1. Determine the transition matrix for the following Markov chains.
(a) Consider a sequence of n tosses of a coin with the probability of "heads" p. At time n (after n tosses) the state of the process is the number heads minus the number of tails.
(b) N black balls and N white balls are placed in two urns so that each urn contains N balls. At each step, one ball is selected at random from each urn and the two balls are exchanged. The state of the system is the number of white balls in the first urn.
2. Consider the two-state Markov chain with the one-step transition probability matrix $P(1,1)=1-p, P(1,2)=p, P(2,1)=q$, and $P(2,2)=1-q$, where $p+q>0$. Find P^{n}.
3. Let $X_{n}, n \geq 0$ be the two-state Markov chain.
(a) Find $P\left(T_{0}=n \mid X_{0}=0\right)$
(b) Find $P\left(T_{1}=n \mid X_{0}=0\right)$.
4. Let x and y be distinct states of a Markov chain having $d<\infty$ states and suppose that x leads to y. Let n_{0} be the smallest positive integer such that $P^{n_{0}}(x, y)>0$ and let $x_{1}, x_{2}, \ldots, x_{n_{0}-1}$ be states such that

$$
P\left(x, x_{1}\right) P\left(x_{1}, x_{2}\right) \cdots P\left(x_{n_{0}-2}, x_{n_{0}-1}\right) P\left(x_{n_{0}-1}, y\right)>0 .
$$

(a) Show that $x, x_{1}, \ldots, x_{n_{0}-1}, y$ are distinct states.
(b) Use (a) to show that $n_{0} \leq d-1$.
(c) Conclude that $P\left(T_{y} \leq d-1 \mid X_{0}=x\right)>0$.
5. Let $X_{n}, n \geq 0$ be a Markov chain whose state space \mathcal{S} is a subset of $\{0,1,2, \ldots\}$ and whose transition probability matrix P is such that

$$
\sum_{y} y P(x, y)=A x+B, \quad x \in \mathcal{S}
$$

for some constants A and B.
(a) Show that $\mathbb{E}\left[X_{n+1}\right]=A \mathbb{E}\left[X_{n}\right]+B$.
(b) Show that if $A \neq 1$, then

$$
\mathbb{E}\left[X_{n}\right]=\frac{B}{1-A}+A^{n}\left(\mathbb{E}\left[X_{0}\right]-\frac{B}{1-A}\right)
$$

6. Let y be a transient sate. Show that for all x,

$$
\sum_{n=0}^{\infty} P^{n}(x, y) \leq \sum_{n=0}^{\infty} P^{n}(y, y)
$$

7. Show that $\rho_{x y}>0$ if and only if $P^{n}(x, y)>0$ for some positive integer n.
8. Let's recall the one-dimensional random walk discussed in class. $\left\{X_{k}, k \geq 0\right\}$ is a Markov chain with $X_{k} \in \mathbb{Z}$ (set of integers) and having transition function

$$
\pi(x, y)= \begin{cases}p_{r} & y=x+1 \\ p_{\ell}=1-p_{r} & y=x-1 \\ 0 & y \notin\{x+1, x-1\}\end{cases}
$$

(Loosely, in the one-dimensional random walk, the chain "steps to the right" with probability p_{r}, and "to the left" with probability p_{ℓ}.) Show that if $p_{r}=p_{\ell}=\frac{1}{2}$, then all states $x \in \mathbb{Z}$ are recurrent; otherwise, all states $x \in \mathbb{Z}$ are transient.
9. Now consider the two-dimensional random walk where $\left\{X_{k}, k \geq 0\right\}$ is a Markov chain $X_{k} \in \mathbb{Z} \times \mathbb{Z}$ (two-dimensional integer lattice), having transition function

$$
\pi\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)= \begin{cases}p_{r} & \left(x_{2}, y_{2}\right)=\left(x_{1}+1, y_{1}\right) \\ p_{\ell} & \left(x_{2}, y_{2}\right)=\left(x_{1}-1, y_{1}\right) \\ p_{u} & \left(x_{2}, y_{2}\right)=\left(x_{1}, y_{1}+1\right) \\ p_{d} & \left(x_{2}, y_{2}\right)=\left(x_{1}, y_{1}-1\right) \\ 0 & \text { otherwise }\end{cases}
$$

where $p_{r}+p_{\ell}+p_{u}+p_{d}=1$ and $p_{r}, p_{\ell}, p_{u}, p_{d} \geq 0$. (Loosely, in the two-dimensional random walk, the chain steps to the right, left, up, and down with the respective probabilities p_{r}, p_{ℓ}, p_{u} and p_{d}.) Show that the chain is recurrent if $p_{r}=p_{\ell}=p_{u}=$ $p_{d}=\frac{1}{4}$.

Hint: In the second and third problems, it is difficult to show that a state z is recurrent or transient directly, from the definition. Instead, since every state communicates with every other, use the fact that a state z is recurrent if and only if

$$
\mathbb{E}\left[N(z) \mid X_{0}=x_{0}\right]=\sum_{n=1}^{\infty} P\left(X_{n}=z \mid X_{0}=x_{0}\right)=\infty .
$$

Also, Stirling's beautiful formula $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$, where $a_{n} \sim b_{n}$ means $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$.

$$
\text { I. (a) } X_{n}=H_{n}-T_{n}=2 H_{n}-n
$$

where $H_{n}=$ number of "Heads in n tosses; $T_{n}=$ number of T ails in n tosses.
$H_{n} \in\{0,1,2, \ldots, n\}$ and hence

$$
X_{n} \in\{-n,-n+2,-n+4, \ldots, n\}
$$

$$
\begin{aligned}
& P\left(X_{n+1}=-n+j+1 \mid X_{n}=-n+j\right)=p \\
& P\left(X_{n+1}=-n+j \mid X_{n}=-n+j\right)=1-p \\
& \quad j=0,2,4, \ldots, n
\end{aligned}
$$

(b) At time n, suppose there are W white balls in urn 1 .

So thur are $N-W$ white balls in urn 2, N-W black balls in win 1 and W black balls in uni 2 .

$$
\begin{aligned}
& P\left(X_{n+1}=W \mid X_{n}=W\right)=2\left(\frac{W}{N} \times \frac{N-W}{N}\right) \\
& P\left(X_{n+1}=W+1 \mid X_{n}=W\right)=\left(\frac{N-W}{N}\right)^{2} \\
& P\left(X_{n+1}=W-1 \mid X_{n}=W\right)=\left(\frac{W}{N}\right)^{2} \\
& W \in\{N-n, N-n+1, \ldots, N+n\}
\end{aligned}
$$

2. Lets find

$$
\begin{aligned}
& P^{n}(1,1)=P\left(X_{n}=1 \mid X_{0}=1\right) \\
P^{n}(1,1)= & P\left(X_{n}=1 \mid X_{n-1}=1\right) P\left(X_{n-1}=1 \mid X_{0}=1\right) \\
& +P\left(X_{n}=1 \mid X_{n-1}=2\right) P\left(X_{n=-1} \mid X_{0}=1\right) \\
= & (1-P) P^{n-1}(1,1)+q\left(1-P^{n-1}(1,1)\right) \\
= & (1-p-q) P^{n-1}(1,1)+q
\end{aligned}
$$

Recursing back, we get

$$
P^{n}(1,1)=(1-p-q)^{n-1} P(1,1)+\sum_{j=0}^{n-2}(1-p-q)^{j} q
$$

$$
=(1-p-q)^{n} \frac{p}{p+q}+\frac{q}{p+q}
$$

Similarly,

$$
\begin{aligned}
P^{n}(2,1)= & P\left(x_{n}=1 \mid x_{n-1}=1\right) P\left(x_{n=1} \mid x_{0}=2\right) \\
& +P\left(x_{n}=1 \mid x_{n=-2}\right) P\left(x_{n=1}=x_{x_{0}-2}\right) \\
= & (1-p) P^{n-1}(2,1)+q\left(1-P^{n-1}(2,1)\right) \\
= & (1-p-q)^{n-1} P(2,1)+\sum_{j=0}^{n-2}(1-p-q)^{j} q \\
= & \frac{q}{p+q}-\frac{q}{p+q}(1-p-q)^{n} .
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
& P\left(T_{0}=n \mid X_{0}=0\right) \\
& =P(0,1) P(1,1)^{n-2} P(1,0)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P\left(T_{1}=n \mid X_{0}=0\right) \\
& =P(0,0)^{n-1} P(0,1) .
\end{aligned}
$$

4.(a) $\quad x, x_{1}, x_{2}, \ldots, x_{n_{0}-1}, y$ have to be distinct for otherwise we. can find a path from x to y that takes fewer than no steps.
(b) Total number of states $=d<\infty$ and so $n_{0} \leq d-1$.
(c)

$$
\begin{aligned}
& P\left(T_{y} \leq d-1 \mid X_{0}=x\right) \\
& \quad \geqslant P\left(x, x_{1}\right) P\left(x_{1}, x_{2}\right) \ldots P\left(x_{n-1}, y\right)>0 .
\end{aligned}
$$

$$
\text { 5. (a) } \begin{aligned}
& \mathbb{E}\left[X_{n+1}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{n+1} \mid X_{1}\right]\right] \\
&= \sum_{x_{n}} P\left(X_{n}=x_{n}\right) \mathbb{E}\left[X_{n+1} \mid X_{n}=x_{n}\right] \\
&=\sum_{x_{n}} P\left(X_{n}=x_{n}\right) \sum_{x_{n+1}} x_{n+1} P\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right) \\
&=\sum_{x_{n}} P\left(X_{n}=x_{n}\right)\left(A x_{n}+B\right) \\
&=A \mathbb{E}\left[X_{n}\right]+B .
\end{aligned}
$$

(b) Recurse backwand and sum.
6. For a transient state y,

$$
\begin{aligned}
\sum_{n=0}^{\infty} P^{n}(x, y) & =P^{0}(x, y)+\sum_{n=1}^{\infty} P^{n}(x, y) \\
& =\delta_{x y}+\sum_{n=1}^{\infty} P^{n}(x, y)
\end{aligned}
$$

We know that $\forall x \in S$,

$$
\sum_{n=1}^{\infty} P^{n}(x, y)=\frac{\rho_{x y}}{1-f_{y y}}
$$

Therefore,

$$
\begin{aligned}
\sum_{n=0}^{\infty} P^{n}(x, y) & =\delta_{x y}+\frac{\rho_{x y}}{1-\rho_{y y}} \\
& \leqslant \frac{1}{1-\rho_{y y}}=\sum_{n=0}^{\infty} P^{n}(y, y)
\end{aligned}
$$

7. (三) If $P^{n}(x, y)>0$, then

$$
\begin{aligned}
\varphi_{x y} & =P\left(T_{y}<\infty \mid X_{0}=x\right) \\
& =P\left(\bigcup_{n=1}^{\infty} I_{y}\left(X_{n} \mid X_{0}=x\right)\right) \\
& \geqslant P\left(I_{y}\left(X_{n} \mid X_{0}=x\right)\right) \\
& =P^{n_{1}}(x, y)>0 .
\end{aligned}
$$

(\Leftarrow) Now suppose $\rho_{x y}>0$.
Then, we know that

$$
G(x, y)=\frac{\rho_{x y}}{1-\rho_{y y}}=\sum_{n=1}^{\infty} P^{n}(x, y)>0 .
$$

Hence, $\exists n_{1}$ such that $P^{n_{1}}(x, y)>0$.
8. Lets calculate $G(0,0)$.

We see that for $n \geqslant 1$,

$$
P\left(X_{2 n+1}=0 \mid X_{0}=0\right)=0
$$

and

$$
P\left(X_{2 n}=0 \mid X_{0}=0\right)=P(S=n)
$$

Where $S \sim \operatorname{Bin}(2 n, 1 / 2)$.

$$
\begin{aligned}
P(S=n) & =\binom{2 n}{n}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{n} \\
& =\frac{2 n!}{n!n!} \frac{1}{2^{2 n}}
\end{aligned}
$$

From Stirling,

$$
\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi n}(n / e)^{n}}=1
$$

So,

$$
\begin{aligned}
\frac{2 n!}{n!n!} \frac{1}{2^{2 n}} & \sim \frac{\sqrt{2 \pi 2 n}\left(\frac{2 n}{\varepsilon}\right)^{2 \pi}}{\sqrt{2 \pi \pi n}\left(\frac{n}{\varepsilon}\right)^{n} \sqrt{2 \pi n}\left(\frac{n}{\varepsilon}\right)^{n} 2^{2 n}} \\
& =\frac{1}{\sqrt{\pi n}}
\end{aligned}
$$

Precisely,

$$
\lim _{n \rightarrow \infty} \frac{\frac{2 n!}{n!n!} \frac{1}{2^{2 n}}}{1 / \sqrt{\pi n}}=1
$$

Since,

$$
G(0,0)=\sum_{n=0}^{\infty} P^{2 n}(0,0)
$$

and

$$
\lim _{n \rightarrow \infty} \frac{P^{2 n}(0,0)}{1 / \sqrt{\pi n}}=1,
$$

conclude

$$
G(0,0)=\infty,
$$

and 0 is a recurrent state.
A similar analysis for any $G(x, x)$.
9. Similar to the previous problem, let's calculate $G((0,0),(0,0))$.

To return to $(0,0)$ after $2 n$ steps, the chain has to make j steps to the right, j steps to the left, $n-j$ steps up and n - j steps down for $j=1,2, \ldots, n$.

$$
\begin{aligned}
& P^{2 n}((0,0),(0,0))= \\
& \sum_{j=0}^{n}\binom{2 n}{n-j}\binom{n+j}{n-j}\binom{2 j}{j} P_{u}^{n-j} p_{d}^{n-j} p_{l}^{j} p_{r}^{j}
\end{aligned}
$$

Now use Stirling again to demonstrate that

$$
\sum_{n=1}^{\infty} P^{2 n}((0,0),(0,0))=\infty
$$

if $p_{l}=p_{r}=p_{u}=p_{d}=1 / 4$.

