$$E \times upple I. Poisson Process.
$$E \times t, t \ge 0, X_t \in N. X_0 = 0$$

"counting Process"

$$X_t = \begin{bmatrix} counting Process" \\ for the term of the term of the term of t$$$$

$$X_{t} : \text{No of "events" in [o, t]}, \\ t \ge 0.$$
Thm. I.I [Distribution of X_{t}]
$$P(X_{t} = m) = \frac{e^{-\lambda t}(\lambda t)^{m}}{m!},$$

$$M = 0_{1,2,..}$$

Then,

$$D_{t_{1}} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{n}} \xrightarrow{t_{n}}$$

The process restants itself continuously due to the memoryless prop. of the exponential.

If
$$G_1 : \mathbb{R}^+ \to [o, \square]$$
 is a
non-increasing function such that
 $G_1(o) = |$ and $\exists z s \cdot t \cdot G_1(z) > 0$,
then $G_1(x) = e^{-\lambda z}$ (for some $\lambda > 0$)
if and only if
 $G_1(z+y) = G_1(z) G_1(y), \ z \ge 0, y \ge 0$.

$$T_{1} = S_{1}$$
$$T_{2} = S_{2} - S_{1}$$
$$T_{3} = S_{3} - S_{2}$$
$$\vdots$$

We can use the density
of
$$(S_1, S_2, ..., S_k)$$
 to derive
the joint density of
 $(T_1, T_2, ..., T_k)$.

$$\times \left(| -e^{-\lambda (t_1 - \beta_2)} \right)$$

Thm. 1.5 [CONDITIONAL DISTEN]
For any numbers
$$s_{j}$$
, $j = 1, 2, ..., n$
satisfying $0 \le \vartheta_1 \le \vartheta_2 \cdots \vartheta_n \le t$
 $P\left(S_1 \le \vartheta_1, S_2 \le \vartheta_2, \ldots, S_n \le \vartheta_n \mid N(t) = n\right)$
 $= \frac{n!}{t^n} \int \dots \int dz_n dz_{n-1} \cdots dz_1$,
which is the distribution of the
order statistics from a sample of
 n observations taken from $U(0, t)$.

Thm. I.S says that the conditional distribution of avoiral times is the same as "uniform order statistics" in [o, t]. > Can you prove?

PROOF SKETCH OF THM. I.T
L.H.S =
$$P(\bigcap_{j=1}^{n} S_{j} \leq \mathscr{X}_{j}, N(t) = n)$$

 $P(N(t) = n)$

囫

Recall the postulates of the
(homogeneous) Poisson process.
(P.1)
$$X_o = 0$$
;
(P.2) independent increments;
(P.3) (a) $P(X_{t+h} - X_t \ge 1 | X_t = x)$
 $= \lambda h + o_1(h)$
(b) $P(X_{t+h} - X_t \ge 2 | X_t = x)$
 $= o_2(h)$.

PURE BIRTH PROCESS

 $(P.1) \quad X_{p} = \circ;$ (P.2) independent increments; $(P.3)(a) \mathcal{P}(X_{t+h} - X_t \ge | | X_t = k)$ $= \lambda_{\mathbf{k}} \mathbf{h} + o_{\mathbf{k}}(\mathbf{h})$ (b) $P(X_{t+h} - X_t \ge 2 | X_t = k)$ $= o_{2,k}(h)$. NOTICE

Notice the "state dependent" rate
Does the process retain stationary increments?
Very useful to model population growth, etc.

Thm. 1.6 Suppose the counting
process
$$\{X_t, t \ge 0\}$$
 satisfies
 $(NsP.1) - (NsP.3)$. Suppose also
that $\lambda(\cdot)$ is continuous in $[0, t]$.
Then,
 $P(X_t = k) = \frac{-\int \lambda(x) dx}{k!} (\int \lambda(x))^k \frac{k!}{k!}$
 $k = 0, 1, 2, ...$

In fact, for any interval
$$(s,s']$$

$$P(X_{s'}-X_{s}=k)$$

$$= \frac{e^{s'}}{\sum_{x} \lambda(x) dx} \left(\int_{s}^{s'} \lambda(x) dx\right)^{k}$$

$$= \frac{e^{s'}}{k!}$$

$$k = 0, 1, 2, \dots$$

- they cannot be independent - are they exponential?

Thm. 1.7 Suppose
$$\{X_{\pm}, \pm \ge 0\}$$

satisfies $(N \ge P \cdot I) - (N \ge P \cdot 3)$.
with $\Lambda(\pm) = \mathbb{E}[X_{\pm}]$ continuous in ± 0 .

Then,

$$\mathcal{P}\left(S_{n+1} - S_n > \pm \left|S_1, S_2, \dots, S_n\right) \right. \\ = e x p \left\{-\int_{S_n} \lambda(x) dx\right\}$$

Notice that The 1.7 says the waiting times one exponential but neither independent nor identically distributed.

Thm. 1.8 Suppose
$$\{X_{t}, t \ge o\}$$

satisfies $(N \le P \cdot I) - (N \le P \cdot 3)$.
with $\Lambda(t) = \mathbb{E}[X_{t}]$ continuous in $t \ge 0$.

Then $\{Y_t, t \ge 0\}$ is a

stationary Poisson process with rate $\lambda = 1$.

Ø

Proof Sketch

Lets check whether {Yt, t=0} satisfies the postulates $N_{x}P_{-} - N_{x}P_{-}3:$ $| \cdot | = 0 \quad \sqrt{\text{since } \gamma(0) = 0}$ independent increments V 2. since $t_1 > t_1 \Longrightarrow \Upsilon(t_1) > \Upsilon(t_1)$. 3. Notice: $P(Y_{++h} - Y_{+} \ge 1)$ $= I - P(Y_{t+h} - Y_t = 0)$

$$= I - P(X_{\chi(t+h)} - X_{\chi(t)})$$

$$= I - e^{-(\Lambda(\chi(t+h)) - \Lambda(\chi(t+)))}$$

$$= I - e^{-(\Lambda(\Lambda^{-1}(t+h)) - \Lambda(\Lambda^{-1}(\chi(t))))}$$

$$= I - e^{-h} = h + o(h).$$

Thm. 1.9

S₁, S₂, ..., are arrival times
of a non-stationary Poisson
cont.
process with annulative rate
$$\Lambda(t)$$
, $t \ge 0$ if and only if
 $\Lambda(S_1)$, $\Lambda(S_2)$, ... are arrival
times of a stationary Poisson
process with rate $\lambda = 1$.

$$n = 0, S_{0} = 0$$
While $S_{n} \neq t$ do
$$n = n+1$$
independently generate $U_{n} \sim U_{ni} f(o, 1)$

$$\widetilde{T}_{n} = -\ln U_{1}$$

$$\widetilde{S}_{n} = \widetilde{S}_{n-1} + \widetilde{T}_{n}$$

$$S_{n} = \Lambda^{-1} (\widetilde{S}_{n})$$
end while
Simulating avivals from a nonstationary
Poisson process with cont. cum. rate $\Lambda(c)$.

What is the density
function of
$$(S_1, S_2, ..., S_n)$$
 $|N(t) = n$
for a non-stationary Poisson
process with rate function $\lambda(\cdot)$?
(Recall that this is the uniform
order statistics for the stationary
case)

Thm. 1.10 [CONDITIONAL DISTRN]
For any numbers
$$\&_{j}, j=1,2,...,n$$

satisfying $0 \le \&_1 \le \&_2 \cdots \&_n \le t$
 $P(S_1 \le \&_1, S_2 \le \&_2, \ldots, S_n \le \&_n | N(t)=n)$
 $= n! \int \int \int (V_1 + V_2) dn$

$$= \underbrace{\underline{n}}_{(\Lambda(t))}^{j} \int_{0}^{\infty} \cdots \int_{x_{n-2}}^{\infty_{n-1}} \int_{x_{n-1}}^{\infty_{n}} \lambda(x_{n}) \cdots \lambda(x_{n}) dx_{n} dx_{n-1} \cdots dx_{n},$$

which is the distribution of the order statistics from a sample of n observations taken from
$$\lambda(\cdot)/\chi(t)$$
.

$$\frac{\text{Heusistic}}{\int (s_1, s_2, \dots, s_n | n) ds_1 ds_2 \dots ds_n}$$

$$\int (s_1, s_2, \dots, s_n | N(t))$$

$$= e^{-\Lambda(s_1)} \int (s_1) ds_1 e^{-(\Lambda(s_1) - \Lambda(s_1))} \int (s_2) ds_2$$

$$\cdots e^{-(\Lambda(s_n) - \Lambda(s_n))} \int (s_n) ds_n$$

$$\frac{e^{-(\Lambda(t) - \Lambda(s_n))}}{e^{-\Lambda(t)} (\Lambda(t))^n / n!}$$

$$= \frac{e^{-\Lambda(t)}}{e^{-\Lambda(t)} \Lambda(t)^n / n!}$$

$$= n \frac{\lambda(s_1)}{\lambda(t)} \frac{\lambda(s_2)}{\lambda(t)} \cdots \frac{\lambda(s_n)}{\lambda(t)} ds_1 \cdots ds_n$$

CONDITION CI

T₁, T₂, ..., are independent and identically distributed with parameter $\lambda > 0$.

CONDITION C2

CONDITION C4

$$\begin{split} \text{If } & 0 < t_{1} < t_{2} < \ldots < t_{k} \text{ and } \\ & n_{j} \ge 0, \text{ } j = 1, 2, \ldots, k \end{split}$$

$$(i) \mathcal{P} \left(X_{t_{k}+h} - X_{t_{k}} = 1 \mid X_{t_{j}} = n_{j}, j \le k \right) \\ &= \lambda h + o(h) \end{aligned}$$

$$(ii) \mathcal{P} \left(X_{t_{k}+h} - X_{t_{k}} \ge 2 \mid X_{t_{j}} = n_{j}, j \le k \right) \\ &= o(h) \end{split}$$

Thm. 1.10 [CONSTRUCTION EQUIV.]

Under CONDITION Co, CONDITION CI, CONDITION C2, CONDITION C3 and CONDITION C4 are equivalent.

This is a powerful way
of thinking about stochastic
processes in general:

$$\omega \mapsto \chi(\omega) \in S$$

appropriate
space
 $\chi(\omega_i) \quad \chi(\omega_2) \quad \chi(\omega_3)$

POINT PROCESSES

$$N(B) \sim Binomial(n, \frac{M_2(B \cap W)}{M_2(W)})$$

Notice that $N(B_1) \neq N(B_2)$ are not independent even if $B_1 \cap B_2 = \phi$ since $N(B_1) + N(B_2) \leq n$.

Let's try to generalize to
$$|\mathbb{R}^2$$
.

The spatial Poisson process,
with rate
$$\lambda > 0$$
, is a
point process in \mathbb{R}^2 such that

(PPI) for every bounded
$$B \subset \mathbb{R}^2$$
,

$$N(B) \sim Poisson\left(\mathcal{M}_{2}(B)\right)$$

$$(PP2) B_{j,j} = 1,2,...,n \text{ disjoint}$$

$$\implies N(B_{j}), j = 1,2,...n \text{ one}$$

$$\text{ independent.}$$

We can derive the spatial
Poisson process through other
sets of axioms, e.g.,
(i)
$$P(N(B) \ge 1) = \lambda \mu_2(B) + o(M_2(B))$$

(ii) $P(N(B) \ge 2) = o(M_2(B))$
(iii) $B_{i}, j = 1, 2, ..., n$ disjoint
 $\Rightarrow N(B_{i}), j = 1, 2, ..., n$ are
independent.

Thm. III Let N be
a Poisson point process in
$$\mathbb{R}^2$$

with rate $\lambda > 0$. Let
 $\mathbb{W} \subset \mathbb{R}^2$ be such that
 $0 < \mathcal{M}_2(\mathcal{W}) < \infty$. Then,
 $\mathbb{P}\Big(\mathbb{N}(\mathbb{B}) = \mathbb{k} \Big| \mathbb{N}(\mathcal{W}) = n\Big)$
 $= \binom{n}{\mathbb{k}} \Big(\frac{\mathcal{M}_2(\mathcal{B})}{\mathcal{M}_2(\mathcal{W})} \Big)^{\mathbb{k}} \Big(1 - \frac{\mathcal{M}_2(\mathcal{B})}{\mathcal{M}_2(\mathcal{W})} \Big)^{\mathbb{n}-\mathbb{k}},$
 $\mathbb{k} \le n, \quad \mathbb{B} \subseteq \mathbb{W}.$

Furthermore

 $N(B_1), N(B_2), \dots, N(B_m) \mid N(W) = n$ $\mathbb{B}_{\mathcal{A}} \subseteq \mathbb{W}$

is the same as the joint distribution of these variables in a binomial process.

We can generalize further!

Let
$$S$$
 be a space and
 Λ a measure on it. (Strictly,
 S is a locally compact metric
space, and Λ a measure
which is finite on every compact
set and which has no atoms.)

The Poisson process on S
with "cumulative rate"
$$\land$$
 is
a point process on S such that
(PPI) for every compact
 $B \subset S$,
 $N(B) \sim Poisson(\Lambda(B))$
(PP2) $B_{j}, j = 1, 2, ..., n$ disjoint
and compact \Longrightarrow
 $N(B_{j}), j = 1, 2, ..., n$ disjoint
independent.

Thm. 1.12 Let N be
a Poisson point process in
$$\mathbb{R}^2$$

with "cumulative sate" Λ . Let
 $\mathbb{W} \subset \mathbb{R}^2$ be such that
 $D < \Lambda (\mathcal{W}) < \infty$. Then,
 $\mathbb{P}\Big(\mathbb{N}(\mathbb{B}) = \mathbb{k} \mid \mathbb{N}(\mathcal{W}) = \mathbb{n}\Big)$
 $= \binom{n}{\mathbb{k}} \left(\frac{\Lambda(\mathbb{B})}{\Lambda(\mathcal{W})}^{\mathbb{k}} \left(1 - \frac{\Lambda(\mathbb{B})}{\Lambda(\mathcal{W})}\right)^{n-\mathbb{k}},$
 $\mathbb{k} \leq n, \quad \mathbb{B} \subseteq \mathbb{W}.$

EXAMPLE
EXAMPLE
Cabs are available in a
finite city
$$W \in \mathbb{R}^2$$
 according
to a Poisson point process
with cumulate rate Λ .
The next demand loc. in W happens
according to the density
 $f(x), x \in W$. Find the
expected shortest distance to
a cab.