ASSIGNMENT V, STAT 532 (Pasupathy), Fall 2022

1. A gambler playing roulette makes a series of one dollar bets. He has respective probabilities $9 / 19$ and $10 / 19$ of winning and losing each bet. The gambler decides to quit playing as soon as he either is one dollar ahead or has lost his initial capital of $\$ 1000$.
(a) Find the probability that when he quits playing he will have lost $\$ 1000$.
(b) Find his expected loss.
2. Consider a birth and death chain on the nonnegative integers such that $p_{x}>0$ and $q_{x}>0$ for $x \geq 1$.
(a) Show that if $\sum_{y=0}^{\infty} \gamma_{y}=\infty$, then $\rho_{x 0}=1, x \geq 1$.
(b) Show that if $\sum_{y=0}^{\infty} \gamma_{y}<\infty$, then

$$
\rho_{x 0}=\frac{\sum_{y=x}^{\infty} \gamma_{y}}{\sum_{y=0}^{\infty} \gamma_{y}}, \quad x \geq 1
$$

3. A simple model of gas exchange is what is called the Ehrenfest chain, described as follows. Suppose we have two boxes labeled I and II, with d balls labeled $1,2, \ldots, d$. Initially some of the balls are in Box I and others in Box II. An integer is selected at random from $1,2, \ldots, d$ and the ball with that integer as its label is removed from its box and placed into the other. This procedure is repeated indefinitely with the selections being independent from trial to trial. Let $X_{n}, n \geq 0$ denote the number of balls in Box I after the n-th trial. Find $\mathbb{E}\left[X_{n} \mid X_{0}=x\right]$.
4. Consider an irreducible birth death chain on the nonnegative integers such that

$$
\frac{q_{x}}{p_{x}}=\left(\frac{x}{x+1}\right)^{2}, \quad x \geq 1 .
$$

(a) Show that this chain is transient.
(b) Find $\rho_{x 0}, x \geq 1$.
5. Let $X_{n}, n \geq 1$ be a branching chain and suppose that the associated random variable ξ has mean μ and finite variance σ^{2}.
(a) Show that

$$
\mathbb{E}\left[X_{n+1}^{2} \mid X_{n}=x\right]=x \sigma^{2}+x^{2} \mu^{2}
$$

and that

$$
\mathbb{E}\left[X_{n}^{2} \mid X_{0}=x\right]=x \sigma^{2}\left(\mu^{n-1}+\cdots+\mu^{2(n-1)}\right), \quad n \geq 1
$$

(b) Show that if there are x particles initially, then for $n \geq 1$,

$$
\operatorname{Var}\left(X_{n}\right)= \begin{cases}x \sigma^{2} \mu^{n-1}\left(\frac{1-\mu^{n}}{1-\mu}\right), & \mu \neq 1 \\ n x \sigma^{2}, & \mu=1\end{cases}
$$

1.(a)

$$
\begin{gathered}
p_{x}=9 / 19 \quad q_{x}=10 / 19 \\
x=1000, \quad a=0, b=1001 \\
u(x)=P\left(T_{a}<T_{b} \mid X_{0}=x\right)
\end{gathered}
$$

From notes:

$$
\begin{aligned}
& u(x)=\frac{\sum_{y=x}^{b-1} \gamma_{y}}{\sum_{y=a}^{b-1} \gamma_{y}} a<x<b \\
& \gamma_{y}:=\prod_{j=1}^{y}\left(q_{j} / p_{j}\right) \quad y \geqslant 1 ; \gamma_{0}=1
\end{aligned}
$$

(b) Expected

$$
=1000 \times u(x)-1 \times(1-u(x))
$$

2. From class we know that

$$
\begin{aligned}
& \begin{aligned}
P\left(T_{0}\right. & \left.<T_{n} \mid X_{0}=x\right) \\
& =\frac{\sum_{y=x}^{n-1} \gamma_{y}}{\sum_{y=0}^{n-1} \gamma_{y}}, \quad 0<x<n \\
& =1-\frac{\sum_{y=0}^{x-1} \gamma_{y}}{\sum_{y=0}^{n-1} \gamma_{y}}, \quad 0<x<n \\
\text { we } & \gamma_{y}:
\end{aligned} \\
& =\frac{q_{1}}{P_{1}} \frac{q_{2}}{P_{2}} \cdots \frac{q_{y}}{P_{y}} \quad y>0 .
\end{aligned}
$$

Noting that

$$
1 \leq T_{x+1}<T_{x+2}<T_{x+3}<\cdots
$$

we see that

$$
\left(T_{0}<T_{n} \mid X_{0}=x\right) \uparrow \text { for } n \geqslant x+1
$$

and hence

$$
\begin{align*}
P\left(T_{0}<\infty \mid X_{0}=x\right) & =\lim _{n} P\left(T_{0}<T_{n} \mid X_{0}=x\right) \\
& =1-\frac{\sum_{y=0}^{x-1} \gamma_{y}}{\sum_{y=0}^{\infty} \gamma_{y}} \tag{1}
\end{align*}
$$

From (1), we see that (a) and (b) hold.
3. $X_{n}:=$ number of balls in Box I after n trials
$d-X_{n}:=$ number of balls in Box II after n trials

We see that $\left\{X_{n}, n \geqslant 1\right\}$ is a
Markov chain with state space $\{0,1,2, \ldots, d\}$ and transition
function

$$
P(x, y)=\left\{\begin{array}{cl}
x / d & y=x-1 \\
1-x / d & y=x+1 \\
0 & 0 \cdot w
\end{array}\right.
$$

Now notice that

$$
\begin{aligned}
& \mathbb{E}\left[X_{n+1} \mid X_{0}=x\right] \\
&=1+\left(1-\frac{2}{d}\right) \mathbb{E}\left[X_{n} \mid X_{0}=x\right] \\
&=1+\left(1-\frac{2}{d}\right)+\left(1-\frac{2}{d}\right)^{2} \mathbb{E}\left[X_{n-1} \mid X_{0}=x\right] \\
& \vdots 1+\sum_{j=1}^{n-1}\left(1-\frac{2}{d}\right)^{j}+\left(1-\frac{2}{d}\right)^{n} x .
\end{aligned}
$$

4. Use the answer from Problem 2.
5. (a)

$$
\mathbb{E}\left[X_{n+1}^{2} \mid X_{n}=x\right]=\mathbb{E}\left[\left(\xi_{1}+\xi_{2}+\cdots+\xi_{n}\right)^{2}\right]
$$

Where $\xi_{j}, j=1,2, \ldots, x$ are lid w th mean μ and variance σ^{2}.
Therefore,

$$
\begin{aligned}
\mathbb{E}\left[X_{n+1}^{2} \mid X_{n}=x\right]= & x\left(\mu^{2}+\sigma^{2}\right) \\
& +\frac{2 x(x-1)}{2} \mu^{2} \\
= & x \sigma^{2}+x^{2} \mu^{2}
\end{aligned}
$$

Use above for other parts.

