Second Order Processes

$$
\{X(t), \quad t \in T\}
$$

$\{X(t), t \in T\}$ is second order
if $\mathbb{E}\left[X^{2}(t)\right]<\infty \quad \forall t \in T$.

Mean Function

$$
\mu_{x}(s):=\mathbb{E}[X(s)], s \in T
$$

Covariance Function

$$
\begin{aligned}
\gamma_{X}(s, t) & :=\operatorname{Cov}(X(s), X(t)) \\
& =\mathbb{E}\left[\left(X(s)-\mu_{X}(s)\right)\left(X(t)-\mu_{X}(t)\right)\right] \\
& =\mathbb{E}[X(s) X(t)]-\mu_{X}(s) \mu_{X}(t) .
\end{aligned}
$$

Symmetric

$$
\gamma_{x}(s, t)=\gamma_{x}(t, s)
$$

PSI

$$
\begin{array}{r}
0 \leqslant \operatorname{Var} \sum_{j=1}^{n} b_{j} X\left(t_{j}\right) \\
=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i} b_{j} \gamma_{x}\left(t_{i}, t_{j}\right) \\
\forall t_{1}, t_{2}, \ldots, t_{n} \\
b_{1}, b_{2}, \ldots, b_{n}
\end{array}
$$

Conclude, $\gamma_{x}(\cdot, \cdot)$ is positive semi definite.

Assume $T=(-\infty, \infty)$.
A second ordn process $\{X(t), t \in T\}$ is covariance stationary if

$$
Y(t)=X(t+\tau)
$$

and $X(t)$ have the same Covariance function $\forall \tau$.

Cov. Stationarity versus Strict Stationanity
A stochastic process $\{X(t), t \in T\}$ is strictly stationary if

$$
Y(t)=X(t+\tau)
$$

and $X(t)$ have the same joint distbn. functions.

For a covariance stationary process,
(i) $\mu_{x}(t)=$ constant
(ii)

$$
\begin{aligned}
\gamma_{x}(s, t) & =\gamma_{x}(0, t-s) \\
& =\gamma_{x}(s-t, 0) \\
& =\gamma_{x}(0, s-t) \\
& =\gamma_{x}(0,|s-t|)
\end{aligned}
$$

$\gamma_{X}(s, t)$ depends only on $|s-t|$.
(ii) $\Rightarrow \operatorname{Van}(X(t))=\gamma(t, t)=$ constant.

Note:

- "Gov. Stationary," "Second-Ordu Stationary," "Weakly Statimary" are all synonyms - they mean the same.
- Gov. Stat. $\langle\neq\rangle$ Strict Stat. in general.

Strict. Stat \Rightarrow Cor. Stat if $X(t), t \in T$ is second order.

So, we ease notation and write

$$
\gamma_{x}(h), \quad h \in \mathbb{R}{ }^{\prime l o g} "
$$

recognizing that γ_{x} is symmetric about the origin.

$\gamma_{x}(h) \nsim 0$ as $h \rightarrow \infty$, in general.

$$
\begin{gathered}
\ell_{x}(h):=\gamma_{x}(h) / \gamma_{x}(0) \\
\searrow
\end{gathered}
$$

"lag-h correlation"

ExAMPLE
The Poisson process $\{X(t), t \in \mathbb{R}\}$ is not covariance stationary.

However,

$$
Y_{t}=X(t+1)-X(t), t \in \mathbb{R}
$$

is covariance stationary with

$$
\gamma_{Y}(h)=\left\{\begin{array}{cc}
\lambda(1-|h|) & h \leq 1 \\
0 & h>1
\end{array}\right.
$$

Cross Covariance
For two second ordn processes

$$
\begin{gathered}
X(t), t \in \mathbb{R} \text { and } Y(t), t \in \mathbb{R} \\
\gamma_{X Y}(s, t):=\operatorname{Cov}(X(s), Y(t))
\end{gathered}
$$

Note that symmetry is not presumed:

$$
\gamma_{X Y}(s, t) \neq \gamma_{X Y}(s, t)
$$

If $\gamma_{X Y}(s, t)=0$, then

$$
\begin{array}{r}
\gamma_{X+Y}(s, t)=\gamma_{X}(s, t)+\gamma_{Y}(s, t) . \\
(H o w ?)
\end{array}
$$

Gaussian Processes

A stochastic process $\{X(t), t \in T\}$ is called a

Gaussian process if

$$
\left(X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{n}\right)\right)
$$

is (multivariate) normal for every $t_{1}, t_{2}, \ldots, t_{n} \in \mathbb{R}, n<\infty$.

Alternately and equivalently:
$X(t), t \in T$ is Gaussian if and only if

$$
\lambda_{1} X\left(t_{1}\right)+\lambda_{2} X\left(t_{2}\right)+\cdots+\lambda_{n} X\left(t_{n}\right)
$$

is normal (Gaussian) $\forall t_{1}, t_{2}, \ldots, t_{n}$,

$$
\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}, n<\infty .
$$

- Gaussian processes are not necessarily cove. statimany. (Why?)
- If a Gaussian process is cor. stationary, then it is also strictly stationary.

A Gaussian process is fully specified by its mean and covariance functions.
(All fin. dim. distbns are decided)

ExAMPLE

$$
X(t)=Z_{1} \operatorname{Cos} 2 \pi f_{1} t+Z_{2} \operatorname{Sin} 2 \pi f_{2} t
$$

Where Z_{1}, Z_{2} are independent and normal. Then, $X(t)$ is a Gaussian process.

Brownian Motion (Wiener Process)
A stochastic process $X(t), t \in \mathbb{R}$ is called a Wiener process if
(i) $W(0)=0$
(ii) independent increments, that is, for $t_{1} \leqslant t_{2} \leqslant \cdots \leqslant t_{n}$ $\left(W\left(t_{1}\right)-W(0)\right),\left(W\left(t_{2}\right)-W\left(t_{1}\right)\right) \cdots$, $\left(W\left(t_{n}\right)-W\left(t_{n-1}\right)\right)$ are independent.
(iii) $W(t)-W(s) \sim N\left(0, \sigma^{2}(t-s)\right)$. $t \geqslant s$.

For our purposes, a constant random variable is normal with zero variance
A Wiener process $W(t), t \in \mathbb{R}$ is a Gaussian process with

$$
\begin{aligned}
& \mu_{W}(t)=0 \\
& \gamma_{w}(s, t)= \begin{cases}\sigma^{2} \min (s, t), & s t \geqslant 0 \\
0, & s t<0\end{cases} \\
&(\text { How?) }
\end{aligned}
$$

Calculate the covariance function.
(i) $X(t)=\frac{W(t+\varepsilon)-W(t)}{\varepsilon}, \varepsilon>0$ "first diff. process"

(ii) $X(t)=e^{-\alpha t} W\left(e^{2 \alpha t}\right) ; t \in \mathbb{R}, \alpha>0$

(iii) $B(t)=W(t)-t w(1), t \in[0,1]$ \downarrow
"Brownian bridge"

Assume henceforth that T is an interval of positive length.
Minimal Assumptions:
(I) $\mu_{x}(t)$ is continuous in $t \in T$
(II) $\gamma_{x}(s, t)$ is continuous in s and $t \in T$.

Can we connect (I) s(II) to continuity of $\{X(t), t \in T\}$?

Notice that (I) and (II) do not guarantee the continuity of the sample path $X(\cdot, w)$, e.g. Poisson process. \checkmark undustand this - bject.

Theorem
(a) Suppose $\{X(t), t \in T\}$ is second order and satisfies $(I) \&(I I)$. Then, $X(t), t \in T$ is continuous in mean square:

$$
\begin{array}{r}
\lim _{s \rightarrow t} \mathbb{E}\left[(X(s)-X(t))^{2}\right]=0 \\
(\text { Proof? })
\end{array}
$$

(contd...)
(b) If $\{X(t), t \in T\}$ and $\{Y(t), t \in T\}$

Satisfy (I) and (II), then
$\gamma_{X Y}(s, t)$ is continuous in $s, t \in T$.
(Proof?)

What questions are we looking to answer?

- when are $I_{i}=\int_{a}^{b} f(t) x(t)$,

$$
I_{2}:=\int_{a}^{b} f(t) X(t) \times \int_{c}^{d} g(t) X(t)
$$

well defined?

- what is $\mathbb{E}\left[I_{1}\right]$,

$$
\operatorname{Cov}\left(I_{1}, I_{2}\right) ?
$$

III $\lim _{s \rightarrow t^{-}} X(s, \omega)$ exists

IV $\quad \lim _{s \rightarrow t^{+}} X(s, w)=X(t, w)$

V. $X(t, w)$ has only a finite number of discontinuities in any closed bounded interval.

- the conditions in III and IV characterize cadlàg functions
- in many settings $X(t, v)$ is continuous in t except for w in a set of prob. zero.

Theorem
Suppose I-V are satisfied, and f, g one piece wise continuous real valued functions in T.

$$
\begin{array}{r}
\text { (i) } \mathbb{E}\left[\int_{a}^{b} f(t) X(t, w)\right] \\
\\
=\int_{a}^{b} f(t) \mu_{X}(t)
\end{array}
$$

(ii)

$$
\begin{aligned}
& \mathbb{E}\left[\begin{array}{l}
\int_{a}^{b} f(t) X(t, w) \\
\end{array} \begin{array}{rl}
& \left.\int_{c}^{d} g(t) X(t, \omega)\right] \\
= & \int_{a}^{b} f(t) \int_{c}^{d} g(s) \mathbb{E}[X(s, v) X(t, v)] d s d t
\end{array}, ~\right.
\end{aligned}
$$

Furthermore, if $X(t), t_{b} \in T$ is a Gaussian process, then $\int_{a}^{b} f(t) X(t)$ is (univariate) normal.

Example
Let $W(t),-\infty<t<\infty$ be the Wiener process (with cont. sample paths). Then,
(i) $\int_{0}^{1} W(t) d t \sim N\left(0, \sigma^{2} / 3\right)$
(ii) $\operatorname{Corr}\left(W(t), \int_{0}^{1} W(s) d s\right)=$?
(How?)

More generally, if f and g are continuously differentiable in $[a, b], a, b \in \mathbb{R}$, then

$$
\begin{aligned}
& \mathbb{E}\left[\int_{a}^{p} f^{\prime}(t)\right.(W(t)-W(a)) \\
&\left.\times \int_{a}^{b} g^{\prime}(t)(W(t)-W(a))\right] \\
&= \sigma^{2} \int_{a}^{b}(f(t)-f(b))(g(t)-g(b)) . \\
&(H o w ?)
\end{aligned}
$$

$\xrightarrow{\text { Differentiation }} \xrightarrow{\sim \sim}$
Suppose $X(t), t \in T$ is second order satisfying（I）- （II），and $Y(t), t \in T$ is another sec．ord process satisfying（I）－（⿹丁口 $)$ such that

$$
\begin{aligned}
& \forall t_{0} \in T \\
& X(t)-X\left(t_{0}\right)=\int_{t_{0}}^{t} Y(s) d s, \quad t \in T .
\end{aligned}
$$

$Y(t), t \in T$ is called the derivative of $X(t), t \in T$ and denoted $X^{\prime}(t)$ ．

We would like to know more about $X^{\prime}(t), t \in T$.
For example:
Q.I. How do $\mu_{X^{\prime}}(t), \gamma_{X^{\prime}}(s, t)$ relate to $\mu_{x}(t), \gamma_{x}(s, t)$?
Q. 2 If $X(t), t \in T$ is cor. stat what can we say about $X^{\prime}(t), t \in T$?
Q. 3 Can we "estimate" $X^{\prime}(t)$, say by finite differencing $X(t)$?
Q. 4 What if $X(t), t \in T$ is Gaussian?

Let's answer Q.1

$$
\begin{aligned}
& \mu_{x}(t)=\mu_{x}^{\prime}(t), \quad t \in T \\
& \gamma_{x^{\prime}}(s, t)=\frac{\partial^{2}}{\partial s \partial t} \gamma_{x}(s, t) \\
& s, t \in T .
\end{aligned}
$$

Proof:

Let's answer Q. 2

If $X(t), t \in T$ is cove. stat. then,

$$
\begin{aligned}
\gamma_{X^{\prime}}(s, t)= & \frac{\partial^{2}}{\partial s \partial t} \gamma_{x}(s, t) \\
= & -\gamma_{x}^{\prime \prime}(s-t) \\
& (\text { How?) }
\end{aligned}
$$

$\Rightarrow X^{\prime}(t), t \in T$ is cor. stat.

In fact, the above shows X and X^{\prime} are un correl ated:

$$
\begin{array}{r}
\gamma_{X x^{\prime}}(s, t)=\frac{\partial}{\partial t} \gamma_{x}(s, t) \\
\Rightarrow \gamma_{x x^{\prime}}(t, t)=-\gamma_{x}^{\prime}(0)=0 \\
\text { (Hov .stat| } \\
\quad \text { (How?) }
\end{array}
$$

Let's answer Q. 3
Let $X(t), t \in T$ be a differentiable second ordn process.

Consider the natural estimator

$$
\begin{aligned}
& \hat{X}(t, \varepsilon):=\frac{X(t+\varepsilon)-X(t)}{\varepsilon} \\
& \text { of } X^{\prime}(t) \\
& \lim _{\varepsilon \rightarrow 0} \mathbb{E}\left[\left(\frac{X(t+\varepsilon)-X(t)}{\varepsilon}-X^{\prime}(t)\right)^{2}\right]=0
\end{aligned}
$$

Let's answer Q. 4

Suppose $X(t), t \in T$ is a differentiable second order process that is also Gaussian, then $X^{\prime}(t), t \in T$ is also Gaussian.

A proof is outside the scope.

The Wiener process $W(t), t \in T$ is continuous everywhere but differentiable nowhere.

(It is easy to see that $W(t), t \in T$ is not differentiable.)

Even though $W^{\prime}(t)$ does not exist, notice:

$$
\frac{d}{d t} \int_{t}^{t+\varepsilon} W(s) d s=W(t+\varepsilon)-w(t)
$$

And, hence

$$
\begin{aligned}
\int_{a}^{b} f(t) & \frac{1}{\varepsilon}(W(t+\varepsilon)-W(t)) \\
& =\int_{a}^{b} \underbrace{f(t)}_{u} \frac{d}{d t} \underbrace{\frac{1}{\varepsilon} \int_{t}^{t+\varepsilon} W(s) d s}_{v}
\end{aligned}
$$

$$
\begin{aligned}
= & \left.\underbrace{f(t)}_{u} \frac{1}{\varepsilon} \underbrace{t+\varepsilon}_{v} W(s) d s\right|_{a} ^{b} \\
& -\int_{a}^{\int_{a}^{b} f^{\prime}(t) \frac{1}{\varepsilon} \int_{t}^{t+\varepsilon} W(s) d s} d t
\end{aligned}
$$

Now send $\varepsilon \rightarrow 0$ to get

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{a}^{b} f(t) \frac{\perp}{\varepsilon}(W(t+\varepsilon) & -W(t)) \\
& =f(b) W(b)-f(a) W(a) \\
& -\int_{a}^{b} f^{\prime}(t) W(t) d t
\end{aligned}
$$

$$
\begin{array}{r}
\lim _{\varepsilon \rightarrow 0} \int_{a}^{b} f(t) \frac{\perp}{\varepsilon}(W(t+\varepsilon)-W(t)) \\
=f(b) W(b)-f(a) W(a) \\
- \\
-\int_{a}^{b} f^{\prime}(t) W(t) d t
\end{array}
$$

Notice that this looks like integration by pants!

So, we define

$$
\begin{aligned}
\int_{a}^{b} f(t) & W^{\prime}(t) d t \\
: & =\lim _{\varepsilon \rightarrow 0} \int_{a}^{b} f(t) \frac{1}{\varepsilon}(W(t+\varepsilon)-W(t)) \\
= & f(b) W(b)-f(a) W(a) \\
& -\int_{a}^{b} f^{\prime}(t) W(t) d t
\end{aligned}
$$

$$
\int_{a}^{b} f(t) W^{\prime}(t) d t
$$

is sometimes writfen as

$$
\int_{a}^{b} f(t) d w(t)
$$

It seems clear (although
no proof will be given) that

$$
\int_{a}^{b} f(t) d w(t) \text { is (univariate) }
$$

Gaussian.

Why is any of this important?
Because, a "stochastic differential equation" (SDE)

$$
a_{0} X^{\prime \prime}(t)+b_{0} X^{\prime}(t)+c_{0} X(t)=W^{\prime}(t)
$$

is well defined!

