PRACTICE PROBLEMS, STAT 532 (Pasupathy), Fall 2022

1. A Markov chain has the state space $\{0,1,2\}$ and transition matrix

$$
\left[\begin{array}{lll}
0.4 & 0.4 & 0.2 \\
0.3 & 0.4 & 0.3 \\
0.2 & 0.4 & 0.4
\end{array}\right] .
$$

Show that the chain has a unique stationary distribution π. Find π.
2. Consider a Markov chain having transition function P such that $P(x, y)=\alpha_{y}, x \in$ \mathcal{S}. Show that the chain has a unique stationary distribution given by

$$
\pi(y)=\alpha_{y}, \quad y \in \mathcal{S}
$$

3. Let π be a stationary distribution of a Markov chain. Show that if $\pi(x)>0$ and x leads to y, then $\pi(y)>0$.
4. Let π be a stationary distribution of a Markov chain. Suppose y and z are two states such that for some constant c,

$$
P(x, y)=c P(x, z), \quad x \in \mathcal{S} .
$$

Show that $\pi(y)=c \pi(z)$.
5. Let π_{0} and π_{1} be distinct stationary distributions of a Markov chain.
(a) Show that for $0 \leq \alpha \leq 1$, the function

$$
\pi_{\alpha}(x)=(1-\alpha) \pi_{0}(x)+\alpha \pi_{1}(x), \quad x \in \mathcal{S}
$$

is a stationary distribution.
(b) Show that the distinct values of α determine distinct stationary distributions.
6. Consider a birth and death chain on the nonnegative integers and suppose that $p_{0}=1, p_{x}=p>0$ for $x \geq 1$, and $q_{x}=q=1-p>0$ for $x \geq 1$. Find the stationary distribution when it exists.
7. Consider a Markov chain having state space $\{0,1, \ldots, 6\}$ and transition matrix

$$
\left[\begin{array}{ccccccc}
1 / 2 & 0 & 1 / 8 & 1 / 4 & 1 / 8 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 2 & 1 / 2
\end{array}\right]
$$

(a) Find the irreducible closed sets of recurrent states, and stationary distribution concentrated on each of these sets.
(b) Find $\lim _{n} G_{n}(x, y) / n$.
8. A particle moves according to a Markov chain on $\{1,2, \ldots, c+d\}$, where c and d are positive integers. Starting from any one of the first c states, the particle jumps in one transition to a state chosen uniformly from the last d states; starting from any of the last d states, the particle jumps in one transition to a state chosen uniformly from the first c states.
(a) Show that the chain is irreducible.
(b) Find the stationary distribution.
9. Consider a Markov chain on the nonnegative integers having transition function P given by $P(x, x+1)=p$ and $P(x, 0)=1-p$, where $0<p<1$. Show that this chain has a unique stationary distribution π and find π.
10. The transition function of a Markov chain is called doubly stochastic if $\sum_{x \in \mathcal{S}} P(x, y)=$ $1, y \in \mathcal{S}$. What is the stationary distribution of an irreducible Markov chain having $d<\infty$ states and a doubly stochastic transition function?

1. Explicitly solve for π.
2.

$$
\begin{aligned}
& P(x, y)=\alpha_{y} \\
& P^{2}(x, y)=\sum_{z} P(x, z) P(z, y) \\
&=\sum_{z} \alpha_{z} \alpha_{y}=\alpha_{y} \\
& \vdots \\
& P^{n}(x, y)=\alpha_{y} \\
& \Rightarrow \lim _{n} P^{n}(x, y)=\alpha_{y}
\end{aligned}
$$

Also, $\pi(y)=\alpha_{y}$ is statimany since

$$
\sum_{x} \alpha_{z} \alpha_{y}=\alpha_{y}
$$

Conditions for uniqueness are satisfied.
3. If $x \rightarrow y$, then $\exists n \geqslant 1$ such that $P^{n}(x, y)>0$. Moreover, since π is stationary,

$$
\sum_{z} \pi(z) P^{n}(z, y)=\pi(y)
$$

In the summation above, we see that for $z=x, \pi(z)>0, P^{n}(z, y)>0$.
4. $P(x, y)=c P(x, z) \quad \forall x \in S$

$$
\begin{align*}
& \sum_{x} \pi(x) P(x, y)=\pi(y) \tag{1}\\
& \sum_{x} \pi(x) P(x, z)=\pi(z) \tag{2}
\end{align*}
$$

Plug $P(x, y)=c P(x, z)$ in to see that $\pi(y)=c \pi(z)$
5. We see that

$$
\begin{aligned}
& \sum_{x} \pi_{\alpha}(x) P(x, y) \\
& \begin{aligned}
=\alpha \sum_{x} \pi_{0}(x) P(x, y) & +(1-\alpha) \sum_{x} \pi_{1}(x) P(x, y) \\
& =\alpha \pi_{0}(y)+(1-\alpha) \pi_{1}(y) . \\
& =\pi_{\alpha}(y) .
\end{aligned}
\end{aligned}
$$

If $\pi_{0}, \pi_{\text {, }}$ are distinct, each π_{α} is clearly distinct.
6.

$$
\begin{equation*}
\pi(y-1) p+\pi(y+1) q=\pi(y) \quad y \geqslant 1 \tag{1}
\end{equation*}
$$

$$
\begin{array}{r}
\pi(1) q=\pi(0) \\
\Rightarrow \pi(y+1)-\pi(y)=\frac{p}{q}(\pi(y)-\pi(y-1)) \\
y \geqslant 1 \tag{3}
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \pi(y+1)-\pi(y)=\left(\frac{p}{q}\right)^{y}(\pi(1)-\pi(0)) \\
&=\left(\frac{p}{q}\right)^{y}\left(\frac{1}{q}-1\right) \pi(0) \\
& y \geqslant 1
\end{aligned}
$$

Summing for $y=0,1, \ldots y$

$$
\begin{array}{r}
\pi(y+1)-\pi(0)=\left(\frac{1}{q}-1\right) \pi(0) \sum_{x=0}^{y}(p / q)^{x} \\
\Rightarrow \pi(y+1)=\pi(0)\left(1+\left(\frac{1}{q}-1\right) \sum_{x=0}^{y}(p / q)^{x}\right) . \\
y \geqslant 1 \tag{4}
\end{array}
$$

Use (4), (2) and $\sum_{y=0}^{\infty} \pi(y)=1$ to solve.
7. By observation, $\{0\}$ is a transient set and $\{1,2,3\},\{4,5,6\}$ are irreducible closed sets of recurrent states.

Stationary distr. concentrated on $\{1,2,3\}$ is $\{0,1 / 3,1 / 3,1 / 3,0,0,0\}$.

Stationary disthn concentrated on $\{4,5,6\}$ is $\{0,0,0,0,1 / 3,1 / 3,1 / 3\}$.
8. (a) Notice that if $x \in\{1,2, \ldots, c\}$ and $y \in\{c+1, c+2, \ldots, c+d\}$

$$
\begin{equation*}
P(x, y)>0 . \tag{1}
\end{equation*}
$$

And $y \quad x \in\{c+1, c+2, \ldots c d\}$ and $\quad y \in\{1,2, \ldots, c\}$

$$
\begin{equation*}
P(x, y)>0 \tag{2}
\end{equation*}
$$

Hence, if $x, y \in\{1,2, \ldots, c\}$ or

$$
\begin{gathered}
x, y \in\{c+1, c+2, \ldots, c+d\} \\
P^{2}(x, y)>0
\end{gathered}
$$

$$
\begin{aligned}
(b) \sum_{x=1}^{c} \pi(x) \times \frac{1}{d} & =\pi(y) \quad y=c+1, c+2, \ldots c+d . \\
& \sum_{x=c+1}^{c+d} \pi(x) \times \frac{1}{c}
\end{aligned}=\pi(y) \quad y=1,2, \ldots c .
$$

Solve to get

$$
\begin{aligned}
\pi(x) & =\frac{d}{c} \frac{1}{c+d} \quad x=1,2, \ldots, c \\
& =\frac{c}{d} \frac{1}{c+d} \quad x=c+1, c+2, \ldots, c+d .
\end{aligned}
$$

9.

Lets try to solve for π.

$$
\begin{array}{rl}
\pi(y-1) p & =\pi(y) \quad y \neq 0 \\
\sum_{x=0}^{\infty}(1-p) \pi(x) & =\pi(0) \\
\Rightarrow 1 & 1=\frac{\pi(0)}{1-p} \Rightarrow \pi(0)=1-p .
\end{array}
$$

and

$$
\pi(y)=\pi(0) p^{y}=(1-p) p^{y}, y \neq 0
$$

10. Let the Markov chain have states $1,2, \ldots, d$.

By observation,

$$
\pi(x)=\frac{1}{d}, x=1,2, \ldots, d .
$$

