CONDITION C4

If $o < t_1 < t_2 < \dots < t_k$ and $n_{j} \ge 0$ $j = 1, 2, \dots, k$ $(i) \mathcal{P}\left(X_{t_{k}+h} - X_{t_{k}} = i \mid X_{t_{j}} = n_{j}, j \leq k\right)$ $= \lambda h + o(h)$ $(ii) \mathcal{P}\left(X_{t_{k}+h} - X_{t_{k}} \ge 2 \mid X_{t_{j}} = n_{j}, j \le k\right)$ = o(h)

- (i) and (ii) imply a sense
of future state distribution
not depending on the past
-
$$X_t$$
 is non-decreasing
and $X_t \in \mathbb{Z}^+$.

Can we generalize?

Markov Chain

Let E be a countable set. The stochastic process $\{Y_{+}, t \ge 0\}$ is said to be a Markov process with state space E provided that for any $t, s \ge 0$, and $j \in E$ $P\left(Y_{++s}=j \mid Y_{u}; u \in t\right)$ $= P(Y_{++s} = |Y_{+})$ (1)

Discrete time Markov chain
"discrete time"

$$\{X_n, n \in \mathbb{N}\}\$$
 is called a
discrete time Monkov chain if
 $P(X_{n+1}=j \mid X_0, X_1, ..., X_n)$
 $= P(X_{n+1}=j \mid X_n).$
for all $j \in E$ and $n \in \mathbb{N}$.
state spore E is a countable set

Notice:

(i)
$$0 \leq P(i,j) \leq I$$
, $i,j \in E$.
(ii) $\sum_{j \in E} P(i,j) = I \quad \forall i$

Theorem 3.1 (only current state matters) For n, m E N, and io, i, ... im E $P\left(X = i_{m}, \dots, X_{n+1} = i_{n} \left| X_{n} = i_{n}, X_{n-1} = i_{-1}, \dots, X_{n} = i_{-n} \right| \right)$ $= P(\mathbf{i}_{o},\mathbf{i}_{l}) P(\mathbf{i}_{l},\mathbf{i}_{2}) \cdots P(\mathbf{i}_{m-l},\mathbf{i}_{m}).$ $= \mathcal{P}\left(X_{n+m} \stackrel{:}{=} \iota_{m}, \ldots, X_{n+1} \stackrel{:}{=} \iota_{n} \mid X_{n} \stackrel{:}{=} \iota_{n}\right)$ If TT(.) is a distribution on E, and $F(n_0)$ $P(X_0=i_0,...,X_m=i_m)$ $=\sum_{j\in E} T(i_j)\prod_{j=0}^{m-1} P(i_j,i_{j+1})$ $j\in E$ j=0 \boxtimes E_{i} and $P(X_{e} = i) = \pi(i)$, $i \in E_{i}$

- "path" to $X_n = i_o$ does not matter Markov current fime n does not matter time homogeneity

Notice, therefore

$$P(X_{n+2} = k \mid X_n = i)$$

$$= \sum_{j \in E} P(i,j)P(j,k)$$

$$P(X_{n+3} = k \mid X_n = i) P(X_{n+3} \mid x_{n+1})$$

$$= \sum_{h \in E} P(i,h) \left(\sum_{j \in E} P(h,j)P(j,k) \right)$$

And,

$$P(X_{m+n} = j \mid X_o = i)$$

$$= \sum_{h \in E} P(X_m = h \mid X_o = i)$$

$$\times P(X_m = j \mid X_m = h)$$

$$\Rightarrow P^{(m+n)} = P^{(n)} P^{(m)} = n, n \in \mathbb{N}$$
Notation: $P^{(t)}(i,j) = P(X_t = j \mid X_o = i)$

Theorem 3.2
For any
$$m \in N$$
,
 $P(X_{n+m} = j \mid X_n = i)$
 $= P^m(i,j)$,
 $i, j \in E; n \in N.$
(i,j)-th element of P^m .

$$P^{(n+m)}(i,j) = \sum_{h \in E} P^{m}(i,h) P^{n}(h,j)$$

$$h_{eE} \qquad i,j \in E; h \in E.$$

Suppose Y. j=1 are iid discrete valued random variables. with distribution T_k , k = 0, 1, 2, ...Suppose $X_{n} := \int_{\substack{n \\ j=1}}^{n} \frac{1}{j} \sum_{j=1}^{n} \frac{1}{j} \sum_{j=1}^$ n = 0

Then
$$\{X_n, n \in \mathbb{N}\}$$
 is
a Markov chain with

EXAMPLE

When an equipment fails, it
is immediately replaced by
another. Let Pk denote
the time equipment lasts for
k writs of time.
$$X_n :=$$
 "remaining life" at
time n.

Therefore
$$\{X_n, n \ge 1\}$$
 is

a Markov chain.

Then $\mathbb{E}\left[Y \mid X_{o}, \dots X_{n}\right]$ $=\mathbb{E}\left[Y \mid X_{n}\right]$

Theorem 3.4

Let f be a bounded function on EXEX... and let $Q(i) = \mathbb{E} \left| f(X_{o}, X_{i}, \dots) \right| X_{o} = i$ Then, for any nEIN, $\left| \mathbb{E} \left| f(X_n, X_{n+1}, \dots) \right| X_{o, \dots}, X_n \right| = g(X_n).$

XAMPLES (i) first fime X visite a certain state (ii) first time X visits a certain set of states v (III) k-th time X visits a fixed set of states V (iv) the last time a state is visited X

"earliest positive time the chain is in A"

We will abuse notation and write Tz instead of Tzzzzz.

$$f_{xy} := P(T_y < \infty | X_o = z)$$

"probability of even hitting
y from z"

$$f_{xy} = \sum_{n=1}^{\infty} P(T_y = n | X_o = z)$$

Recurrent State
A state y such that
$$P_{yy} = 1$$
.

$$P\left(\begin{array}{c}N(y) \geqslant 1 \mid X_{o} = z\right) = f_{zy}$$

$$P\left(\begin{array}{c}N(y) \geqslant 2 \mid X_{o} = z\right) = f_{zy}f_{yy}$$

$$P\left(\begin{array}{c}N(y) \geqslant m \mid X_{o} = z\right) = f_{zy}f_{yy}$$

$$m \ge 1.$$

Notice

Expected Number of Visite

$$G_1(x,y) := \mathbb{E} \left[N(y) | X_0 = x \right]$$

 \square

$$= \mathbb{E}\left[\sum_{n=0}^{\infty} \mathbb{I}_{y}(X_{n}) \middle| X_{o} = \chi\right]$$

Let y be a transient state. Then

$$\mathbb{P}(N(y) < \infty \mid X_s = x) = 1,$$

and

$$G_1(\chi, y) = \frac{f_{\chi y}}{1 - f_{\chi y}}, \chi \in S.$$

Let y be a recurrent state.
Then

$$P(N(y) < \infty | X_o = z) = 1 - f_{zy}$$

and
 $(\circ - f_{zy} = 0)$

A Markov chain with a finite state space cannot be transient. Why?

" χ leads to $y'' \equiv "\chi \rightarrow y''$

$$f_{xy} = \sum_{n=1}^{\infty} \mathbb{P}(T_y = n \mid X_o = x)$$

=
$$\lim_{n} \mathbb{P}(T_y < n \mid X_o = x)$$

=
$$\mathbb{P}(N(y) \ge 1 \mid X_o = x)$$

- (1)

Examining (1), we see that

$$z$$
 leads to y if and only if
 $P^{n}(z,y) > 0$
for some $n \ge 1$.

By the same logic, if
$$x \rightarrow y$$

and $y \rightarrow z$, then $x \rightarrow z$.

If x is a recurrent state,
and
$$x \rightarrow y$$
, then
(i) y is a recurrent state;
(ii) $f_{xy} = f_{yx} = 1$.

Proof?

A set of states C is said to be <u>closed</u> if no state in C leads to one outside.

 $f_{xy} = 0$ $\chi_{EC}, y \notin C$

An irreducible chain is a chain whose state space is irreducible.

Theorem 3.7

Let C be an inheducible closed set of neurrent states. Then $P_{xy} = 1$, $P(N(y) = \infty | X_o = x) = 1$ and $G_1(x, y) = \infty$ for all $x, y \in C$.

Theorem 3.8

Let C be a finite irreducible closed set of states. Then, every state in C is recurrent.

V

Proof?

Why?

Example

	0]	2	3	4	5
0		0	٥	0	0	٥
I	1/4	1/2	1/4	0	٥	ð
2	0	1/5	2/5	1/5	0	1/5-
3	0	0	Ô	1/6	1/3	1/2
4	0	0	0	1/2	0	1/2
5	0	\bigcirc	0	1/4	0	3/4

Classify the states.

Theorem 3.9 (Decomposition)
Suppose the set
$$S_R$$
 of
recurrent states is nonempty.
Then, S_R is the unim of a
finite or countably infinite
number of disjoint irreducible
closed sets $C_1, C_2, ...$

If C is a closed irreducible
set of recurrent states and
$$z$$
 is a transient state, we
can calculate $P_{c}(z)$ by solving

Martingales Suppose that the sequence X, n>0 Satisfies

 $= \chi_n$

Such a sequence is called a manfingale.

Notice that if {Xn, n≥ 0} is a montingale, then the Mean remaine fixed.

 $\mathbb{E}[X_{o}] = \mathbb{E}[X_{o}] = \cdots$

Let
$$\{X_n, n \ge i\}$$
 be a
Markov chain with state
space $\{0, 1, 2, ..., d\}$, and
transition probability matrix
P such that

$$\int_{y=0}^{d} y P(x,y) = z, \quad z = 0, j, ..., d$$

$$f_{zd} = \frac{\chi}{d}$$
, $f_{zo} = 1 - \frac{\chi}{d}$

6

Proof?

$$\begin{split} u(x) &:= \mathcal{P}(T_a < T_b \mid X_o = x) \\ u(a) &= 1, \quad u(b) = 0 \\ u(x) &= P_x u(x+1) + h_x u(x) + q_x u(x-1) \\ a < x < b \\ \Rightarrow q_x (u(x) - u(x-1)) = P_x (u(x+1) - u(x)) \\ u(x+1) - u(x) &= \frac{q_x}{P_x} (u(x) - u(x-1)) \\ a < x < b \end{split}$$

Branching Chain

$$X_n := number of "particles"$$

at time n, $n \ge 0$.

Each particle at time n
gives rise to
$$\notin$$
 "progeny"
independently, where \notin has
pmf f.
What is the probability of
"extinction": $P(T_o < \infty | X_o = x_o)$?

Understand the Model:

 $X_{p} = 1$ $X_1 = 2$ $X_2 = 4$ $X_3 = 2$