_{X, Y}$ means

$$
F_{X, Y}(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} P_{X, Y}(s, t) d s d t
$$

If X and Y are independent $P_{X, Y}(\cdot, \cdot)$ is necessarily of the form $P_{x}(\cdot) P_{Y}(\cdot)$.

Conditional Distributions
Given events A, B

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)}
$$

$$
\begin{aligned}
F_{X \mid Y}(x \mid y)= & P(X \leq x \mid Y=y) \\
= & \frac{P(X \leq x, Y=y)}{P(Y=y)} \\
& \text { if } P(Y=y)>0 .
\end{aligned}
$$

Conditional Distributions

$$
\begin{aligned}
F_{X \mid Y}(x \mid y) & =\frac{P(X \leq x, Y=y)}{P(Y=y)} \\
& =\frac{\int_{-\infty}^{x} P_{X, Y}(s, y) d s}{\int_{-\infty}^{\infty} P_{X, Y}(s, y) d s} \\
P(X \leq x, Y \leq y) & =\int_{-\infty}^{y} F_{X \mid Y}(x \mid t) d F_{Y}(t)
\end{aligned}
$$

Conditional Distributions

Notice:
(i) $F_{X \mid Y}(x \mid y)$ is a $c d f$ in x for each y.
(ii) $F_{X \mid Y}(x \mid y)$ is a functim of y for each x

LAW OF TOTAL PROB.

$$
\begin{aligned}
P(X \leq x) & =P(X \leq x, Y \leq \infty) \\
& =\int_{-\infty}^{\infty} F_{X \mid Y}(x \mid t) d F_{Y}(t)
\end{aligned}
$$

If X, Y are jointly dissifutucd conditional r.v.s, the conditional density

$$
\begin{aligned}
& P_{X \mid Y}(x \mid y)=\frac{d}{d x} F_{X \mid Y}(x \mid y) \\
&=\frac{P_{X, Y}(x, y)}{P_{Y}(y)}, \\
& P_{Y}(y)>0 .
\end{aligned}
$$

CONDITIONAL EXPECTATION

Suppose $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function for which $\mathbb{E}[g(x)]<\infty$.

Then,

$$
\begin{aligned}
\mathbb{E}[g(X) \mid Y & =\underline{y} \\
& =\int_{-\infty}^{\infty} g(x) d F_{X \mid Y}(x \mid y)
\end{aligned}
$$

CONDITIONAL EXPECTATION

For any bounded function

$$
\begin{aligned}
& h: \mathbb{R} \rightarrow \mathbb{R}, \\
& \mathbb{E}[g(X) h(Y)] \\
& =\int_{-\infty}^{\infty} \mathbb{E}[g(X) \mid Y=y] h(y) d F_{Y}(y) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) d F_{X \mid Y}(x \mid y) h(y) d F_{Y(y)}
\end{aligned}
$$

Finite Dimensional DistBns
Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of r.v.s. The joint distributions $F_{X_{i}}\left(x_{i_{1}}, x_{i_{2}}, \ldots x_{i_{1}}\right)$, $i_{1}, i_{2}, \ldots, i_{n} \in \mathbb{N}$ and distinct
are called the finite-dimensional distributions associated with $\left\{X_{n}, n \geqslant 1\right\}$.

Suppose $\left\{\alpha_{n}, n \geqslant 1\right\}$ is a sequence of reals.

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\alpha
$$

means for given $\varepsilon>0, \exists N(\varepsilon)$
$s \cdot t$. for all $n \geqslant N(\varepsilon)$

$$
\left|\alpha_{n}-\alpha\right| \leq \varepsilon .
$$

LIMIT OF A RANDOM SEQ
Let $\left\{Z_{n}, n \geqslant 1\right\}$ be a sequence of random variables.
(a) Convergence with prob. one.

$$
Z_{n} \longrightarrow Z \quad \text { abs. }
$$

means

$$
P\left(w: \lim _{n} Z_{n}(w)=Z(w)\right)=1 .
$$

LIMIT OF A RANDOM SEQ
(b) Convergence in probability

$$
Z_{n} \xrightarrow{p} Z
$$

means, for every $\varepsilon>0$,

$$
\lim _{n} P\left(w:\left|Z_{n}(w)-Z(w)\right|>\varepsilon\right)=0
$$

(c) Convergence in L_{2}

$$
Z_{n} \xrightarrow{L_{2}} Z
$$

means,

$$
\lim _{n} \mathbb{E}\left[\left|Z_{n}-Z\right|^{2}\right]=0
$$

LIMIT OF A RANDOM SEQ
(d) Convergence in Distbn.

$$
Z_{n} \xrightarrow{d} Z
$$

means

$$
F_{n}(t) \longrightarrow F(t)
$$

for all F-continuity pts,
Where Z_{n} has distbn F_{n} and Z has dist bn F.

LIMIT OF A RANDOM SEQ

in distbn con

Strong Law
Let $\left\{X_{n}, n \geqslant 1\right\}$ form an lid sequence of r.v.s.
with $\mathbb{E}\left[X_{1}\right]=\mu \in \mathbb{R}$

Then

$$
\bar{X}_{n} \longrightarrow \mu \quad \text { ass. },
$$

where $\bar{X}_{n}:=\frac{1}{n}\left(X_{1}+X_{2}+\cdots X_{n}\right)$.

WEAK LAW
Let $\left\{X_{n}, n \geqslant 1\right\}$ form an lid sequence of r.v.s. with $\mathbb{E}\left[X_{1}\right]=\mu \in \mathbb{R}$.

Then

$$
\bar{X}_{n} \xrightarrow{p} \mu
$$

where $\bar{X}_{n}:=\frac{1}{n}\left(X_{1}+X_{2}+\cdots X_{n}\right)$.

Let $\left\{X_{n}, n \geqslant 1\right\}$ form an lid sequence of $r \cdot v \cdot s$. with $\mathbb{E}\left[X_{1}\right]=\mu \in \mathbb{R}$ and $\operatorname{Var}\left(X_{1}\right)=\sigma^{2}<\infty$. Then.

$$
\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \xrightarrow{d} z
$$

where $Z \stackrel{d}{=} N(0,1), S_{n}:=\sum_{j=1}^{n} X_{j}$.

Borel Cantelli lemmas
First BC Lemma:
If $\left\{A_{n}, n \geqslant 1\right\}$ are events such that

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty
$$

$\limsup A_{n}$
then the event

$$
\left\{A_{n} \quad \text { i.0. }\right\}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}
$$

happens with probability zero.

Bore Cantelli lemmas
Second BC Lemma:
If $\left\{A_{n}, n \geqslant 1\right\}$ are independent events such that

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty
$$

then the event

$$
\left\{A_{n} \text { i.o. }\right\}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}
$$

happens with probability one.

Let Z be a non-negative random variable. Then,

$$
P(z>t) \leq \frac{\mathbb{E}[z]}{t}, t>0 .
$$

Jensen's INEQ.

Let Z be a random variable and let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be a convex fundim. Then,

$$
\mathbb{E}[\psi(Z)] \geqslant \psi(\mathbb{E}[Z])
$$

CAUCHY SCHWARZ
Suppose X and Y are r.v.s w th $\mathbb{E}\left[X^{2}\right]<\infty, \mathbb{E}\left[Y^{2}\right]<\infty$. Then,

$$
\mathbb{E}[X Y] \leqslant\left(\mathbb{E}\left[X^{2}\right]\right)^{1 / 2}\left(\mathbb{E}\left[Y^{2}\right]\right)^{1 / 2}
$$

Hölder's Inequality:

$$
\mathbb{E}[|X Y|] \leqslant(\mathbb{E}[|X|]]^{\frac{1}{P}}\left(\mathbb{E}\left[\left[Y \mid{ }^{9}\right]\right)^{1 / q}\right.
$$

for $p, q \in[1, \infty]$ st. $\frac{1}{p}+\frac{1}{q}=1$.

