Recall one of the constructions of of the Poisson process.

Condition C_{4}
If $0<t_{1}<t_{2}<\ldots<t_{k}$ and $n_{j} \geqslant 0, j=1,2, \ldots, k$
(i)

$$
\begin{aligned}
P\left(X_{t_{k}+h}-X_{t_{k}}\right. & \left.=1 \mid X_{t_{j}}=n_{j, j \leq k}\right) \\
& =\lambda h+o(h)
\end{aligned}
$$

(ii)

$$
\begin{gathered}
P\left(X_{t_{k}+h}-X_{t_{k}} \geqslant 2 \mid X_{t_{j}}=n_{j, j} \leqslant k\right) \\
=o(h)
\end{gathered}
$$

Observe

- (i) and (ii) imply a sense of future state distribution not depending on the past
$-X_{t}$ is non-decreasing and $X_{t} \in \mathbb{Z}^{+}$.

Can we generalize?

Markov Chain

Let E be a countable set. The stochastic process
$\left\{Y_{t}, t \geqslant 0\right\}$ is said to be a Markov process with state space E provided that for any $t, s \geqslant 0$, and $j \in E$

$$
\begin{align*}
P\left(Y_{t+\infty}=j\right. & \left.\mid Y_{u} ; u \leq t\right) \\
& =P\left(Y_{t+\infty}^{\prime}=j \mid Y_{t}\right) \tag{1}
\end{align*}
$$

Observe

- RHS of (1) can depend on s, t or j, Y_{t}.
- When "transition \uparrow function ${ }^{n}$

$$
P\left(Y_{t+\infty}=j \mid Y_{t}=i\right)=P_{s}(i, j)
$$

is independent of t, we say that the Markov chain is time-homogeneous.

- continuous time verus discrete time Markov chain.

Discrete time Markov chain
"discrete time"
$\left\{X_{n}, n \in \mathbb{N}\right\}$ is called a discrete time Markov chain if

$$
\begin{aligned}
P\left(X_{n+1}\right. & \left.=j \mid X_{0}, X_{1}, \ldots, X_{n}\right) \\
& =P\left(X_{n+1}=j \mid X_{n}\right) .
\end{aligned}
$$

for all $j \in E$ and $n \in \mathbb{N}$.
state space E is a countable set.

For convenience,

$$
P\left(X_{n+1}=j \mid X_{n}=i\right)=P(i, j)
$$

"transition matrix"
that is, there is no dependence on n.

Notice:
(i) $0 \leq P(i, j) \leq 1, i, j \in E$.
(ii) $\sum_{j \in E} P(i, j)=1 \quad \forall i$

Matrices that satisfy (i) and
(ii) are called Markov matrices.

Theorem 3.1 (only current state matters)

For $n, m \in \mathbb{N}$, and $i_{0}, i_{1}, \ldots i_{m} \in E$

$$
\begin{aligned}
& P\left(X_{n+m}=i_{m}, \ldots, X_{n+1}=i_{1} \mid X_{n}=i_{0}, X_{n-1} i_{-1}, i_{1}, \ldots, X_{0}=i_{-n}\right) \\
& =P\left(i_{0}, i_{1}\right) P\left(i_{1}, i_{2}\right) \ldots P\left(i_{m-1} i_{m}\right) . \\
& =P\left(X_{n+m}=i_{m}, \ldots, X_{n+1}=i_{1} \mid X_{n}=i_{0}\right)
\end{aligned}
$$

If $\pi(\cdot)$ is a distribution on E, and $P\left(X_{0}=i\right)=\pi(i), i \in E$,

$$
P\left(X_{0}=i_{0}, \ldots, X_{m}=i_{m}\right)
$$

$$
=\sum_{j \in E}^{m} \pi(j) \prod_{j=0}^{m-1} P\left(i_{j}, i_{j+1}\right)
$$

- "path" to $X_{n}=i_{0}$ does not matter

$$
I_{\text {Markov }}
$$

- current time n does not matter

$$
\searrow
$$

time homogeneity

Notice, therefore

$$
\begin{aligned}
& P\left(X_{n+2}=k \mid X_{n}=i\right) \\
& =\sum_{j \in E} P(i, j) P(j k) \\
& P\left(X_{n+3}=k \mid X_{n}=i\right) P\left(X_{n=k} \mid X_{n=h}\right) \\
& =\sum_{h \in E} P(i, h)\left(\sum_{j \in E} P(h, j) P(j, k)\right)
\end{aligned}
$$

And,

$$
\begin{aligned}
& P\left(X_{m+n}=j \mid X_{0}=i\right) \\
&= \sum_{h \in E} P\left(X_{m}=h \mid X_{0}=i\right) \\
& \times P\left(X_{m+n}=j \mid X_{m}=h\right) \\
& \Rightarrow P^{(m+n)}=P^{(n)} P^{(m)} \cdot m, n \in \mathbb{N}
\end{aligned}
$$

Notation: $P^{(t)}(i, j)=P\left(X_{t}=j \mid X_{0}=i\right)$

Theorem 3.2

For any $m \in \mathbb{N}$,

$$
\begin{aligned}
P\left(X_{n+m}\right. & \left.=j \mid X_{n}=i\right) \\
& =P^{m}(i, j) \\
& / i, j \in E ; n \in \mathbb{N} .
\end{aligned}
$$

(i, j)-th element of P^{m}

In open form, for any $m, n \in \mathbb{N}$

$$
P^{(n+m)}(i, j)=\sum_{h \in E} P^{m}(i, h) P^{n}(h, j)
$$

Chapman-Kolmogorov Equations

Example

Suppose $Y_{j, j \geqslant 1}$ are Lid discrete valued random variables.
with distribution $\Pi_{k}, k=0,1,2, \ldots$
Suppose

$$
X_{n}:= \begin{cases}0 & n=0 \\ \sum_{j=1}^{n} Y_{j}, & n \geqslant 1\end{cases}
$$

Then $\left\{x_{n}, n \in \mathbb{N}\right\}$ is
a Markov chain with

$$
P=\begin{aligned}
& 0 \\
& 1
\end{aligned}\left[\begin{array}{ccccc}
0 & 1 & \cdots & \\
P_{0} & p_{1} & p_{2} & \cdots \\
& p_{Q_{2}} & p_{1} & p_{2} & \cdots \\
& 0 & p_{0} & p_{1} & \cdots \\
& & & p_{0} & \cdots
\end{array}\right]
$$

Example
When an equipment fails, it is immediately replaced by another. Let P_{k} denote the time equipment lasts for k units of time.
$X_{n}:=$ "remaining life" at time n.
(Assume lifetimes Z_{n} are iid.)

Since,

$$
X_{n+1}(w)= \begin{cases}X_{n}(w)-1 & X_{n}(w) \geqslant 1 \\ Z_{n+1}^{(w)-1} & 0 \cdot w\end{cases}
$$

Therefore $\left\{x_{n}, n \geqslant 1\right\}$ is
a Markov chain.

Theorem $3 \cdot 3$
Fix $n \in \mathbb{N}$, and let Y be a bounded function of the random variables X_{n}, X_{n+1}, \ldots

Then

$$
\begin{aligned}
& \mathbb{E}\left[Y \mid X_{0}, \ldots X_{n}\right] \\
& \quad=\mathbb{E}\left[Y \mid X_{n}\right]
\end{aligned}
$$

Proof?

Theorem 3.4

Let f be a bounded function on $E \times E \times \cdots$ and let

$$
g(i)=\mathbb{E}\left[f\left(X_{0}, x_{1}, \ldots\right) \mid X_{0}=i\right]
$$

Then, for any $n \in \mathbb{N}$,

$$
\mathbb{E}\left[f\left(X_{n}, X_{n+1}, \ldots\right) \mid X_{0}, \ldots, X_{n}\right]=g\left(X_{n}\right) .
$$

Stopping Time.

The r.v. T is said to be a stopping time if the occurrence of non-occurrence of the event $T \leq n$ can be determined by looking at $X_{0}, X_{1}, \ldots X_{n}$.

Examples
(i) first time X visits a certain state
(ii) first time X visits a certain set of states
(iii) k-th time X visits a fixed set of states
(iv) the last time a state is visited X

Hitting Time

$$
T_{A}:=\inf \left\{n>0: X_{n} \in A\right\}
$$

"earliest positive time the chain is in $A^{\prime \prime}$

We will abuse notation and write T_{2} instead of $T_{\{x\}}$.

$$
\ell_{x y}:=P\left(T_{y}<\infty \mid X_{0}=x\right)
$$

"probability of ever hitting y from $x^{\prime \prime}$

$$
\rho_{x y}=\sum_{n=1}^{\infty} P\left(T_{y}=n \mid X_{0}=x\right)
$$

Recurrent State
A state y such that

$$
\rho_{y y}=1
$$

Transient State
A state y such that

$$
\varrho_{y y}<1 .
$$

Denote

$$
\mathbb{I}_{y}(x):= \begin{cases}1 & x=y \\ 0 & \text { ow. }\end{cases}
$$

$$
N(y)=\sum_{n=0}^{\infty} \mathbb{I}_{y}\left(X_{n}\right)
$$

"number of visits to $y^{\prime \prime}$

Notice

$$
\begin{aligned}
& P\left(N(y) \geqslant 1 \mid X_{0}=x\right)=\rho_{x y} \\
& P\left(N(y) \geqslant 2 \mid X_{0}=x\right)=l_{x y} \rho_{y y} \\
& P\left(N(y) \geqslant m \mid X_{0}=x\right)=\rho_{x y} l_{y y}^{m-1} \\
& m \geqslant 1 .
\end{aligned}
$$

Proof?

Expected Number of Visits

$$
\begin{aligned}
G(x, y) & :=\mathbb{E}\left[N(y) \mid X_{0}=x\right] \\
& =\mathbb{E}\left[\sum_{n=0}^{\infty} \mathbb{I}_{y}\left(X_{n}\right) \mid X_{0}=x\right] \\
& =\sum_{n=0}^{\infty} P^{n}(x, y)
\end{aligned}
$$

Theorem 3.5

Let y be a transient state.
Then

$$
P\left(N(y)<\infty \mid X_{0}=x\right)=1,
$$

and

$$
G(x, y)=\frac{\rho_{x y}}{1-\rho_{y y}}, x \in S
$$

Let y be a recurrent state.
Then

$$
P\left(N(y)<\infty \mid X_{0}=x\right)=1-f_{x y}
$$

and

$$
G(x, y)= \begin{cases}0 & \ell_{x y}=0 \\ \infty & \rho_{x y}>0\end{cases}
$$

A Markov chain is called a transient chain if all its states are transient and a recurrent chain if all its states are recurrent.

A Markov chain with a finite state space cannot be transient. Why?

We say that x leads to y if $\quad l_{x y}>0$.

$$
\text { "x leads to } y " \equiv " x \rightarrow y "
$$

Recall that $l_{x y}$ can be expressed in different ways

$$
\begin{align*}
\rho_{x y} & =\sum_{n=1}^{\infty} P\left(T_{y}=n \mid X_{0}=x\right) \\
& =\lim _{n} P\left(T_{y}<n \mid X_{0}=x\right) \\
& =P\left(N(y) \geqslant 1 \mid X_{0}=x\right)
\end{align*}
$$

Examining (1), we see that
x leads to y if and only if

$$
P^{n}(x, y)>0
$$

for some $n \geqslant 1$.

By the same logic, if $x \rightarrow y$ and $y \rightarrow z$, then $x \rightarrow z$.

Theorem 3.6
If x is a recurrent state, and $x \rightarrow y$, then
(i) y is a recurrent state;
(ii) $\rho_{x y}=\rho_{y x}=1$.

Proof?

A set of states C is said to be closed if no state in C leads to one outside.

$$
l_{x y}=0 \quad x \in C, y \notin C
$$

A closed set C is called irreducible if for any pair $x, y \in C$, we have that x leads to y.

An irreducible chain is a chain whose state space is irreducible.

Theorem 3.7

Let C be an irreducible closed set of recurrent states.

Then $\rho_{x y}=1, P\left(N(y)=\infty \mid X_{0}=x\right)=1$ and $G(x, y)=\infty$ for all $x, y \in C$.

Proof?

Theorem 3.8

Let C be a finite irreducible closed set of states. Then, every state in C is recurrent.

Proof?

In fact every irreducible set has all transient states or all recurrent states. Why?

Example

$$
\begin{gathered}
0 \\
0 \\
1 \\
2 \\
3 \\
4 \\
5
\end{gathered}\left[\begin{array}{cccccc}
1 & 1 & 2 & 3 & 4 & 5 \\
1 / 4 & 1 / 2 & 1 / 4 & 0 & 0 & 0 \\
0 & 1 / 5 & 2 / 5 & 1 / 5 & 0 & 1 / 5 \\
0 & 0 & 0 & 1 / 6 & 1 / 3 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 / 4 & 0 & 3 / 4
\end{array}\right]
$$

Classify the states.

Theorem 3.9 (Decomposition)
Suppose the set S_{R} of recurrent states is nonempty.

Then, S_{R} is the unim of a finite or countably infinite number of disjoint irreduable closed sets C_{1}, C_{2}, \ldots

recurrent island
MC enter a recurrent island and remain there forever, visiting each state i.O., or remain in S_{T}, never entering any of the islands.

If C is a closed irreducible set of recurrent states and x is a transient state, we can calculate $\rho_{c}(x)$ by solving a linear system.

$$
\begin{gathered}
f_{C}(x)=\sum_{y \in C} P(x, y)+\sum_{y \in S_{T}} P(x, y) P_{C}(y) \\
x \in S_{T} \\
\left|S_{T}\right| \text { equations, }\left|S_{T}\right| \text { variables }
\end{gathered}
$$

Martingales
Suppose that the sequence $X_{n}, n \geqslant 0$ satisfies

$$
\begin{aligned}
\mathbb{E}\left[X_{n+1} \mid X_{0}=x_{0}, X_{1}=x_{1}, \ldots, X_{n}\right. & \left.=x_{n}\right] \\
& =x_{n}
\end{aligned}
$$

Such a sequence is called a martingale.

Notice that if $\left\{X_{n}, n \geqslant 0\right\}$ is a martingale, then the mean remains fixed.

$$
\mathbb{E}\left[X_{0}\right]=\mathbb{E}\left[X_{1}\right]=\cdots
$$

Let $\left\{X_{n}, n \geqslant 1\right\}$ be a
Markov chain with state space $\{0,1,2, \ldots, d\}$, and transitim probability matrix P such that

$$
\sum_{y=0}^{d} y P(x, y)=x, \quad x=0,1, \ldots, d
$$

The $\left\{X_{n}, n \geqslant 1\right\}$ is a martingale with 0 and d being absorbing states. Why?

Also, if 0 and d are the only absorbing states, then states $1,2, \ldots, d-1$ are necessarily transient. Why?

Furthermore,

$$
\rho_{x d}=\frac{x}{d}, \quad \rho_{x_{0}}=1-\frac{x}{d}
$$

Proof?

Birth and Death Chain

A Birth and Death chain is a MC supposed on $\{0,1,2, \ldots\}$ with the transition function

$$
\begin{aligned}
& P(x, y)=\left\{\begin{array}{cc}
p_{x} & y=x+1 \\
r_{x}=1-p_{x}-q_{x} & y=x \\
q_{x} & y=x-1
\end{array}\right. \\
& q_{0}=0 ; \quad p_{2}>0 \& q_{x}>0 \text { for } x>0 .
\end{aligned}
$$

Main Question: $P\left(T_{a}<T_{b}\right)$?

$$
\begin{gathered}
u(x):=P\left(T_{a}<T_{b} \mid X_{0}=x\right) \\
u(a)=1, \quad u(b)=0 \\
u(x)=P_{x} u(x+1)+r_{x} u(x)+q_{x} u(x-1) \\
a<x<b \\
\Rightarrow q_{x}(u(x)-u(x-1))=P_{x}(u(x+1)-u(x)) \\
u(x+1)-u(x)=\frac{q_{x}}{P_{x}}(u(x)-u(x-1)) \\
a<x<b
\end{gathered}
$$

Recurse backward and use boundary conditims to solve:

$$
\begin{aligned}
u(x) & =\frac{\sum_{y=x}^{b-1} \gamma_{y}}{\sum_{y=a}^{b-1} \gamma_{y}} \quad a<x<b \\
\gamma_{y} & :=\prod_{j=1}^{y}\left(q_{j} / p_{j}\right) \quad y \geqslant 1 \\
\gamma_{0} & :=1
\end{aligned}
$$

Branching Chain
$X_{n}:=$ number of "particles" at time $n, n \geqslant 0$.

Each particle at time n gives rise to ξ "progeny" independently, where ξ has $p m f f$.

What is the probability of "extinction": $P\left(T_{0}<\infty \mid x_{0}=x_{0}\right)$?

Understand the Model:

$$
\begin{aligned}
& x_{0}=1 \\
& X_{1}=2 \\
& X_{2}=3
\end{aligned}
$$

$$
\begin{aligned}
& X_{0}=1 \\
& X_{1}=2 \\
& X_{2}=4 \\
& X_{3}=2
\end{aligned}
$$

