ASSIGNMENT VIII, STAT 532 (Pasupathy)

- 1. Consider a pure death process on $\{0, 1, 2..., \}$.
 - (a) Write the forward equation.
 - (b) Find $P_{xx}(t)$.
 - (c) Solve for $P_{xy}(t)$ in terms of $P_{x,y+1}(t)$.
 - (d) Find $P_{x,x-1}(t)$.
 - (e) Show that if $\mu_x = x\mu, x \ge 0$, for some constant μ , then

$$P_{xy}(t) = \binom{x}{y} (e^{-\mu t})^y (1 - e^{-\mu t})^{x-y}, \quad 0 \le y \le x.$$

- 2. Let $X(t), t \ge 0$ be the infinite server queue and suppose that initially there are x customers present. Compute the mean and variance of X(t).
- 3. Consider a birth death process $X(t), t \ge 0$ with state space $\{0, 1, 2, \dots, \}$ with birth and death rates

$$\lambda_x = x\lambda$$
 and $\mu_x = x\mu, x \ge 0$,

where λ and μ are nonnegative integers. Show that $\mathbb{E}[X(t) | X(0) = x] = xe^{(\lambda - \mu)t}$.

- 4. In the previous problem, find Var(X(t) | X(0) = x).
- 5. Consider a positive recurrent irreducible birth and death process on $\{0, 1, 2, \ldots, \}$, and let X(0) have the stationary distribution π for its initial distribution. Then X(t) has distribution π for all $t \ge 0$. The quantities $\sum_{x=0}^{\infty} \lambda_x \pi(x)$ and $\sum_{x=0}^{\infty} \mu_x \pi(x)$ are the average birth rate and the average death rate of the process, respectively. Show that these quantities are equal.
- 6. Suppose d particles are distributed into two boxes. A particle in box 0 remains in that box for a random length of time that is exponentially distributed with parameter λ before going into box 1. A particle in box 1 remains there for an amount of time that is exponentially distributed with parameter μ before going into box 0. The particles act independently of each other. Let X(t) denote the number of particles in box 1 at time $t \geq 0$. Notice that is a birth and death process.
 - (a) Find the birth and death rates.
 - (b) Find $P_{xd}(t)$.
 - (c) Find $\mathbb{E}[X(t) | X(0) = x]$.
 - (d) Find the stationary distribution.

(c) From (a), for
$$y \neq z$$

 $P'_{xy}(t) + \mu_y P_{xy}(t) = \mu_{y+1} P_{x,y+1}(t)$
 $\Rightarrow e^{\mu_y t} P'_{xy}(t) + \mu_y e^{\mu_y t} P_{xy}(t)$
 $= \mu_{y+1} P_{x,y+1}(t) e^{\mu_y t}$

$$= e^{\mu_{y}t} P_{xy}(t) = \mu_{yt} \int_{0}^{t} P_{x,yt}(s) e^{\mu_{y}s} ds$$

$$P_{xy}(t) = M_{yt1} \int_{0}^{t} e^{-M_{y}(t-s)} P_{x,yt1} ds$$

$$y < x, t \ge 0$$

(d) From (c),

$$P_{z,z-1}(t) = M_{x} \int_{0}^{t} e^{-M_{x}(t-s)} e^{M_{x}s} ds$$

$$= M_{x}t e^{-M_{x}t}.$$
(P(N(t) = 1) Whene
N(t) ~ Poisson (M_{x}t))

2. We know that

$$X(t) \sim Poisson\left(\frac{\lambda}{M}(1-e^{-\mu t})\right)$$

Mean = Variance =
$$\frac{\lambda}{m} (1 - e^{-Mt}) t$$
.

$$P'_{z,y}(t) = \begin{cases} (y-1)P_{z,y-1}(t)\lambda - yP_{z,y}(t)(\lambda + \mu) \\ + (y+1)P_{z,y+1}(t)\mu \\ y \ge 1 \\ P_{z,1}(t)\mu \\ y = 0 \end{cases}$$

$$\Rightarrow \sum_{y=0}^{\infty} y P_{zy}(t) = \sum_{y=1}^{\infty} y(y-1) P_{z,y+1} \times - \sum_{y=1}^{\infty} y^2 P_{x,y}(t) (\lambda + M) + \sum_{y=1}^{\infty} y^2 (y+1) P_{x,y+1}(\lambda) M$$

$$= \sum_{y=0}^{\infty} \left((y+i)y\lambda - y^{2}(\lambda+m) + (y-i)ym \right) P_{z,y}(t)$$

$$= \sum_{y=0}^{\infty} (\lambda - \mu) y P_{x,y}(t)$$

$$---(1)$$
Denoting $m_{z}(t) = |E[X(t)| | X(0) = x]$
(1) gives

$$m'_{\chi}(t) = (\lambda - \mu) m_{\chi}(t), t \ge 0$$

•

4.

$$P'_{z,y}(t) = \begin{cases} (y-1)P_{z,y-1}(t)\lambda - yP_{z,y}(t)(\lambda+\mu) \\ +(y+1)P_{z,y+1}(t)\mu \end{cases}$$

$$y \ge 1$$

$$P_{z,1}(t)\mu \qquad y=0$$
Again, we use forward equation
above to get
$$\sum_{y=0}^{\infty} y^{2}P'_{z,y}(t) = \sum_{y=1}^{\infty} y^{2}(y-1)P_{z,y+1}(\lambda+\mu)$$

$$-\sum_{y=1}^{\infty} y^{3}P_{z,y}(t)(\lambda+\mu)$$

$$+\sum_{y=1}^{\infty} y^{2}(y+1)P_{z,y+1}(\lambda+\mu)$$

$$= \int_{y=0}^{\infty} \left((y+1)^{2}y\lambda - y^{3}(\lambda+\mu) + (y-1)^{2}y\mu \right) P(t)$$

$$= \sum_{\substack{y=0\\y=0}}^{\infty} 2y^{2}(\lambda-\mu) + y(\lambda+\mu)P_{xy}(\pm)$$

Denote
$$V_{2}(t) = |E[X(t)| | X(0)=x]$$

$$V'_{z}(t) = Q(\lambda - \mu)V_{z}(t) + (\lambda + \mu)m_{z}(t)$$

$$\begin{array}{l} t \neq 0. \\ = \left\langle \begin{array}{c} -2(\lambda - \mu)t \\ V_{\lambda}(t) = e^{-2(\lambda - \mu)t} \\ 2(\lambda - \mu)V_{\lambda}(t) \\ + e^{-2(\lambda - \mu)t} \\ (\lambda + \mu)M_{\lambda}(t) \end{array} \right) \end{array}$$

Solving, we get

$$V_{z}(t) = \chi^{2} e^{2(\lambda-\mu)t} + \chi \frac{(\lambda+\mu)}{(\lambda-\mu)} \left(e^{2(\lambda-\mu)t} - e^{(\lambda-\mu)t}\right)$$

$$Van\left(\chi(t) \mid \chi(o) = \chi\right)$$

$$= V_{z}(t) - m_{z}^{2}(t)$$

$$= \chi \frac{(\lambda+\mu)}{(\lambda-\mu)} \left(e^{2(\lambda-\mu)t} - e^{(\lambda-\mu)t}\right).$$

5. The stationary equation is $\Pi(I) \mu_{I} - \Pi(O) \lambda_{O} = O$ $TT(y+1) M_{y+1} - TT(y) \lambda_y = TI(y) M_y - T(y-1) M_{y-1}$ y≥1 We can guess that the solution satisfies $\pi(y+i) \mathcal{M}_{y+i} = \pi(y) \lambda_y \quad y \ge 0.$ Sum for y = 0, 1, 2, ... to see that $\sum_{y=0}^{\infty} \pi(y) M_y = \sum_{y=0}^{\infty} \pi(y) \lambda_y$ after recalling that $M_0 = 0$.