<u>Stochastic Processes</u> from the natural paradigm to study random phenomena that evolve over space and time.

The obvious intent and implication is the ability to describe and predict the functioning of a physical process of interest.

The course treats the mathematical machinery needed for such study.

A stochastic process
$$\{X_t, t \in T\}$$
 is
a collection of random variables. taking
values in $S \subseteq \mathbb{R}^d$, that is, $X_t \in S$.
T is called the index set, e.g.,
 $T = (-\infty, \infty)$, $T = \{0, 1, 2, ...\}$
S is called the state space
A crucial element of stochastic process is
specifying, explicitly or implicitly, the
selationship between X_t , $t \in T$.

Recall: A random variable X is a
real measurable function on the probability
space (
$$\Omega$$
, F, P), that is,

$$X^{-1}A := \{ w \in \Omega : X(w) \in A \} \in \mathcal{F}.$$

To a longe extent, we worked with the cumulative distribution function, which for a random variable X is

$$F(x) := P(X'(-\infty, x]).$$

A random variable is not uniquely <u>specified</u> by its cdf, although given a cdf one can <u>construct a random variable</u> on an appropriade probability space.

A stochastic process
$$\{X_t, t \in T\}$$
 is
Nell-defined or specified (fr purposes of
this course) when we specify the
following.
(i) the state space S
(ii) the time index T.
(iii) all finite-dimensional joint distributions,
that is, the joint distributions of all
vectors of the type
 $(X_{t_1}, X_{t_2}, \dots, X_{t_n})$
where $t_1, t_2, \dots, t_n \in T$, $n \in \mathbb{N}$.

PI. Independent Increments (e.g., Brownian motion,
Poinson process, Mandom
malks)

$$\underbrace{t_{0}}_{t_{0}}$$
 to the transformed to have
independent increments if the increments
exhibited on disjoint intervals one
independent, that is,
for $t_{0} < t_{1} < t_{2} < \cdots t_{n} \in T$,
 $X_{t_{1}} - X_{t_{0}}$, $X_{t_{2}} - X_{t_{1}}$, \cdots , $X_{t_{n}} - X_{t_{n-1}}$
one independent.
Af to is the smallest element in T, then
 $X_{t_{0}} - X_{t_{0}} - X_{t_{0}}$, \cdots , $X_{t_{n}} - X_{t_{n-1}}$
are independent.

(

P3. Mantingale (e.g., Brownian motion with
zero dift, handom walk
with zero dift)

$$\{X_{\pm}, \pm \in T\}$$
 is said to be a
Montingale if X_{\pm} is a "fair game"
that is, $\mathbb{E}[|X_{\pm}|] < \infty$ Vt and for any
 $t_1 < t_2 < \cdots < t_n \leq t \in T$
 $\mathbb{E}[|X_{\pm}|| < x \leq t \in T$
 $\mathbb{E}[|X_{\pm}||
 $\mathbb{E}[|X_{\pm}||
 $\mathbb{E}[|X_{\pm}||
 $\mathbb{E}[|X_{\pm}||
 $\mathbb{E}[|X_{\pm}||
 $\mathbb{E}[|X_{\pm}||
 $\mathbb{E}[|X_{\pm}||
 $\mathbb{E}[|X_{\pm}||$$$$$$$$

What sufficient condition ensures that

$$\{X_{t}, t \in T\}$$
 is well-specified through
finite-dimensional distributions?
 $\lim_{x \to t} P(|X_{t} - X_{t}| > \varepsilon) = 0, \forall \varepsilon, t$
(Notice that if the path X_{t} is untinuous in
t, the above is saturfied due to BCT.)