Assignment VII, STAT 532 (Pasupathy), Fall 2022

1. A certain Markov chain in genetics has states $0, 1, \ldots, 2d$ and transition function

$$P(x,y) = {\binom{2d}{y}} \left(\frac{x}{2d}\right)^y \left(1 - \frac{x}{2d}\right)^{2d-y}$$

Find $P(T_0 < \infty | X_0 = x)$.

- 2. Consider a branching chain with $f(x) = p(1-p)^x, x \ge 0$, where $0 . Show that <math>\rho = 1$ if $p \ge 1/2$ and that $\rho = p/(1-p)$ if p < 1/2.
- 3. Consider a branching chain such that f(1) < 1. Show that every state other than 0 is transient.
- 4. Let $X_n, n \ge 0$ be the Ehrenfest chain with d = 4 and $X_n = 0$.
 - (a) Find the approximate distribution of X_n for n large and even.
 - (b) Find the approximate distribution of X_n for n large and odd.
- 5. Consider a Markov chain on $\{0, 1, 2\}$ having the transition matrix

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1/2 & 1/2 & 0 \end{bmatrix}.$$

- (a) Show that the chain is irreducible.
- (b) Find the period.
- (c) Find the stationary distribution.
- 6. Consider a Markov chain on $\{0, 1, 2, 3, 4\}$ having the transition matrix

$$P = \begin{bmatrix} 0 & 1/3 & 2/3 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 3/4 \\ 0 & 0 & 0 & 1/4 & 3/4 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (a) Show that the chain is irreducible.
- (b) Find the period.
- (c) Find the stationary distribution.