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A useful result when
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Proof Sketch ofTh m 1 3
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we can use the density
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Let's now perform step 2
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Beware

The proof of Thm 1 3 in

many textbooks
at least

incomplete if not wrong
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Th m 1.5 says that

the conditional distribution

of arrival times is the

same as uniform order
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PROOF SKETCH OF TH M I 5

P M Sj E Sj NH n
L H S 51

P NH n

Heuristic Proof
Let's find the density associated

with the numerator

1
I Iii it I

É tis



dF s si sn.n e tsjxdg.it
sn

Sj.lejsn NE j

X e tds.de i den

and hence

f Si Sa ibn
51,52 sn

Yett
P NEED

It Oss as snit



For a

rigorous proof

of Thm 1.5 use the

proof technique of Thm 1.3
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Recall the postulates of the

homogeneous Poisson process
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By modifying postulate

P 3 we can arrive at
very

useful generalizations

of the Poisson process

Let's look at two
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PURE BIRTH PROCESS
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Notice the state dependent
rate

Does the process retain

stationary increments

Very useful to model

population growth etc



Through similar calculations
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NON STATIONARY POISSONPROCESS
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Thm 1.6 Suppose the counting

process Xt too satisfies

NSP 1 NSP 3 Suppose also

that X is continuous in at
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How do the inter arrival times

of a non stationary Poisson

process behave

First Waiting Time

x
T

y
T2

S s s

they cannot be independent

are they exponential



Thm 1.7 Suppose Xt too

satisfies NSP 1 NSP 3

with Nt XI continuous into

Then

P Sn Sn t 15,5 sn
Sntt

exp find
Sn

ME



Notice that Thm 1 7 says

the waiting times one

exponential but neither

independent nor identically

distributed
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Proof Sketch

Lets check whether E to
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Th m 19

Si Sa are arrival times

of a non stationary Poisson
cont
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A proof of Thm 1 9 follows

in a trivial
way from

Theorem 1.8
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Thm 1.9 gives
an effective

method to simulate arrivals

from any non stationary Poisson

process having integrable

rate XC
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What is the density

function of Si Sa sn NH n

for a non stationary Poisson

process with rate function X C

recall that this is the uniform
order statistics for the stationary
case
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CONDITION CI

Ti Ta are independent
and identically distributed

with parameter X o



CONDITION C2
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CONDITION Cz
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only on t s
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Thm 1.10 CONSTRUCTION EQUIV

Under CONDITION Co

CONDITION G CONDITION Cz

CONDITION G and CONDITION Cy

are equivalent



POINT PROCESSES
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two realizations

The notion of point processes
comes from viewing points

in
space as realizations

of a probability law



This is a powerful way

of thinking about stochastic

processes
in general

W i Xo E S
H
appropriate

space

x xx x

f
x x x x

if fax
x x xx

I
v v v

Xia Xian Xu



POINT PROCESSES

00
o o

o IT

Formally a point process
is a counting measure in Rd valued

random variable on Rd



EXAMPLE Binomial Process

o

o
o

o

WC R

0

Let X X X E IR n

fixed be uniformly distributed

in W C IR bounded

The density of Xi is

f a Yu.cm new

O O W

where M C denotes area



So for any bounded set
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Notice that NIB s NCB

are not independent even
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The Poisson process can be

viewed as a point process
in IR that is as a

counting measure in IR valued

random variable

Let's try to generalize to
IR



Example Spatial Poisson Proc

The spatial Poisson process
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We can derive the spatial
Poisson process through other

sets of axioms e.g
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Furthermore
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is the same as the joint
distribution of these variables

in a binomial process



We can generalize further



Let S be a space and

A a measure on it Strictly

S is a locally compact metric

space and A a measure

which is finite on
every compact

set and which has no atoms



The Poisson
process on S

with cumulative rate A is

a point process on S such that
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W
EXAMPLE

Cabs are available in a x x

finite city Wo IR according

to a Poisson point process
with cumulate rate A

The next demand loc.in W happens

according to the density
feat re W Find the

expected shortest distance to

a cab


