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Chapter 1
Introduction

In this thesis, I develop a general theory for calculating the optical properties of cholesteric
liquid crystals, and present the results for several special cases. Cholesteric liquid crystals
(CLC’s) are one example of a broad class of substances that reflect light, not because
of the properties of their constituent molecules, but because of their structure. These
materials have come to be known as photonic crystals. The tantalising possibility that
one can manipulate their structure arbitrarily in order to finely control their optical prop-
erties has elicited an enormous amount of interest in the past fifteen years. Conventional
crystals have a periodic spacing of atoms, which gives rise to a periodic potential for elec-
trons. Electronic structure theory enables one to calculate band structures which show
the energies available to electrons in this system. Analogously, photonic crystals have a
periodic dielectric tensor which gives rise to an effective periodic potential for photons.
Thus, we can use tools and concepts derived from electronic structure theory to calculate
the frequencies available to photons in such media.

Some photonic band structures have frequencies which are not allowed for one or more
polarisations. A range of forbidden frequencies is referred to variously as either a stop
band or a photonic band gap (PBG). There are several important potential applications
for materials with a PBG. One example involves the creation of localised defect modes.
If one introduces a small defect into the otherwise periodic structure of a photonic band-
gap material, light which is forbidden in the bulk will be confined to the region centered
around the defect [1]. Furthermore, within the frequency range defined by the PBG of
the bulk, a small defect will only have a small number of additional modes. When used
as a laser microcavity, this will prevent spontaneous emission into modes other than the
lasing mode, and yield extremely low threshold lasing. Yablonovitch originally estimated
that low-threshold continuous-wave lasing could take place at a threshold current density
as low as 1 A/cm? [2]. Recently, microcavities in two-dimensional photonic crystals have
been integrated into VCSELs to yield ultra-low threshold lasing experimentally [3]. Alter-



natively, one can design lasers that take advantage of the enhanced dwell time associated
with the band edge divergence of the density of states [4]. Experimentally, this band-edge
lasing has been observed in cholesteric liquid crystals [5] and cholesteric elastomers [6]. A
related application is guiding light around sharp boundaries. If one places a line of defect
modes within a photonic band gap mafterial, light may be bent within a distance on the
order of one optical wavelength. That turning radius is much shorter than what can be
achieved for optical or near-infrared light using total internal reflection. The ability to
bend light sharply, and without loss, is crucial for the creation of an optical integrated
circuit, a device which would lie at the heart of any future optical computing systems.
One major potential use for optical computing is switching in telecommunications sys-
tems. Translating optical signals arriving via fibre-optic cables into electronic signals and
back constitutes a substantial overhead in current industry-standard technologies, such as
SDH/SONET cross connects for basic TDM circuit switching [7]. All-optical processing
would alleviate this bottleneck, leading to decreased latency.

The earliest research in photonics was concerned with manufacturing materials that
have a three-dimensional photonic band gap in the microwave spectrum (2, 8, 9, 10]. This
goal proved to be more elusive than initially thought. While Yablonovitch and Gmitter
thought they had manufactured a material with such a total-gap [10], it turned out to be
a pseudo-gap with a low but non-zero density of states, as pointed out explicitly in the
theoretical calculations of several groups [11, 12, 13]. Shortly afterwards, Yablonovitch
and colleagues were able to fashion a structure with a full photonic band gap, now dubbed
Yablonovite [14]. Later, Ozbay and co-workers designed a picket fence structure which is
assembled by stacking two-dimensional layers [15].

Nonetheless, those techniques have proven difficult to extend to optical wavelengths for
several reasons. First, the usefulness of photonic crystals is heavily dependent on perfect
periodicity — slight misalignments tend to destroy photonic band gaps. Furthermore, the
feature size of a photonic crystal must be no larger than one wavelength in the medium, or
otherwise all polarisations and phases of light will experience a smooth dispersion relation
(and thus no gaps). This challenge is compounded by the fact that the maximum feature
size decreases as the refractive index contrast of a photonic material increases. Clearly,
the smaller the features, the greater the challenge that precise alignment presents. That
has made microfabrication of photonic crystals that have band gaps at near-infrared or
optical frequencies a particularly challenging proposition.

Recently, there has been an increased interest in self-assembling PBG systems because
they have the potential to overcome the problem of scale in a clever way. If one chooses
the right materials and parameters for a precise, self-assembling system, a photonic crys-
tal should emerge automatically without any need for expensive microfabrication tech-



niques, such as photolithography. Researchers have devised several systems which have
the potential to meet the criterion of forming a precise, periodic array with suflicient
refractive index contrast. Examples include air holes in a titania matrix [16], copolymer-
homopolymer films which form lamellar structures [17], thin films of PMMA infilled with
SnS, [18], and cholesteric liquid crystals (CLC’s) [5, 6, 19, 20].

In this thesis, I investigate the optical properties of CLC’s. A CLC has local orienta--
tional ordering along a director n, which rotates as a periodic function of distance along
the pitch axis z, as illustrated in figure 1.1. The director of an ideal CLC advances uni-
formly, tracing out a helix of pitch py. The pitch can be adjusted to match the wavelength
of visible light, whereupon a number of spectacular optical effects are observed experi-
mentally and explained theoretically [19, 20]. In particular, in experiments conducted at
normal incidence, circularly polarised light which twists in the same sense as the helix is
reflected with its original polarisation, while circularly polarised light that twists in the
opposite sense is transmitted unchanged. By contrast, a normal mirror will reflect either
handedness with the opposite polarisation that it initially had. A CLC can be considered
locally uniaxial, with a dielectric permittivity ¢ along n and e, perpendicular to n. By
solving Maxwell’s equations in a rotating frame, de Vries found a single band gap in the

photonic structure of an ideal CLC at normal incidence [19)].
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Figure 1.1: Schematic diagram of a cholesteric liquid crystal. The director twists periodi-
cally along the pitch axis, which corresponds to the z axis here. The CLC is also optically
uniaxial, with a dielectric constant €| along the direction of nematic order, and dielec-
tric constant ¢, in the plane perpendicular to the nematic order. For future reference,
elements of the deformation gradient tensor \ are shown: Az, is a stretch applied in the
x-direction, and )\,, is the attendant contraction along z.



The recent theoretical prediction of and experimental creation of cholesteric rubbers
has revived interest in the optics of CLC. Nematic rubbers were first created in the lab by
Finkelmann in 1981 [21]. More recently, it has.been shown that polymeric liquid crystals
can be cross-linked into cholesteric elastomers (CE’s) which retain cholesteric order [22].
Furthermore, these elastomers have been shown to be monodomain, with a spontaneous
and uniform orientation of the helical structure. Warner and colleagues have predicted
how the helical structure will change under two different types of strain, given the simple
assumptions of affine deformation and strong anchoring [23]. These cholesteric elastomers
are significant because, like regular CLC’s, they have a band gap for one polarisation of
light, but additionally, they are tunable. That means that the applications mentioned
before, such as low-threshold lasing and light bending, can work not just at one pre-
determined target frequency, but a whole range of frequencies, using the fairly simple
control mechanism of mechanical stretching,.

At this point, one might seek to employ de Vries’ method of transforming to a ro-
tating coordinate frame to characterise the optical properties of cholesteric elastomers.
However, as I show in section 4.2, his approach is intractable when the director helix no
longer advances uniformly, as is the case for a CE under strain. Thus, I present a new
method in chapter 5 that is computationally tractable and successfully describes the new
and deforming photonic bands that I have discovered. My calculations point to new phe-
nomena and new applications, not possible in existing photonics and hitherto unsuspected
in the liquid crystal field. For instance, I find multiple gaps, some not at the zone edges,
in contrast to classical CLC’s. I also observe gaps for light of the opposite handedness
to the underlying helix, again unexpected in classical CLC systems. At some points the
gaps for both polarisations overlap, giving a total gap of significance when polarisation
control is required. My systems are highly deformable (to many 100s%) and I shall find
shifts in the (developing) band structure that can be large.

Existent photonic media typically have piecewise variation of an isotropic refractive
index in going between a matrix and its inclusions. By contrast, CLC’s have a continuous
variation of the principal axes of birefringence. Polarisation effects are thus very subtle
and become more so for oblique incidence. Control of polarisation is at the heart of LC
and optical devices; I thus view this work as a first step toward creating and understanding
new classes of photonic solids with deformable, tunable band structures.

In this thesis, I proceed as follows. First, I discuss how liquid crystalline order comes
about and the elastic response of a liquid crystal, focusing on the structure of a CL.C along
with its behaviour under an external field. Next, I review the theory of isotropic rubbers,
then explain the phenomenon of nematic rubbers, which bring together liquid crystal and
rubber theory in a novel way. Then T calculate the optical properties of the model system



developed in the previous two chapters. I recapitulate de Vries’ approach and results, and
show the limits of his technique for the more generalised problems of distorted cholesteric
helices or oblique incidence. I then overcome this methodological deficiency by applying
the modern formalism of photonics, as originally developed by Ho, Chan and Soukoulis
[11] and refined by Meade and colleagues [24]. I develop equations appropriate for solving
the problems of light normally or obliquely incident upon a distorted helix. I conclude by
presenting my results for normal and oblique incidence in a one-dimensionally periodic

cholesteric medium.




Chapter 2

Liquid Crystal Theory

2.1 Overview

Liquid crystéls can be viewed as a state of matter intermediate between the liquid and solid
phases. There are at least five main types of liquid crystals: nematics, cholesterics, smec-
tics, columnar phases and blue phases. All five demonstrate orientational ordering, made
possible by the nature of the building blocks characteristic of liquid crystals, idealised
as long, thin, rigid rods, pointing in a particular direction, which are generally referred
to as mesogens. These mesogens generally have anisotropic electromagnetic properties,
such as their dielectric constants. When mesogens are organised into a periodic structure,
their anisotropy can give rise to singular optical properties. Except for the nematic phase,
there is generally a periodicity in the structure as well as a dielectric anisotropy that may
combine and give rise to singular optical properties.

The first phase transition for achiral liquid crystals is the nematic-isotropic transition.
Mesogens in the isotropic phase have a uniform angular distribution, whereas in the
nematic phase, there is a bias in their angular distribution, even though both phases lack
translational order (just as in an ordinary liquid). Entropy favours an isotropic state,
but other interactions encourage the creation of a nematic phase. First, there are hard
steric repulsions that favour alignment. The strength of these interactions increases with
concentration. Liquid crystals which make a transition from the isotropic to nematic phase
with an increase in concentration are known as lyotropic liquid crystals. Also, there are
soft anisotropic forces that tend to favour the alignment of nematic subunits. These forces
generally dominate over entropy at lower temperatures. At a certain temperature, known
as the isotropic-nematic transition temperature, there will be a first-order phase transition
between the two states. Liquid crystals which experience these transitions are known as
thermotropic liquid crystals.

One can construct a Ginsburg-Landau (GL) mean-field theory which captures the



essential features of the thermotropic phase transition by writing down an energy and
entropy in terms of an order parameter, a dimensionless measure of the degree of order
in a system. In general, the order parameter in a GL theory is chosen so that it will
vanish on the less-ordered (isotropic) side of the transition, and be “small” in some sense
on the other side in the vicinity of the phase transition, so that I need only to keep the
lowest-order terms required by symmetry and general constraints on a physical potential

in my expansion of the free energy.

2.2 Order Parameter

Based on the nature of the liquid-crystalline subunits, it is evident that the order param-
oter will be in terms of the orientations of the individual rods with respect to the average
direction. The average direction in which the rods point in a small sphere about a position
r is a unit vector, n(r). If a given rod « in that region has an orientation v (r), then the
relative orientation can be parameterised by n(r) - v4(r) = cos . '

I would like to decompose the distribution of {cosf,} in terms of moments. By
analogy with quantum mechanics, I can choose Legendre polynomials, generally denoted
by Py(cosf). They capture multipole moments sequentially, since P, corresponds to the
I'" moment. They also have the desirable property of normalisation, since V; P) =1,
and orthogonality, since f_ll dz B(z)Py(z) = ﬁgﬁéua.

The first non-trivial choice is the dipole moment (P;(cosf)) = (cosf). However, the
heads and tails of liquid crystal subunits are equivalent, either because they have a center
of inversion or at least an equal probability of pointing parallel or anti-parallel in a given
direction. As a result, there will be an equal contribution from v, and —vg, which yield
cos (A,) and cos (1 — 6,), respectively. These are equal but opposite contributions, which
tells us that (P;(cosf)) = 0 for any distribution of rods, from isotropic to perfect ordering,
i.e., Vo 0o = Nam + ¢, where n, is an integer, and ¢ is an arbitrary but constant phase.
The next choice is the quadrupole moment (Py(cos #)) = (% (3 cos? § — 1)). Unlike before,
contributions to the quadrupole moment from v, and —v, will be equal in magnitude and
direction, which means that the quadrupole moment may be non-vanishing in general for a
liquid-crystalline system. Thus, the degree of order S is usually defined as S = (F(cos 6)).
Furthermore, an isotropic distribution, P(f,) = 51;, yields S = 0, while a perfectly ordered
distribution yields S = 1. A small degree of ordering will lead to a small value of S
(S <« 1), thus meeting my criterion for an order parameter.

Nonetheless, there is one additional complication. Right now, I only have one param-
eter that would be the same under any overall rotation of the axes. I want to define a

second-rank tensor that captures the orientation of the order. I call this tensor ();; and



initially guess that it will go as Q;; = Sn;n;, so that it will be oriented along the direction
of the local nematic order. However, since my system has only quadrupolar order, I follow
the convention that ();; should be traceless. As a result, I rewrite

: 1

If I were to choose a coordinate system such that n = 2, then my tensor would be given

explicitly by
S 0 0
Qi=|0 -5 0o |. (22)
0o o0 -3

2.3 Ginzburg-Landau Model

Given an expression for the liquid crystalline order, I can now construct a GL free energy. I
start with the observation that the free energy, being a scalar quantity, should be invariant
under all rotations. As a result, the expansion of the free energy of a nematic LC will be
in terms of the traces of the various moments of (ij. The series begins with the second

order, because );; is zero by definition, and has the first three terms,
F = aQi;Qji + 0QiQixQri + cQiiQikQrQus - (2.3)

For a uniaxial’ system, such as the one implied by equation (2.2), T can rewrite the free

energy expression, equation (2.3), in terms of the scalar order parameter S, which yields
F=rS*—wS®+ust, (2.4)

where each of the coefficients 7, w, and u are just proportional to the corresponding coef-
ficients of equation (2.3).

Quite generally, any free energy of the form given in equation (2.4) must be bounded
from below, so it is assumed that u > 0. It is conventional to assume that the second-order
coefficient 7 is linear with temperature, so that r = a(T' — T*), where T* is a crossover
temperature. In the case where w = 0, this corresponds to a system which will have a
minimum energy at S =0 for 7> T* and S # 0 for T < T*, and leads to a second-order
phase transition. The more interesting case is when w > 0, which gives rise to a first-order
phase transition. The order parameter and the critical temperature at which the nematic-
isotropic transition takes place can be calculated as follows. First, the critical values of

"The order parameter of section 2.2 has cylindrical symmetry, and thus, is uniaxial.
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the free energy given in equation (2.4) can be found by setting the first derivative of F' to

zero, so that,

OF
= — 3wS* 8 = 1. 2.5
53 2rS — 3wS* +4uS° =0 (2.5)

Second, the energies of the ordered and unordered states must be equal — since the disor-

dered state has zero energy by definition, it is also required that
rS% —wSd +uS*=0. | (2.6)

Solving equations (2.5) and (2.6) simultaneously yields a pair of values for the phase
transition: 7, = w?/4u and S, = w/2u. This value of S represents a discontinuous jump
from zero, corresponding to a first-order transition. Given that the transition temperature

T, is close to T, GL theory represents a good approximation to the actual phase transition.

2.4 Generalised Elasticity

Given that a LC has locally nematic order, one might wish to consider how the director
field, n (r), varies over space. Observations suggest that n(r) = n = const is the minimum
energy state. Of course, deviations away from a constant n(r) should still be allowed for
all liquid crystalline systems, and will occur at any non-zero temperature and for some
boundary conditions. The goal of the generalised theory of elasticity is to construct the
most general possible free energy from combinations of vector operators acting on n(r).
I expect the free energy to be a scalar or pseudoscalar quantity which I can expand in
powers of the gradient of n, i.e., Vn. If a non-constant n were a minimum energy state, I'd -
expect there to be a scalar term linear in Vn. The first possibility that’s invariant under
rotations is V - n. However, this term changes signs under the transformation n — —n.
Since n and —n are indistinguishable in a liquid crystal, the V - n term must vanish. The
only other possibility is n - (V x n), but this changes sign under a parity transform — so
for a centrosymmetric system, this term must also vanish (e.g., a regular nematic LC). In
that case, the first non-vanishing term will go as (Vn)®. In the case where variations are
slow compared to molecular lengths, i.e., aV - n < 1, this leading term will dominate the
expansion. This inequality holds in most experimental situations of interest [20].

As a result, I can write an elastic free energy in the case of an n-vector ferromagnet,

with an average spin direction given by n, as

= %fdr A(Vin;)(Ving) , (2.7)
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where A is the elastic constant that corresponds to the spin-wave stiffness in a magnet.
In the more general case of a liquid crystal, the spatial coordinates and the order

parameter transform in the same way, which means that the elastic free energy need not

be invariant under independent rotations of n and V. This gives us in the most general

case a fourth rank tensor, represented by K, as the set of elastic constants for the

problem:

By— %fdr Kij(Ving) (Vi) , (2.8)
Equation (2.8) is the most general possible expression for the Frank free energy. It must
be invariant under the transformation n — —n, r — —r and arbitrary rotations for a
centrosymmetric system, as mentioned before. Furthermore, n is a unit vector (n? = 1),
which means that V;; n;V;n; = 0. These considerations imply that in a uniaxial system,
Kijm has three independent components, which are (1) splay, given by a non-vanishing
(V-n)?, as illustrated in figure 2.1(a), (2) twist, given by a non-zero [n- (V x n)]?, as
shown in figure 2.1(b), and (3) bend, given by a non-vanishing [n x (V x n)]?, as seen in

figure 2.1(c) [25]. That lets us rewrite the Frank free energy in the more concrete form,

F = %/dr (Ky(V 0)+ Kyfn- (Vx )2+ Ksfnx (Vx )P} . (2.9)
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(a) Splay (b) Twist (c) Bend

Figure 2.1: Illustration of the three elastic deformation modes available to a liquid crys-
talline system, controlled by the elastic moduli K;, K, and K3, respectively.

However, if the individual molecules are chiral, then the material ceases to be cen-
trosymmetric, which gives rise to a contribution to the free energy that is linear in the
derivatives and proportional to n - (V x n). I can complete the square in order to write
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the free energy expression for a CLC in the f(_)rm
1
by = Efdr [Ki(V n)?+Kan- (Vxn)+g’+Ksnx (Vxn)*} . (210

Clearly, since each term of equation (2.10) is positive definite, the free energy will be
minimised when n-(V xn) = —gy. As can be seen in figure 2.1(b), a LC experiencing pure
twist will wind periodically about a pitch axis. One choice of a director that minimises

the free energy in equation (2.10) is
n = cos(goz) Z + sin(goz) 7 , (2.11)

where z is the pitch axis. In all further calculations, equation (2.11) will be assumed to

be the ground state for an unperturbed CLC, as illustrated in figure 1.1.

2.5 External Fields

The equilibrium director field for a CLC is modified in a non-trivial way by an external
electric or magnetic field. Since the optical properties of a CLC depend on the orientation
of the mesogens, applying an external field should have a visible effect. Using the band
structure techniques developed later in this thesis, I can predict these optical properties
and compare them to previous experimental and numerical results [26]. Interestingly, this
problem bears a strong resemblance to that of the application of strain to a cholesteric
elastomer. Thus, results from this case can be applied, with some caveats, to the case of
cholesteric elastomers. This issue will be discussed in detail in chapter 5.

There are, in general, both magnetic and electric anisotropies, designated by x, =
X — xL and €, = € — €1, respectively, that will cause the mesogens to align with an
external field. Equation (2.10) giving the Frank free energy of the system will thus be
augmented by the external fields’ free energy contribution, given in references [27, 28] to
be

1 1
Fext = — /dr |:§Xa(H : ﬂ)2 -+ ‘gr‘ﬁa(E . n)2 (212)

If T consider my cholesteric to be in a state of pure twist, so that the director field is
given by equation (2.11), and experiences only an external magnetic field perpendicular

to the pitch axis, then I can write a reduced expression for the free energy as

Fo = %/dr (K> (V x 0) + o) — xa(H - m)?} . (2.13)

13
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Given that the magnetic field points in the zy plane, I can choose H = H# without loss
of generality. Then, I can calculate a free energy density, denoted by f.,, by integrating

F, over one period and dividing by the volume to obtain

i = md K. ) _ 2— H?cos? 0(z) (2.14)
cu — 2}‘9[] . Z 2 dz o Xa H .

where py = 7/qy is the pitch of the undistorted helix. Using the variational method, I can

calculate that

Po ,d20 1
& fon % /0 dz 60 [{f A Esm 29] ; (2.15)
where £ = H “lm. I choose to consider only real values of &, corresponding to
Xa > 0, since otherwise the cholesteric will rotate so that its pitch axis points along the
direction of the field, as expected for a negative dielectric anisotropy.
The quantity in brackets in equation (2.15) should vanish at a stationary point which

corresponds to the minimum in free energy. Hence,
d%e
2 _ .
3 FP e sinf cosd . (2.16)
The first integral of this expression is given by

2
£ (%) +sin? 0 = EIQ— = const , (2.17)
where % is a constant of integration. Physically, this solution describes a coarsening of
the helical structure which increases the fraction of favourable alignments between meso-
gens and the field, while preserving a memory of the cholesteric structure, as illustrated
figures 2.2 and 2.3.

The coarsening requires the creation of twist walls, regions where the director twist
rapidly when making the transition between two regions of favourable alignment. Intu-
itively, in the limit of extremely strong fields, one would expect the twist walls to be
unstable, and give way to total alignment, i.e., a regular nematic phase.

The field strength at which complete unwinding occurs can be found by calculating
the relative free energy density of the distorted cholesteric and nematic phases, which I

14



H:0 0 <H<H He <H

Figure 2.2: Untwisting of a cholesteric helix in an external field (adapted from reference

[29]).

designate as fu:

1 g do g 2 2
waQ_PG i dz < Ks (@#Q‘{)) —qg| + X H sin"0 ¢ . (2.18)

I can rewrite this expression with a reduced free energy fi, given by

2 7o o | (d8\? de ,
fi = Xf;gfw ~ -/0 dz {§ [(5) — 2qo (Ei;)} + sin® 9} ; (2.19)

The first integral of the ODE describing the coarsening of the helix, equation (2.16),

tells us the first and third terms are equal. I can thus rewrite my expression as

, , ™ ag\? de
fw~2€/0 dz [(E;E) — 2qo (&)] : (2.20)

Expressing equation (2.20) in terms of # gives us

: 2 [ dg
fu o 26 /0 dé (\E\_QO) ) (2.21)

15
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- Figure 2.3: Angular orientation of the director, 6, versus the reduced position Z = z/p for
several values of the reduced field h = H/H,.

or
fun 26 [ 40 (ind —6a) (2.22)
0

Equation (2.22) says that f, oc 2 — wge€, which suggests that a cross-over between

~ anegative f,, corresponding to a cholesteric phase, and a positive f,, corresponding to

an untwisted nematic phase, takes place at a critical field £, = 2/mgy. The critical &,
corresponds to a critical field H, = (wgy/2) \/m Increasing H is accompanied by a
lengthening of the pitch, which diverges as H — H,. T can calculate the pitch length at a
given H by integrating (g—g) ~! over one period, which gives me a new pitch p = 26k K (k?),
where K (k?) is the complete elliptic integral of the first kind [30], and k is the constant
of integration from equation (2.17). It is easy to show that k = %% The new pitch
will be greater than the pitch at zero field, and will diverge as H — H.,, as required. See

figure 2.4.
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Figure 2.4: A plot of the relative pitch p/po as a function of the magnetic field as a fraction
of the critical field. Notice the rapid divergence of the pitch as H — H,.
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Chapter 3

Nematic Rubber Theory

3.1 Isotropic Rubbers

In the simplest models of rubbers, such as the Flory model, one assumes that they consist
of non-interacting polymer chains anchored by cross-links. The polymer chains execute
a random walk in space, independent of other chains, in the so-called “phantom chain”
approximation. An ensemble of polymer chains with N subunits of length a will have a
Gaussian distribution of chain lengths R, given by P(R) ~ e #/2Ne* ip one dimension.
This distribution has a vanishing first moment (R) = 0 and a non-vanishing second
moment (k%) = Na® In the isotropic 3-D case, these results may be generalised to
vectors R whose second moments are given by (R;R;) = Na?$;; (which recovers the
result (R?) = Na?). Thus, P(R) ~ ¢~3R*/2Na?

The macroscopic deformation which an elastomeric network experiences is given by
a second-rank tensor, referred to as the deformation tensor A. The strain is given by
the symmetric part of the difference of the deformation tensor and the unit tensor, i.e.,
€= S (é — é), where S is a symmetrisation operator defined so that S A= % (é -+ gf)
Within the assumption of affine network deformation, the average positions of the cross-
links anchoring the ends of the polymers follow the macroscopic strain, i.e., the end-to-end
distance vector R — R/ = A- R for all chains. As a result, the expression for the entropy
of a single, deformed chain is expected to be [31]

S(R) = ks {Nan _3@ R)T . (3.1)

Given that no bonds are broken or formed, and neglecting intermolecular (van der Waals)
interactions, the free energy F'is given simply by F' = Fy — T'S. Since Fj is arbitrary, it

May be set to zero for the remainder of this derivation. Substituting in equation (3.1), I
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obtain the following expression for the free energy of a single chain:

R(R) = ;-kBT%)—Z . (3.2)

The total free energy of the system will be the energy of each individual chain, averaged
over the distribution of R and multiplied by the number density of chains v. In quenched
averaging, | assume that the probability of finding a span R/ after deformation is that of
finding the R at formation from which it evolved. Thus, I average F'(R’) over my initial
distribution P(R) to obtain the free energy density, given explicitly by

3 ukgT [ dR (A - R)2e SR/’

W= 9 Na? de-e—3R2/21""'2 &)
I can rewrite this in the form
3vkpT [ dR R;Rje %N
(F) = 5 Na? )\ﬂ-’-'; aj de 8—3R2/2Na,2 (34)

Since the ratios of integrals is simply (R;R;) = 2Na?;;, I can immediately deduce that

(P} = %kaT Tr(A"-2) . (3.5)
I note that this solution is rotationally invariant and independent of the details of the
distribution of cross-links. In the simplest case, I assume that the stretching takes place
along one of the principal axes of the system, and has a magnitude ). Physically, the
large value of the bulk modulus of a rubber, compared to its shear modulus, ensures
that it deforms at constant volume to one part in 10%. Then by symmetry, an isotropic
rubber stretched by A in one direction should shrink by a factor of 1 / VA in the other two

directions — see figure 3.1. Hence,

A0 0

A= 0 5 0 |, (3.6)
1
0 0 =

which gives the simple result that

(F) = gvksT (AZ + %) | (37)

Equation (3.5) represents one of the major results of the theory of elastomers. Starting

from the total free energy expression, one can easily calculate all other thermodynamic
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quantities of interest, such as elastic response [32].

3.2 Nematic Rubbers

In a nematic rubber, the isotropy of a normal rubber is broken by the local nematic
ordering. In the case of a uniaxial nematic, which has been discussed previously, it is
reasonable to expect by analogy with other quantities that the step size for polymers
is different depending on whether I move along or perpendicular to the local nematic
ordering. I thus generalise my isotropic step size a into two components a, in the direction
of the nematic order, and a, in either direction perpendicular to the nematic order. As
a result, the previously isotropic function (R;R;) = ;Na®6; becomes (R;R;) = La;L

where
a; = (@) — ar)min; + a1 6;; , (3.8)

and L is the total contour length of the chain between cross links (given by aN). For a
freely-jointed chain polymer, I can calculate a in terms of the nematic order parameter,
and obtain the result @ = a(d+2Q) The probability distribution for the end-to-end vector,

previously given by P(R) ~ expTﬁ 7o-R?|, generalises to P(R) ~ exp [-ZR:a!:R].
This allows me to generalise the Helmholtz free energy expression for an individual chain,

equation (3.2), to

_ﬁkBT(A.R).a—l.(,\.R), (3.9)

BR)=——( a QA

In order to find the free energy of a macroscopic rubber under strain, I perform a
quenched average of the stretched chains’ energy over the initial distribution, P, (R), of

end-to-end vectors, present at formation, so that

_ 3vksT R [(A - R) g (A R)] e Rosg Rt

e
(F) - 9 £ IdR 873R.%0~1.R/2£_ (310)
Since again, the average correlation (RR) = %goﬁ, the result can be shown to be
1 :
(F) = SvksT Tr g, (A7 a7 )] . (3.11)

Nematic rubbers display spontancous thermal expansion of an extreme form [33]. If
lematics are cooled below the nematic-isotropic transition temperature, there is an onset
of order, and in light of this discussion, a corresponding transition from the initially

Isotropic random walk to an anisotropic random walk. I can estimate the magnitude
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of this deformation by substituting the appropriate g, = = ad and the anisotropic a from

equation (3.8) into equation (3.11) to obtain

)\2+2—1] . (3.12)
|

1
() = §VkBT [a, ap A

|
Minimisation of (#' ) with respect to A yields a spontaneous deformation of A; = W
The parameter r is defined to be the ratio a/ay. This quantity is experimentally accessi-
ble through the measurement of the magnitude of Ay, and is important because it sets the
scale of anisotropy in the network, making it an important measure in what will follow.
For nematic rubbers of interest, r can range anywhere from 1.1 to 64, which corresponds
to spontaneous deformations A; between 1.03 and 4.

Another novel phenomenon observed in nematic rubbers is soft elasticity [34]. Follow-

ing [35], I can guess that strains of the following form will cost no energy:

(1>~

=g/ R-a ', (3.13)

=0

where R is an arbitrary rotation (the SU(3) group in three dimensions). This guess can

be verified by substituting equation (3.13) into equation (3.11) to obtain

H@
[!SZ‘r

112,471 gl2. R g _51/2)] (3.14)

(F) = %Vk‘BT Tr [%ﬂ. ( /2. RT.
Since RT ’R, by definition, the result that (F) = 3ykpT for all R is obtained. In
other words, strains of the form given by equation (3.13) do not cause the free energy
to increase above its value in the fully relaxed state. Thus, it is expected that strains of
this type will produce almost no stress. This has been observed experimentally to a good
approximation in some nematic elastomers [34].

An concrete example of soft elasticity may help illustrate how it differs from conven-
tional elasticity. If extension occurs along the z-axis so that ny = i becomes n = £, the
appropriate g and g can be found by substitution into equation (3.8). The equation for
the soft elastic response deformation tensor, equation (3.13), yiclds the result, for K. = J,
that

\/a”/aj_ 0 0

A= 0 arfay 0 | - (3.15)
0 0 i
In sharp contrast to the classical response, given by equation (3.6), a deformation of A

orthogonal to the original nematic field induces a contraction of A~ along the direction
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the director originally pointed toward, and no contraction in the third direction. See

figure 3.1 for a graphical comparison.

3.3 Cholesteric Rubbers

A more difficult question concerns the prediction of what happens to a cholesteric rubber
ander deformation. The nematic order breaks the symmetry of the rubber in the direction
of the pitch axis, which I assume without loss of generality points along z. For an extension
of magnitude X in the z direction, in the plane of the nematic order, I have the deformation

{ensor,
A 0 0
é = 0 }\yy 0 ; (3.16)
0 0 +

Clearly, the volume does not change (ie., detA = 1); however, contractions in the y
and z directions will be different in general, unlike in an isotropic rubber, as is evident
from equation (3.6). I have suppressed shears (off-diagonal elements of )), since in this
geometry, they will cost a large energy that scales linearly with the sample size — in the
thermodynamic limit, they are forbidden [23]. For a cholesteric rubber, then, one may
substitute equation (2.11) for the CLC director into equation (3.8) to obtain

cos®¢y  cos¢psingg 0
g, =aL |é+ (r—1) | cos¢gsin o sin? ¢ 0 , (3.17)
0 0 0

and similarly, that

cos®¢p  cosgsing 0
~1 1 1—7 s . 9
a = J+ — | cos psing sin®¢p 0 ; (3.18)
- |5
0 0 0

In order to calculate the free energy, I can substitute equations (3.16-3.18) into my

canonical free energy expression, equation (3.11) to obtain an expression for the free
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energy, () = (F(A Ay, 1, 0, o). T write the raw local free energy expression as

1 1 —
(F) — -inBT {W + )\2 |:1 s 4 . COS2 t;b:l [1+ (T s 1) COS2 ¢01
vy

" sin? qb] [1+ (r — 1) sin® qbg]} .
(3.19)

(r— iy . - 2
—2A Mgy - oS ¢ cos ¢ sin P sin ¢ + Ay |1+

This expression can be simplified to the following form, given in [23]:

r—1

1
(F) = §Vk BT{)\2 + A, + 52+ [Az (r cos® o sin” ¢ — sin? ¢y cos” @)
vy

-I—A;y (7" sin? ¢y cos” ¢ — cos? ¢ sin’ ¢) — 2(r — 1)Adyy o8 ¢ cos go sin P sin qbo] } . (3.20)
In order to calculate the local director orientation, I can look for critical values of

equation (3.20) by setting 8 (F) /0¢ = 0. I obtain the result, given in [23], that

2(r — 1)A\)\yy sin 2¢o (3.21)
(r—1) (% + A2,) cos2go + (r+1) (W = 2) |

tan2¢ =

I now discuss some results based on this work that T have derived independently in
the course of my research and which are currently unpublished. I can determine whether
the values given by equation (3.21) are stable by calculating 8% (F') /0¢* from equation
(3.20) and backsubstituting equation (3.21) into the expression for the second derivative.

I obtain the result that

PAL) g { (D) (2 = ) + =D (4 K) cos 2]

Op? - AT Ay
. in 2¢
123232 «in29 Sin _ _
+4(r — 1)*A%A, sin d)g} (sin 290 (3.22)

Since the quantities in braces are positive definite, the sign of 0% (F') /0¢* will be
given by the sign of sin2¢/ sin 2¢y. Thus, when sin 2¢ and sin 2¢, are of the same sign,
the second derivative will be positive, corresponding to a local minimum in free energy.
One can then use equation (3.21), trigonometric identities combined with this stability

analysis to obtain cos 2¢ and sin 2¢, which are thus given by

(r — 1) AXyy 8in 2¢0 (3.23)

09 =
win2¢ Jad — AT X2NZ ,
1 vy
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and

A2 — A2 (r — 1) (A2 4 A2,) sin®
cos 2¢ = ——L T4 (r = 1) (P4 X, )in ¢U, (3.24)

2 2)2

where a; = rA2 + A2, — (r —1) (M — A2 ) sin® g, I can substitute these values back into
equation (3.20), to obtain (F) = (F(A, Ay, 7, ¢o)). 1 then coarse-grain my free energy
expression over one complete turn of the helix, and define the coarse-grained free energy
density (F') such that (F'(X, Ay, 7)) = [fo ddo (F(X, Ay, 7, ¢o)). Given a fixed value for
A and 7, I can find the minimum-energy value of Ay, by setting 0 (F") [ONyy = 0. If we
assume that ),y is a power law in terms of A in the limit of small strains (A — 1), then
we can use a perturbation analysis to obtain the correct exponent. In the first step, the

energy minimisation condition is written explicitly as

B T w(r—1)?
O=m )\2)\31} ~+ Z 7 (325)
—1 —1 A
g f dey {(r sin? ¢y + cos” ¢g) cos 2¢ — d = sin 2¢g sin 2¢ | .
0 vy

Next, substitution of the appropriate expressions for sin2¢ and cos 2¢, equations (3.23)
and (3.24), yields

2 w/2 . 22 . 2
-1 1 1 2r A
m(r+1)° 2774 T / 46, ay [L+ (r — 1) sin® ¢o] — 2r _0. (320
4 A Ay o Jo Jad —4rA2AZ,

Equation (3.26) may be written in a simplified form such that

E(’r-i-l)z - 7’—1/”2 44, {a’l [1+(T—1)Sin2¢0] _QT} =0, (3.27)
0

4 T B ﬁZ)\ﬁ B T ar% _ 4Tﬁ

where @, = ai/}* and B = A3, /A% Now, since A = 1 +e, where e < 1, and f =
A% 2 1 — we by assumption, they can be substituted into equation (3.27) to produce an

expression to the first order in e, namely,

4y T

W[(L—i_—l)—Q—l-}—(fi—Zw)e}—g—[(rél)z—rwe]zo. (3.28)

The left hand side vanishes when w = 24/7 (to the first order), which, given the defini-
tions of 4 and w, implies that ), = A~%7. Of course, this scaling is only valid for small

e. There is a critical strain, denoted by e,, and an accompanying critical deformation
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M. = 1+ e, at which the twist walls created by the strain become thermodynamically un-
favourable. At that point the director loses its cholesteric ordering and oscillates back and
forth around ¢ = 0. There will also be a cross-over from the scaling behaviour Ay, ~ x5
for small strain, to the classical isotropic response, Ay ~ A~/ for large strain. Math-
ematically, since the divergencé of a tangent function signifies crossing between branch
cuts, a tan 2¢ which is finite for all ¢, in interpreted to oscillate within just one branch
cut, conventionally chosen to be the interval (—m/2,7/2]. The tan2¢ will only diverge
if the denominator crosses zero, so the critical strain corresponds to the point at which
the denominator is guaranteed to be greater than or equal to zero. Thus, the condition,

derived from equation (3.21), that
Vo (r—1) (N +22)cos2+ (r+1) (A2 =A%) >0 (3.29)

Since cos 2¢ is bounded between +1, equation (3.29) is equivalent to the requirement

that
(r+1) (A =22) = (r—1) (X +A,) . (3.30)
If it is assumed that e < 1, and that ), ~ A", then the following result may be obtained:
(r+1)(l+k)e>(r—1)[1+(1—re . (3.31)

Thus, the

r—1

] P I Y (3:32)

e, &

Expanding the expression for e, to the first order in r — 1 yields the result, e, = (r —
1)/ [2(1 + &)]. Inspection of figure 3.1 suggests that & ~ 3/4, a value close to the initial
% = 5/7 which is strictly correct only for A — 1. As a result, it can easily be shown that
A = 727 to the first order. '

Although obtaining an exact analytic solution is infeasible, I can find the critical values
for (F') (with respect to A,,) numerically, as shown in figure 3.1. T can confirm that, for
parameter values of interest (e.g., 7 = 1.9, 1 < X < 1.4), a minimum-energy state occurs
at values of Ay, ~ M™%/ for e < e.. There is also evidently a cross-over to the classical

scaling Ay, = A2 for e > e,
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Figure 3.1: Numerical calculation of the confraction of a cholesteric elastomer Ay, as a
function of the applied uniaxial strain A for r = 1.9 (A, & 1.19).
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Figure 3.2: Dependence of the orientation of the director on distance along pitch axis
for helices subjected to several different z-strains of magnitude A. Notice the qualitative
change in behaviour as A crosses through A, ~ 1.19.
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Chapter 4

CLC Optics: de Vries’ Approach

Tn this chapter, I discuss de Vries’ approach to understanding the optical properties of an
ideal cholesteric medium, described by the director field given in equation (2.11). De Vries
starts with Maxwell’s equations written in the form of a wave equation, and transforms
into a rotating coordinate system. He is able to solve the optical properties exactly for a
perfect helix. However, when there are deviations from a uniform advancement of the angle
of the director, de Vries’ approach fails to give an analytical result. An approach based
on a different formalism is thus called for, and discussed in the next chapter. Nonetheless,
de Vries’ approach is important as a baseline for understanding the optics of CLC’s, and
is consequently reviewed here in detail.

The solution begins with Maxwell’s equations, exact for linear media, which are given

by:

VD = drp (4.1)
V.B=0 (4.2)
10B
BE=—-— .
V x = (4.3)
47 10D

Assuming that there are no free charges or currents in the system, I can reduce equations

(4.1) and (4.4) to:

VD= (4.5)
18D (46)

Given that the auxiliary equation D = el is time-independent, I can rewrite equa-

tion 4.6 as e 1(r)(V x H) = 1%} Then, I apply the curl operator to obtain V X
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[ (r)(V x H)| = 18 (v x E). If I substitute my expression for V x E, equation 4.3, and

assume that my magnetic permeability is homogeneous throughout my medium, I obtain

1 0°H

'—52"?62_' . (4'7)

V x [¢'(r)(VxH)] =
This result is in the form of a wave equation, as expected. Assuming each wave has one,
well-defined frequency, the magnetic field may be rewritten as H (r,t) = H (r) ¢**. This

gives rise to the eigen-like expression,

2

V x [ 1)V x H)] = %H , (4.8)

which may be used as the basis for calculating the magnetic field throughout the medium.

4.1 Ideal Helix, Normal Incidence

I now aim to reformulate de Vries’ results using modern notation and in a slightly more
general fashion.
For a plane-wave propagating along the z-axis (normal incidence), Maxwell’s equations

(4.1-4.4) may be combined in a slightly different way into the simple wave equation,

(w)2D_ O*E (4.9)

c 92

By symmetry, D must be the same for any (z,y) pair. Because of the transversality
constraint of equation (4.5), D must exist wholly in the zy plane. Then, by equation
(4.9), B- 2 = Az B. By periodicity, A = 0, and by boundary conditions (no free charges
on the surface), B = 0, which means that E also points wholly in the zy plane.

I expect most cholesteric liquid crystals to be locally uniaxial with one optical axis
along the director field n(r). Of course, in the most general case, a cholesteric liquid
crystal will be biaxial, but theoretical considerations [20] and studies of oblique incidence
by Berreman and Scheffer in the 1970s [36] strongly suggest that e3 = €1 to one part in
(goa)? ~ 10~%, where a is the molecular dimension of liquid crystal subunits.

As a result, I can write the dielectric tensor in the form, €; = (¢ — €1)min; + €10y,
where ¢ is the dielectric constant along the long axis of the nematic mesogen, and €, is
the dielectric constant in any direction perpendicular to the mesogenic axis. Usually I

define for convenience the quantity €, = ¢ — e so that I can write

€5 = €aMiT4 + EJ_(S:;:j . (410)
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If the director is the ground state for a cholesteric, given by equation (2.11), then the

dielectric tensor will be given by

cos’¢p  cosgsing 0
e=ed+e | cosgsing sin’¢ 0 | . (4.11)
0 0 0

Tt is easy to show by trigonometric identities that this is equivalent to

cos2¢ sin2¢ 0
e=¢e + % sin2¢ —cos2¢ O " (4.12)
0 0 -1

where € = (¢ +€1)/2. Equation (4.10) can easily be inverted, and using equation (2110,

can be shown to yield

cos2¢ sin2¢ 0
1 1

€
_ Y e | 413
7 () @8- smOqu cc())s 2¢ 01 (4.13)

e

Much like equation (4.11), equation (4.13) can be rewritten in the form

cos2¢ sin2¢ 0
el'=b|6—a| sin2¢ —cos2¢p 0 , (4.14)
0 0 -1

— SI—eL —1(1X_, 1
where o = e and b = 3 (E“ + q)'

Thus, in this system, the displacement field is given by

[ €+ (€a/2)cos(2¢)  (ca/2)sin(2¢)
b= ( (€2/2)sin(2¢) € — (€q/2) cos(29) ) i (4.15)

De Vries was first to propose the method of solving equation (4.9) for light normally
incident on a CLC at any frequency by transforming E(z) into a coordinate frame which
rotates along with the dielectric tensor, so that the matrix connecting D with E is diagonal
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[19]. Given that ¢ = gz *, I can define the rotating coordinate system (£, ) such that

By _ cos(qz) —sin(gz) By (4.16)
E, sin(gz)  cos(gz) Ey
which yields the result that

_D;:: — (E+ EG/Q)E§ = EHEE ' (4—17)
Dy =(E—e/f2)Ey=€.E,. (4.18)

If I substitute the transformation (4.16) into equation (4.9), I can combine terms to obtain

the eigen-like equation,

2 E 92 —q* —2¢0 E
(E) W ) = | TE S £ . (4.19)

c €L By 2¢8, 8%-¢* oA
Note that in this rotating coordinate system, even a state with 0,F¢ =0 and 8,E, =0
has a non-zero energy w = cg, arising from the variations in B and E associated with
the frame rotation. Since equation (4.19) has constant coefficients, I can guess that both

components can be described by a single plane-wave of the form E ~ exp [i (kz — wt)].

'The most generic solution has an elliptical polarisation, parameterised by

Ee = Aexp [i (kz — wt)| (4.20)
E, =iBexp[i (kz — wt)] . (4.21)

One can substitute these expressions into equation (4.19) to obtain the matrix equation

(%) - -k —2igk AN (o
( —2igk €L (%)2 — P2 ) ( iB ) = ( 0 ) ) (4.22)

The eigenvalues A of the 2 by 2 square matrixin equation (4.22) yield an implicit expression

for k, and the eigenvectors yield the ratio of the polarisations, A/B.

¢ :—kg—q2+6(%)2i%\/eg (%)4+16k2q2 (4.23)
% - ﬁ !ea (%)2 ¥ \/eg (%)4 i 16k2q2j| . (4.24)

*In the case of an unperturbed cholesteric, ¢ = gz, but I use ¢ which is correct even under a contraction
Az along the z direction.
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Reduction to Dimensionless Units

Equations (4;19—4.24) can be rewritten in a dimensionless form that increases the
universality of the results. A clever choice of reductions will also simplify the expressions
to a more tractable form. The natural wavenumber to choose for the reduction is ¢, and the
natural velocity is c¢. In the first approximation, just based on dimensional analysis, one
might pick a reduced wavevector k = k/q and a reduced frequency & = w /cq. However,
recalling that the vectors n and —n are indistinguishable, the actual period of the liquid
crystal is halved, and the actual “natural” wavenumber is doubled to 2¢q. That means
that the proper choice for reduction of the wavevector is k = k/2q. In preparation for the
next chapter, I also note here that this analysis means that the reciprocal lattice vectors
.1 a CLC will be given by G = 2ng2, where n is an integer multiple of the “natural” unit
wavenumber. However, there is another complication. Rather than the absolute values of
refractive indices, the most interesting parameter is generally the refractive index contrast
a, which is defined above. Two systems with different ¢ and €., but the same values for
a, will have virtually the same optical properties, except for a pre-factor. The best way to
climinate this pre-factor is to incorporate it into the frequency. 1t is clear from inspection
of equations (4.8) and (4.14), that the constant b in equation (4.14) will factor out on the
left-hand side of equation (4.8) and can be incorporated into the reduced frequency, such
that & = w/2eqv/b.
In these new reduced units, the eigensystem in equation (4.22) may be rewritten as

Ao? —4k? -1 —4ik A 0
(1 4ik —4_02—41%%1)(7;3):(0)’ (435
1+«

which yields the solutions

.. dod® 4+ ﬁ —02)? k2 + o2t

A= —1— 4k 26
+ T (4.26)
4 ai?+ /B2 (1—a?)® + ot
= - (4.27)
B k(1 — a?)
Setting A = 0 yields the dispersion relation
2 1 = = =
W= ii\/l + 4k% + \/160:2164 +8(2—a?)k? +a?. (4.28)

The upper branches may be used directly to plot the functional dependence of @ on k, as

shown in figure 4.1.
Tt is evident that there is one gap in the dispersion relation when k = 0, which
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Figure 4.1: Dispersion relation for an ideal helix, calculated from equation (4.28) with
o = 0.18. There is a single gap for one polarisation, at £ = 0, and no gap for the other
polarisation.

is an eigenstate corresponding to the coherent superposition of two plahe waves with
wavevectors of £1/2 in reduced units [20]. Equation (4.28) also implies that the lower
branch will have a reduced frequency @, = 3+/1 — a and B/A = 0, while the upper branch
will have a reduced frequency @, = %\/1-1-—0: and A/B = 0. This data means that both
eigenmodes at the band gap are linearly polarised. The difference between the two is
that the lower branch points wholly along the rotating £ axis, with an effective dielectric
constant 1/(1 — @) in reduced units, while the upper branch points along the rotating 7
axis, with an effective dielectric constant 1/(1 4+ «). This range of forbidden frequencies
is referred to as the band gap. T Bloch’s theorem ensures that states intermediate in
frequency and polarisation between the upper and lower branches are forbidden, i.e.,
will decay exponentially in the bulk. This principle is illustrated in figure 4.2, a more
conventional dispersion relation which is plotted as a single-valued function w(k), which
may be obtained by eliminating the parts of figure 4.1 with negative group velocity (i.e.,
dw/dk < 0). '

Of course, it is necessary to understand how these solutions inside the cholesteric
translate into a solution outside the cholesteric. The solution, obviously, is that the two

eigenstates inside the cholesteric correspond to left and right-handed circularly polarised

There is only one gap. In the degenerate perturbation analysis for gap scaling in distorted cholesterics
of section 5.3.2, I discuss why simple cholesterics only have one gap.
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Figure 4.2: Illustration of the polarisations of the upper and lower branches of the dis-
persion relation at the band gap (adapted from reference [37]).

light outside the cholesteric. The eigenstate which is split by a band gap is clearly the one
that rotates in the same direction of the helix. That is why cholesterics are observed to
reflect light with one sense of circular polarisation, and to reflect it with the same sense,

while light polarised with the opposite circular polarisation is transmitted unaffected.

I can show this explicitly by the analysis of boundary conditions, assuming the cholesteric

is a semi-infinite medium, which borders on a homogeneous dielectric medium at z = 0 of
dielectric constant €. By Gauss’ law for dielectrics, I know that the flux through a Gaussian
surface enclosing the boundary is proportional to the {ree charge enclosed. Since it is zero
by assumption, the flux contribution above and below the boundary must be equal. That
can only be true if (Dj)above = (D} )below, OF in my case, lims_yo [D(=8) —D(d)] -2 =0.
Of course, since I know that D - 2 = 0 for normally incident light, the first boundary
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condition just says that the light remains normally incident once it enters the cholesteric
medium (cf. Snell’s law).

Secondly, by Ampere’s law, I know that a closed line integral of the magnetic field must
be proportional to the enclosed free current. Since I have no free current at the boundary
by assumption, I must have an equal contribution from the magnetic fields above and be-
low the boundary, much like before. This time, that implies that (H1)apove = (H1)below-
Since my cholesteric and homogeneous media have p, = 1, I can use equation (4.3) to say
that such a condition is equivalent to the statement that the cur] of E must be unchanged
across the boundary. Numerical analysis shows that light which is locally linearly po-
larised and follows the helix will correspond exactly to a circularly polarised state in the
homogeneous medium. Of course, in general the polarisation of light propagating through
a cholesteric medium will be elliptical, with semi-minor and semi-major axes correspond-
ing to the principal axes of the dielectric tensor. The corresponding eigenstates outside
the medium will be again two opposite circular polarisations to within a factor of order
o for all frequencies, as shown in de Vries’ original work [19]. This can also be shown
numerically.

Alternatively, one can solve equation (4.19) using de Vries’ original notation for the

solutions, which is

Ey = Aexp |:2m' (—% — —ﬂ%)] (4.29)
. f Tt mz
E, =iBexp [Z'M (? — T)} ) (4.30)

where T is the period of the wave, ) is the wavelength in vacuo, and m is the effective re-
fractive index. I can then reduce the latter two quantities according to the transformations
A= N = )\/pm/% and m —m/ = m/\/é I obtain the solution

m2=1+MNE/(1+ X2~ (1—a— )(1+a—\?) (4.31)
B l—ag—m?—)2
Z_ 4.
A 2m/ X! (4:32)

It is clear from equation (4.31) that the smaller value of m'? will be negative for
values of M ~ 1, such that 1 — o < X? < 1+ «. This yields an imaginary value for
m/, corresponding to an exponentially decaying (forbidden) wave. Conversely, the larger
solution for m' is always real, as can be seen by inspection, and thus will always propagate
in the bulk.

The usual interpretation of these results is that there is a range of wavelengths, such
that 1 — a < M? < 1 + «, within which only one polarisation of light is reflected. The de

Vries result is equivalent to my findings, discussed previously.
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4.2 Distorted Helix

Looking back at the derivation of equation (4.22), it is clear that it works only for the
case where ¢ = goz; however, that only holds true for the case of an ideal helix. If any
external fields are imposed on the medium, e.g., an external electric or magnetic field, as
discussed in section 2.5, or mechanical strain, as explained in section 3.3, then the simple,
linear relationship between ¢ and z will fail.

The obvious extension of de Vries’ technique for solving equation (4.9) for a CLC
consists in transforming into a set of rotating coordinates defined in a way that generalises

from the case where ¢ = goz to an arbitrary function ¢ = ¢(z). This is written as:

Ey, \ [ cos¢ —sing B (4.33)
E, ~ \ sing cos¢ E, | '

I can then insert this expression into equations (4.9) and (4.15) to obtain the relation

(8)2( 1% ) _ ( o - 02 2¢'az+¢") (Ee ) s
c €L By, —2¢'0, — ¢"  ¢'* — 02 Ey

Substitution of ¢ = goz into equation (4.34) recovers equation (4.19), as expected. How-
ever, there are evidently two problems with equation (4.34): (1) the rotating coordinate
system rotates at a non-uniform rate for a generalised ¢, and (2) the expressions for ¢'
and ¢" are in general non-trivial functions of z, as illustrated in figures 2.3 and 3.2. That
means that I cannot find an analytical solution in general for an arbitrary ¢(z). Nonethe-
less, equation (4.34) will still be amenable to numerical solution, and may be useful in
the analysis of systems with an aperiodic ¢(z). Examples of experimental relevance in-
clude spatially varying cholesteric solids with large-scale inhomogeneities resulting from
a temperature or concentration gradient, and cholesteric liquids which are used as filters.
Although this is an interesting and largely unexplored possibility, I will not pursue this
topic further within this thesis.
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Chapter 5

CLC Optics: Band Structure
Approach

In the previous section, I established the need to develop another technique to calculate
the optical properties of a cholesteric, due to the complexity of the equations governing
the propagation of light. The solution presented in this thesis is to apply the tools of

electronic structure theory to calculate photonic band structures.

5.1 General Photonic Band Theory

According to Bloch’s theorem, any wave propagating through a periodic structure is given
by the product of a periodic function and a plane wave, indexed by a wavevector k.
From the set of operations under which the system is invariant, one can construct a
set of reciprocal lattice vectors, {G}. The index wavevector k is unique only modulo
a reciprocal lattice vector, which thus limits the number of values of k which must be
explored in order to fully characterise the dispersion relation of the medium. One may use
the perpendicular bisectors of the reciprocal lattice vectors to construct Wigner-Seitz cells,
known as Brillouin zones. Since k is non-unique, if one calculates the dispersion relation
within one Brillouin zone, typically the one centered on the origin known as the first
Brillouin zone, all others will be determined. Furthermore, the point-group symmetries of
the system will often allow one to reduce the number of k values which must be explored.
The minimum set consistent with a complete characterisation of the system is known as
the irreducible Brillouin zone. Because of the periodicity of the structure, if a frequency
is found nowhere on the dispersion curves in the irreducible Brillouin zone, it is said to be
forbidden. Thus, calculating the bands resulting from traversing the irreducible Brillouin
zone is considered equivalent to solving the electronic or photonic structure of the system.

In electronic structure theory, materials which have band gaps around the Fermi level
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act as insulators, since the electrons need a relatively large amount of energy to be excited
into delocalised states, known as conduction bands. In photonics, one seeks to under-
stand what happens to monochromatic light incident on a periodic dielectric structure.
The standard interpretation of photonic band structures is that a band gap corresponds
to a range of frequencies which are wholly reflected by the photonic medium (ignoring
absorption losses).

I choose to adapt the technique for calculating optical band structures, originally de-
vised by Ho, Chan and Soukoulis [11] and refined by Meade and colleagues [24], to calcu-
late the properties of light propagating through any arbitrary periodic dielectric medium.
Although both groups implicitly assume that the dielectric constant is a piecewise con-
tinuous, scalar quantity, I generalise to the case of a tensor dielectric constant where the
polarisation, and its rotation, lead to new, subtle effects.

I start with Maxwell’s equations in wave form, rewritten here for clarity:

L 1 6°H
V x [eMx)(VxH)| = e ! (5.1)
If I assume that H(r,t) = H(r)e™!, I can rewrite equation (5.1) as:
2
Vx [l (vxHE) = (2) H. (5.2)

Since the dielectric tensor is periodic by assumption, I have ¢(r) = ¢(r + T'), where
T = npy2 with n integer in a cholesteric, and T = Z?Zl n;a; with n; integer in general. I

can then define a translation operator 7, which has the property that
T2f() = f(x+1T) (5.3)
If I then define the “Maxwell operator” M such that
MH(r) = V x [e(x)(V x H(x))] , (5.4)
then equation (5.2) can be rewritten simply as

MH(r) = (ﬂ)gﬂ(r) . (5.5)

c

The translation operator applied to the left-hand side of equation (5.5) yields:
T (M(r)H(r)) = (‘7}]\31) (TTH(r)) . (5.6)
Since TpM = M, owing to the periodicity of g(r), I can remove the operands from
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equation (5.6) to show that FoM — M7z = 0, ie., the operators 71 and M commute.
By the fundamental postulates of linear algebra i, I know that any pair of operators

which commute can be chosen to have the same eigenstates, so that

NMHE(r) = (%)2H(r) (5.7)
TrH(r) = ¢(T)H(r) . (5.8)

I can now define a wavevector k such that ¢(T) = e®*7T. Clearly, then, I can rewrite

equation (5.8) as
H(r+T) = *TH(r) . (5.9)
Since this property should be true for all translations, I can expand equation (5.9) into

H(r) = e h(r) (5.10)
h(r+T) = h(r) . (5.11)

Equations (5.10-5.11) show explicitly that the solutions to equation (5.2) are guaranteed
to be the product of a plane wave times a periodic function. By the Fourier theorem, I

can rewrite the periodic function h(r) as a sum of Fourier components
h(r) = ) hge'®”, (5.12)
G

where {G} is the set of all reciprocal lattice vectors, defined such that ¢!G'T = 1, Inserting

into equation (5.10), I find

H(r) =™ Y hee'®”, (5.13)
G

or, rearranging,

B =) had®t&x, (5.14)
G

Since equation (4.2) guarantees that H is transverse, I can pick two basis vectors éay) of

magnitude one for each G such that

Viem [Eay  (k+G)] =0, (5.15)
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and
YiGyy) [é(G'r) 'é(Gv’)] = 099" (5-16)

Thus k + G and the ég,) form an orthogonal triad of vectors in space for each G, and
the é(g,) may be different for each G in general. Each plane-wave component of H is thus
guaranteed to point in the plane created by the ). This result allows us to rewrite

equation (5.14) as

2

H(r) =Y > hanéane™ . (5.17)

G =1

Equation (5.17) is my Fourier representation of the H field. I would now like to insert
this expression into equation (5.2) so as to transform my eigen-like operator problem into
an eigenvalue equation, with an effective matrix derived from the Maxwell operator M.
The reason that I can do that now is that the curl operator is diagonal in Fourier space.
However, I cannot get very far without noticing the inverse dielectric tensor is not diagonal
under the curl operator in general. Fortunately, I can easily fix this problem. Applying

the Fourier theorem, I expand g‘l in a plane-wave basis set such that
- -1 iG'r
el(r) = Zg(}l e T, (5.18)
G

I can now substitute equations (5.17) and (5.18) into equation (5.2) to obtain

2
(%) 2 S danhene™ T = .13
G =1
2

= Z Z hay(k+ G+ G') x {ga} k4 G) x é(GT)]} (i GHG )

G,G v=1

upon which I can effect the transformation G' — G’ — G. That procedure gives us

2
w\? 2 2 ‘T
(2) 202 eenhi@ne T = (5.20)
G v=1
2

= Z z h(G,,,) (k + G’) PY {g(—}}_G . [(k ol G) . é(qu)] } 6i(k+G-’).r ‘
G,G' v=1
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Multiplying by e~#+Go)* and integrating over the unit cell, I obtain
w2 .
(;) > hamiam = - ZZ hay(k+G) x { g [(k+G)x e(Gvﬂ} - (5.21)
5

The structure of equation (5.21) ensures that there is a solution. One reason is that since
the last operation on the right- hand side of equation (5.21) is a cross-product with k+G/,
it will automatically have components along &), which are contained in the left-hand

side.
Clearly, if I multiply equation (5.21) by &), and assume without loss of generality
that

(k +G) x éG1) = é(Gg) (5.22)
(k+G) x éaz = —€) »

I obtain
(%)2 hayy =~ [k + G Zh(Gl)é(Gv)’ : [(k +G') x (E&LG ' é{GQ))] (5.23)
G
~Tuenéay [(k +G) x ( £ 7 é(Gl))] :

Equation (5.23) demonstrates that there is a matrix that links the A(g,) across G and

ha)

v space. If I define a doublet h such that hg = ( ) , then T can combine equation

ha)
(5.23) to write the matrix equation

(E) bt = Z Ag oh (5.24)

where éG,,G is given by

Ay o=—k+G (5.25)
fan - [+ @) x (gl g éen) | —fan - |+ @) x (el e

b [0+ @ x (620 -tren)] —ttwn - [+ G x (€5t g - éen)]
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5.2 Special Cases for Band Structure Calculations

5.2.1 1D periodic structure, normal incidence

In the case where I have a 1-D periodic structure, I can simplify equation (5.25). In
particular, if the periodicity is along the z axis, and I only consider normal incidence,
then it is clear that my two unit vectors &) will lie in the zy plane, which allows us to
make the choice without loss of generality that Va écr) = % and Ve ez = ¥ In this
case, it is obvious from equation (5.25) that the z components of ¢ - will be suppressed,

which allows me to write that

2o ( (Cr_g)oe (EE}G)W) , (5.26)

I can apply equation (5.26) to equation (5.25) to obtain the result that

-1

— ! (ggr_G)yy - (g&}_G)'ym
é@f c |k + GI Ik ¥ G | ) 1 . (527)
’ ﬁ(EG,_G)my (gG:_G)wz

I then recall the reduced expression for €%, equation (4.14).

cos2¢ sin2¢ O
§—1 =b é— o| sin2¢ —cos2¢ O i (5.28)
0 0 —1

The Fourier components for ¢ will be given by

daa — QCa/-G —Q8@—a 0
g =" ~ase-¢  Jee t+ace-c 0 ; (5.29)
0 0 (]_ + Cﬁ)(SG}Gf
where
cg = f dr e ¢ cos2¢ (5.30)
unit cell .
sg = f dr e7¢7 sin2¢ . (5.31)
unit cell

If T define the first reciprocal lattice vector to be Gy, then in the case of uniform helical
advancement (¢ = gz), I find that cia, = 1/2, Vagtaice = 0, sx@, = F1/2 and
Vazie sa = 0. Of course, in general things won’t be so simple!

Given a definite form for —E—E;}_ o | can substitute into equation (5.27) to find that for

41



normal incidence

= asaq -G dg,c — 0Ce—G

J ’ Fo i
A, o=blk+G] |k+G’|( G Toeg-g wegg ) . (5.32)
Equations (5.24) and (5.32) can be rewritten in a dimensionless form. Since G and k
both point along Z for normal incidence, |k + G| = k + G. Given that G = 2nq32, for n

integer, and using the previous definitions for k and (@, one obtains the result,

& P 5’.‘1 I [ =
&y = (k+1) Y (k+n) ( ol 76T Yon'=n ) h,.  (5.33)

'n. QSp!—n it — UGy

5.2.2 1D periodic structure, oblique incidence

As in the previous subsection, I consider the simplification of equation (5.25) introduced
by the presence of a 1-D periodic structure. I consider the periodicity to once again be
along the z axis, but unlike before, I allow k to point in any direction. A 1-D periodic
structure has a coarse-grained cylindrical symmetry, which means that it looks the same,
except for a phase, at any angle. Thus, the optical properties will be the same for any
combination of k; and k, with the same overall magnitude &, = /kZ + k2 to within the
same phase as before. Thus, without loss of generality I write my k = k,p + k.2 in
cylindrical coordinates. Furthermore, the 1-D periodicity of the structure means that the
overall magnitude of all fields must be the same under any arbitrary translation in the zy
plane. That implies that the magnetic field will only differ by a phase in the zy plane. In
conjunction with Bloch’s theorem, that means I can write my field as a product of plane
waves along p and 2 times a function periodic in z. In particular, I can write my previous

expansion of the magnetic field, equation (5.17), in the particular form,

2
H(r) =) ) hanbianelr et (5.34)
G =1
I can easily show that
2
VoH(E) =60 Y e ko + (ks + G) 3] - ggyyeithort it @)l (5.35)
G =1

One way to enforce the transversality constraint, equation (4.2) is to require each indi-
vidual component of equation (5.35) to be transverse. Since each component is linearly

independent, this is also the most general way available to ensure transversality. In this
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case, I find that the particular form of k allows us to write equation (5.15) as
Va, v [kp0 + (k,+ Q) 2] “Eay) = 0. (5.36)

That condition puts two constraints on the coefficients of {é(gy) } for a given G. There is
one constraint for each y imposed by the requirement that each &) is a unit vector, and
one more constraint from the orthogonality requirement given by equation (5.16). Thus,
there is a total of five constraints and six components of é,) for each G. That allows
us to choose one of the components arbitrarily. The simplest choice is to set ég1) = g,
where 0 is the unit vector in the zy plane orthogonal to p. This choice trivially meets the

condition on orthogonality given by equation (5.36). I also obtain as a result that

i

bz = (ks + @) p— koA (5.37)
R+ (ke + @)

which is unique to within a factor of &1 (although that is inevitable for a unif vector).
Most importantly, I observe that unlike what I saw for normal incidence, each éay) will
be different for each GG in general. |

I can find a solution for éﬂ,,n in the reduced form

@hy =Y A, b, (5.38)
n

which is equivalent to equation (5.24) in a dimensionless form. For simplicity, I calculate

A in Cartesian coordinates, which means h,, is a vector in Cartesian coordinates, and I

am obliged to set k= épg} + k,2. The result is

(kzAn) (B0 ) (Opns Hac, _p ) +e2(14)6, 0 (kotn)(kztn)as 1 —kp(kztn)os 1,

A .= a(kz+n)(kzAn')s, (kztn)(kat+n') (8, 1 —ac, i) —kp(k+n")(8,, 1 —acs_,)
_kp (iﬂz +n)asnfﬁn 7]?1,9(];:3 +n)(6"n; —ac —n) E:g (67111" —C!Cnf#n)

(5.39)

However, since H(r) must be transverse, I know that it really only has two degrees of
freedom for each G, i.e., an k) and an higa), 1.6, hcq), h(ay) and hgy) are interdependent.

That implies that I can transform 4 into a two-by-two matrix which I denote é:; -
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the solution for the analogue of equation (5.38),

@*hly =Y A, b, (5.40)

h
where h! = ( (n1) ) . The resulting expression for A’ is

(n2)
b talE . £ ) ot k)’
f (kztn)(kz+n')(6, o +ac s )4kS(1+a)d, a(kz+n)(kz+n')y [ 1+ (E-%;) St s
én", n . . P 2 . - Z 2 i
ﬂc(kz+n)(kz+n’)q/1+(ﬁ) Splen (Icz+n)(kz+n')(5m,+acnfn)\/lJr(gi—n) \/H(E:?

(5.41)

5.3 Simulation and Results

5.3.1 Simulation technique

In order to calculate the solutions to equation (5.33), I must rewrite it in a form amenable
to computation. This requires us to choose a reasonable size for my plane-wave basis set,
so that if n and n’ range from N to —N, I have a 2(2N + 1) by 2(2N + 1) matrix which

links
h= (e b bay by Boghae) )

and h', which is defined similarly. I can represent this linkage by the eigenvalue equation

in the simple form
@*h' = 4h (5.42)

where

Al,l Al,E
A= (Ez; Ez,z ) ; (5.43)

and each individual é“'ﬁ isa 2N +1 by 2N + 1 array, calculated from the corresponding
components of (5.33), e.g., Ay, = (k+ n)(k + ') (6pn + w_n). I can show that A is
Hermitian, since (Aﬁ’z,) = A%P

nm» DY 1nspection. Thus, all my eigenvalues are guaranteed

to be real, as desired.
In order to solve my eigenvalue equation, I first construct the A matrix, then diago-
nalise it. The construction of the matrix requires us to calculate the Fourier-coefficients,
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which I do by first calculating the angle of the director for 2V + 1 evenly-spaced values
of z from equation (3.21) and the appropriate trigonometric identities for a fixed r, A and
thus Ay, Then I populate the matrix using equations (5.33) and (5.43) for a given o and
k.

Next, I diagonalise the matrix, using the procedure zheev in LAPACK, which computes
all the eigenvalues and eigenvectors of a complex, double-precision Hermitian matrix 38].
Direct diagonalisation is clearly not the only way to solve the eigenvalue equation (5.42).
Other methods, e.g., iterative eigensolvers, have been suggested and implemented as well
[39]. However, direct diagonalisation can be performed for a matrix with a 32 plane-wave
basis-set in less than 1 s per parameter set on a 266 MHz DEC alpha machine, which

obviates any requirements for a lower-complexity algorithm.

5.3.2 1D periodic structure, normal incidence

Ideal helix

Here, I seek to reproduce the results of de Vries for an ideal helix at normal incidence,
and develop an approach that will also apply to distorted helices and/or at oblique angles.
There are only two harmonics, which allows us to write the values of ¢, and s, in par-
ticularly simple forms, namely, ¢y = 1/2, Vinj1 ¢ = 0, and s41 = i Vinj#1 8o = 0.
These sine and cosine components link matrix elements which are a distance of n apart.
Since they vanish for n > 1, I only need to consider a small matrix in order to capture
the structure of the matrix. I diagonalise this matrix in order to obtain the eigenvalues
associated with my system. Since a system with no off-diagonal elements would be fully
described for N = 1, I can easily guess that the ideal helix, with only the closest ofl-
diagonal elements, is fully described by N = 2. That is confirmed by increasing N in
powers of two and comparing the results — to the accuracy of numerical algorithms, they
are identical.

I construct the band structure by stepping through various values of k. Because of the
periodicity of my lattice, & is only unique modulo a reciprocal lattice vector, i.e., k = k+G
in general. Also, since the A matrix is Hermitian, I expect to find identical eigenvalues for
k and —k. In short, I only have to calculate the band structure for half of one Brillouin
zone, and can trivially reproduce the rest as desired. In concrete terms, that means I
only have to construct and diagonalise the A matrix for approximately 20 values of the
reduced k between 0 and 0.5. T then plot the lowest p eigenvalues versus %, and connect
them into bands. The results of this procedure are depicted in figure 5.1. In terms of an
extended zone scheme picture, there will be two bands associated with each k, two for each
k + 2q, two for each k + 4q, etc. Two bands arise in general because photons in general
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have two transverse polarisations (longitudinal polarisation is forbidden since they are
massless). Thus, each pair of bands corresponds to two orthogonal polarisations. Based
on the analysis of chapter 4, it is clear that the two polarisations will have distinctive
behaviours, and that the pair with a gap at & = ¢ in figure 5.1 corresponds to circularly

polarised light that rotates in the same sense as the helix outside the medium.

2.5

I 1

0 : r
0 0.1
Figure 5.1: Dispersion relation from band-structure calculations, (& versus k), for an ideal
helix, with o = 0.18." There is one gap for one polarisation, at & = 1, and no gap for the
other polarisation.

|
02 03 04 05

However, it is important to note that figure 5.1 differs from figure 4.1 because the %, in
chapter 4, henceforth referred to as &’ , is in the rotating coordinate frame, while the % in
this chapter is in the stationary lab frame. Qualitatively, a wave with a &’ in the rotating
frame is a coherent superposition of two waves with wavevectors &+ 1/2 and k' — 1/2 in
the stationary frame. The gap that occurs at &' = 0 in figure 4.1 thus corresponds to a
coherent superposition of states with & = 1/2 and k = —1/2. As can be seen in figure 5.1,
there is a gap at k = 1 /2, and by the reflection symmetry argument given above, there
will also be one at k = —1/2. Similarly, a state with &' = 1 /2 is a coherent superposition
of the states at k = 0 and k = 1, which are the same since % is only unique modulo a
reciprocal lattice vector (which is one in reduced units). As can be seen by comparing the
diagrams, the first and second frequencies match.

I also observe that there are no gaps for higher-order reflections. Since the dispersion
relation in figure 4.1 has only one gap at &' = 0, this result is clearly predicted by de
Vries’ solution. The absence of higher order gaps does not hold in general, but only for

normal incidence.
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Distorted Helix

The main case of interest is small deviations from ideal behaviour, a problem that is
untractable in de Vries’ approach but clearly amenable to band structure analysis. In
the case of a cholesteric elastomer, a physical example of small deviations from ideality
corresponds to a moderate z-strain perpendicular to the pitch axis. My procedure for
numerical solution of the problem is as follows. First, I choose a particular value for r and
a value for \ greater than but close to one. I then numerically minimise the coarse-grained
energy F'(), Ay, T) With respect to Ay, to obtain its value. I can then use equation (3.21)
to calculate the critical values for the angles, and equation (3.22) to choose those that
correspond to minima in the free energy. Trigonometric identities can be used to obtain
the corresponding values of cos2¢ and sin 2¢. A fast fourier transform will then give us
the appropriate values of ¢, and s,. It is simple to guess, by analogy with perturbation
theory in quantum mechanics, that small deviations away from ideality will lead to small
values for ¢, and s, where |n| # 1. Furthermore, I expect that these small values will
scale as power laws in the small parameter of the problem, the strain e = A — 1. The

scaling of these coefficients is given by

0 =0,
Sn =1 Fi[l—-O(e?)] ifn==l, (5.44)
+i Ofe™ ) otherwise,

and
O(e) if n=0,
Ca =14 3[1—0O(?)] ifn==I1, (5.45)
O(e™™) otherwise,

where terms of the form O(z) are interpreted to mean a quantity given by the product of
z and a real number of order unity.

The variation of the Fourier components of sin 2¢(z) and cos2¢(z) is illustrated in
figures 5.2 and 5.3 for a cholesteric elastomer under an z-strain of A. A similar pattern
can be seen in the case of a liquid cholesteric under an external electric or magnetic field,
as shown in figures 5.4 and 5.5. I can calculate the scaling behaviour for ¢, and s, in an
external field by transforming the scaling laws given in equations (5.44) and (5.45), and
effecting the transformation e — (H/H,)?, for H < H,.

Given the values of s, and ¢, at a given r and A, I can calculate the band-structure
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Figure 5.2: Values for various s, in a cholesteric elastomer experiencing a uniaxial z-strain.

numerically, just as I did in the de Vries case, figure 5.1. I illustrate two examples:
A =11 < X in figure 5.6 and A = 1.3 > X, in figure 5.7, both at » = 1.9. In figure 5.6,
the sample is stretched by less than the critical strain, which is given by A, =~ /7 ~ 1.19
[23]. Stretching leads to coarsening of the helix which in turn gives rise to new gaps
at higher orders at the Brillouin zone boundaries, particularly for the polarisation that
rotates along with the helix. But there are also smaller gaps that arise for the opposite
handedness even before we reach the critical strain e,. We can explain this phenomenon
by considering that, in the uniformly rotating frame in which our original E, and E,, live,
there are, in effect, rotations of n both forwards and backwards that arise from deviations
of ¢'(z) from the unperturbed constant value of g (see figures 2.3 and 3.2). The size
and scaling of these gaps is discussed below. The position of these gaps is constant
to the first order in my reduced notation, but actually varies in a physical system. In
particular, since a uniaxial strain of A along z leads to a contraction \,, = A%/, my
wavevector ¢ = ggA?/7. Since the Brillouin zone boundaries occur at integer multiples of
g, they will shift to higher values. Physically, that will correspond to reflections at higher
frequencies. Since & = w/2cqv/b, a constant & corresponds to a physical w that also scales
like w = weA¥7, where wy denotes a frequency of interest at zero strain. Thus, these
shifts are scaled away in figures 5.6 and 5.7. Experimental evidence for the predicted

shift in the band gaps toward the ultraviolet has been seen in two sets of experiments.
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Figure 5.3: Values for various ¢, in a cholesteric elastomer experiencing uniaxial stretching

First, there is a change in the colour of cholesteric monodomain rubbers upon stretching
[22, 33]. Furthermore, there are changes in the colour of the lasing mode as stretching
proceeds [6].

In figure 5.7, the sample is stretched beyond the critical strain. This gives rise to
a qualitative change in the behaviour of the director, ¢(z) (see figure 3.2), and thus a
qualitative change in the band structure. The most important effect is the elimination
of the persistent bias toward rotation in one direction present at smaller strains; now,
the director rotates periodically, swinging almost equally in both directions. Removing
this bias means that there should be little difference between the optical properties of
left- and right-circularly polarised light. Furthermore, the magnitude of this difference
will decrease with increasing e. As a result, the circular dichroism of the material should
disappear, and the eigenmodes of light inside the stretched cholesteric medium should
be linearly polarised. Also, I note that the scaling behaviour of A,, crosses over from
the non-classical A\=2/7 response to a A ~'/2 response, the classical exponent predicted for
isotropic elastomers (e.g., rubbers without nematic ordering). That in turn implies that
the frequencies reflected increase more quickly with strain, i.e., w = wpA/2, but the range
decreases in width, owing to the decreasing magnitude of the oscillations about ¢ = 0.
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Figure 5.4: Values for various s, in a liquid cholesteric subjected to an external uniform
electric or magnetic field. Note that all s, go abruptly to zero for fields H greater than
the critical field H, (unlike figure 5.2).

Perturbation theory of gap scaling

I can apply second-order degenerate perturbation theory to calculate the approximate
size and scaling of the band gaps. In electronic structure theory, one can take an ap-
proach analogous to my photonic band structures, and construct an A;; that satisfies the
Schrédinger equation, where v is expanded in a plane-wave basis set, and it is assumed
to be a scalar quantity (thereby ignoring spin). I then identify two degenerate states, n

and n', and then construct the reduced matrix

D= ( Aun Anw ) : (5.46)

=7\ Awn Aww
"This procedure should give an accurate answer provided that the off-diagonal elements are
relatively small. In the case of light normally incident upon a distorted cholesteric helix, I
can surmise from equation (5.33) that An, = (k-+n)2(14aco) and Ay = (k+n")2(1—acp).
Also, the off-diagonal elements will be Aprn = (Anw)* = a(k + n)(k + n')sp_p (since A
is Hermitian). Since I am interested in splitting between nearly degenerate energy levels,
I must have A,, & A,s, which is satisfied when ]fs + n’ = ‘f} +n'|. For the interesting

case where n # 1/, that is equivalent to saying k = —(n + n/ )/2. Substituting back into
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Figure 5.5: Values for various ¢, in a liquid cholesteric subjected to an external uniform
electric or magnetic field. Note that all ¢, except for co go abruptly to zero for fields H
greater than the critical field H, (unlike figure 5.3).

equation (5.46), I obtain

(1 4 agy) —altY

0 @ Sp/—n

D= g " (5.47)
—al s, (1 - aco)

From equation (5.47), I obtain a pair of eigenvalues corresponding to the two new
frequencies resulting from the splitting of the degeneracy. In a dimensionless form, they

are given by the expression

e (%”)2 [1 ok a\/c%—‘sgn} : (5.48)

where dn = n — n’. For an undistorted helix, g = 0, s_; = —s1 = 1/2, and V1 8, = 0,
which gives us the result @ = 1 [1+ fa], which for a small value of & corresponds to
a splitting 6@ = «/4, a linear dependence on the reduced dielectric anisotropy, as was
originally predicted by de Vries. All other gaps will vanish since V5| 2186 = 0.

For a slightly distorted helix, given the scaling relations I found before, I can generalise
from equation (5.48) to calculate the size of the gap for any order. Given that ¢y = 0, I
obtain 6@ = (6n/2)a |ss,|, which thus scales like 6@ ~ (6n/2)ae™ . Since I already have
the scaling relations for the Fourier-coefficients, I immediately know how the gaps should
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Figure 5.6: Band structure for a cholesteric elastomer at a strain of A = 1.1, with
anisotropy r = 1.9. The dots indicate the position of the only band gap present in

the ideal helix, for comparison.

behave as well. These predictions are confirmed qualitatively by inspection of the figures;
however the results are not exact. '

A more precise approach calls for us to account for the vector nature of the pho-
tons. Unlike most electronic structure calculations, the photonic calculations require us
to account for the polarisation for accuracy. Physically, this occurs because the inverse
dielectric tensor represents an effective potential for the photons. Deviations of the dielec-
tric tensor from the unit tensor times a constant represent the magnitude of the difference
of the effective potential acting upon different polarisations. In my reduced units, this
magnitude is naturally given by « and is therefore not negligible.

The vectorised approach requires us to include a total of sixteen elements, arranged
in two levels of two-by-two matrices. The inner matrices each consist of elements for a
given v and 7' for all combinations of n and n'. The outer matrices obvious vary y and

7', then. The result looks like the following:
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Figure 5.7: Band structure for a cholesteric elastomer at a strain of A = 1.3, with
anisotropy r = 1.9.

(k+n)2(14-cco) a(k+n)(k+n')e, 0 a(k+n)(k+n')s 1 _

D= ak+n)(k+n')e, _ ./ (k+n")?(1-+acp) ol(k+n)(k+n')s,, _ . 0 . (549)
— 0 a(k+n)(k+n')s i (k+n)?(1—eco) —a(k+n){k+n')e s _ .
alk+n)(k+n')s, 0 —alk+n)(k+n')e, (k4+n")2(1l—ceq)

Given that & = — (n +n') /2, I obtain the eigenvalues

@* = (%”)2 [1 + o (can + 4/ — s§n>] ; (5.50) |

This now gives us four eigenvalues at the Brillouin zone boundary, split from a quadru-
ple degeneracy of two dispersion relations with two polarisations each meeting at one point
in k. Clearly in the undistorted case, I will obtain @* = 1 [1+a (5 £3)]. I interpret
this answer as corresponding to two eigenmodes rotating with the helix that are split such
that @ = 1[1+al, and two eigenmodes rotating against the helix that are unsplit so
that both @ = . T obtain the same result through numerical diagonalisation of my 4

1
e
matrix for N > 2. For a distorted helix, given that ¢y = fe and that s; =4 (1/2 — ge?)
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and ¢; = 1/2 — he?, I expect that

G = ?i [1 +a (1/2 —he? £14/(fe)* + (1/2 — geQ)z)J : (5.51)
which corresponds to a large gap for the polarisation that rotates along with the he-
lix, given by @* = (1/4)[1+a(1+ (f>—g—h)6?)], and a small gap for the opposite
helicity, given by @ ~ (1/4)[1+a(g—h— f*)8?], corresponding to a gap of width
6w = (1/2)a:(g— h— f*)82. Since g — h — f2 is non-vanishing in general, I expect that
both band gaps will be non-zero. These results correspond qualitatively to the scaling be-
haviour observed in figures 5.8 and 5.9. Since the smaller gap is centered about the same
value of @* as the larger gap, I am led to predict a full photonic band gap for a distorted
helix at normal incidence, i.e., I expect that normally incident light of any polarisation
with frequencies within the band-gap will be totally reflected.

I'will now attempt to extend the theory for splitting at the first Brillouin zone boundary
to higher orders. An important factor affects these anti-crossings, namely, the gradual
separation of the dispersion relations for eigenmodes that tend to point along €, and
eigenmodes that tend to point along €. Since these two sets of eigenmodes experience
a different effective refractive index, they have different slopes which gives rise to two
meeting points that gradually separate as I go to higher bands (corresponding to higher
Brillouin zones in an extended-zone scheme). Furthermore, some of the higher crossings
can take place away from the zone boundaries; however, those effects require mixing
between two nearly orthogonal modes and are usually small. In practical terms, that
means that rather than four-wave splitting, I must instead consider two-wave splitting at

higher Brillouin-zone boundaries. Fortunately, that is relatively easy. My matrix becomes

(5) (1 +ae) o (%) s

, \ (5.52)
o (2)5  (2)'(+aa)

I
Il

That gives rise to two pairs of eigenvalues: @? = (%)2[1 —a(co L 1s5,)] and &2 =
(%")2 [1 + c (co + 3s4)], corresponding to a band gap of magnitude dw ~ (0n/2)a|ss,|.

Scaling of band gaps with mechanical strain

Of experimental interest is the in vacuo wavelength, A, of the light corresponding to a
given @ on the CE dispersion relation, particularly at the gaps. The previous definitions
give A = po/(@VbAYT). Pitches py typically give a band in the visible so the initial
wavelengths are Ag = py/v/b ~ 500nm at & = 1 /2 and X\ = 1, which allows us to write
A = Ay/(20X*/7). Likewise the first order de Vries gap is given by AA ~ Ag/X?/ 7. The
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Figure 5.8: Scaling of various gap sizes as a function of the strain,e.

higher order gaps of the same polarisation will have widths of AA, ~ Chge™ 1 ([mA%7),
where C is a pre-factor of order unity that will depend on r and . For example, the second
order gap in a rubber with r = 1.9, @ = 0.43, and e = 0.1, the gap will be AAg = 0.045A,.
For Ay =~ 800nm, that implies a stop band for the light with a circular polarisation of the

same sense as the helix will be observed for A = 362 nm to A = 398 nm.

5.3.3 1D periodic structure, oblique incidence

In figures 5.10, 5.11 and 5.12, I show full band structure calculated using my methodol-
ogy for arbitrary angles of propagation (i.e., arbitrary k inside the cholesteric medium).
These results were obtained by diagonalisation of the matrix in equation (5.41), which is
specifically suited to the case of light propagating at arbitrary angles in one-dimensionally
periodic structures, such as chiral nematics. Thus in addition to the case of cholesterics
discussed in this thesis, the same equation may be used to study materials such as piezo-
electrics. In my photonic band structures, I imitate the style of electronic band structures
by traversing a range of k values so that I have an idea of how w can vary. The rules
are that I increase or decrease each component of k (in this case, there are only two, k,
and k,) according to a specified rule until [ hit a zone boundary then “reflect back” or
start using a different rule. The most efficient way of traversing the space of a Brillouin
zone is usually called the “irreducible Brillouin zone.” However, the lack of periodicity
along p (perpendicular.to the pitch axis), means that each k, is unique, and thus, 'l

never hit a boundary in that direction. However, I can make up for this deficiency by
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Figure 5.9: Scaling of various gap sizes as a function of the reduced external field, (H/H,)?.
Note how the scaling corresponds to that seen in figure 5.8

the fact that the lowest bands (corresponding to visible light when the pitch is about one
optical wavelength) will have a natural limit on k, since in vacuo, w > c|k,|, and in the
cholesteric medium, @ > (1 — a)|k,|. Qualitatively, these results mean low frequencies
must have a correspondingly low ky. Thus, practically, this issue does not present a great
problem.

Starting from the left, the first rule is to increase k&, only, which corresponds to the band
structure for normal incidence. I can verify that the first parts of figures 5.10, 5.11 and 5.12
are identical to figures 5.1, 5.6 and 5.7, respectively. Once I reach the first zone boundary
and observe the familiar gaps, T then begin to increase kp, which corresponds to a gradual
tilt away from propagation normal to the director, until the two components are equal. At
that point, the k will correspond to 45° propagation within the medium. I then gradually
decrease the magnitude of k, without changing the direction. Here, one can observe hints
of at least one Bragg reflection for both senses of polarisation, even for an ideal helix.
More reflections would be visible if I were to sweep over a broader range of k, values. In
the fourth and final portion of the diagram, I look at the case of k, = 0, corresponding
to 90° propagation, along a direction perpendicular to the pitch axis (taken to be along 4
for simplicity).

For figure 5.10, the ideal helix, I note the following features. First, there is a gap
for light propagating at 45° for both polarisations. This obviously contrasts strongly
with the normally incident case, in which only one polarisation experiences a gap, and is

reminiscent of the opening of gaps at normal incidence upon distortion. In both cases,
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Figure 5.10: Full dispersion relation at several directions of propagation in an ideal he-
lix: (1) normal, (2) increasingly away from normal up to 45°, (3) 45° propagation for a
decreasing magnitude of k, and (4) 90°

I observe the same sort of behaviour in the sense that a large, first-order gap for the
polarisation that rotates with the helix remains, while a smaller gap opens up as I move
away from normal incidence with constant k. However, there is a difference between the
two as regards the gap scaling. For small angles away from normal incidence, I observe
that the smaller gap scales as §2 while the larger gap goes as a (1/2 — O (6%)). Conversely,
small stretching of a cholesteric rubber makes for a smaller gap that scales as e, along
with a larger gap that scales as a(1/2 — O (e?)). Also, the direction of the dispersion
relations is such that the frequencies trend upwards as the angle of incidence increases.
Incidentally, that may provide an explanation for the success of lasing on the band-edge
of cholesterics [5]. To wit, a lasing mode just above the lower frequency allowed at normal
incidence will be forbidden above a critical angle. As one gets closer to the bottom of the
upper part of the dispersion curve, the smaller the critical angle becomes. . For a small
enough critical angle, light will essentially be forced to propagate straight through the
cholesteric medium, which will clearly assist in the collimation of light, and the focusing
of the energy of an emitted — more of the pumping power is utilised.

Also, the eigenmodes of a beam propagating at an angle 90° from normal will differ
enormously from what was discussed previously for normal incidence. Out of the two
lowest eigenmodes, one has a dispersion relation given by @ =1+ a)Eﬁ, and a linear
polarisation along Z (assuming k = qué,,g). This polarisation corresponds to an E which
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Figure 5.11: Full dispersion relation at multiple angles for a helix distorted by a strain
e=11 < e (r=129)

points wholly along 2, the direction of unvarying dielectric constant. The other polarisa-
tion points all over space in a highly non-trivial manner, as a periodic function of y and
z. This periodic variation costs a larger amount of energy than pointing along a constant
direction. Nonetheless, since this polarisation is able to take advantage of being able to
direct its E along a higher dielectric constant direction than the trivial polarisation, it is
lower in energy despite its twisting and turning. An illustration of how its direction and
magnitude (in spherical coordinates) depend on y and z is given in figures 5.13-5.15. Thus
in the last sector of 90° propagation shown in figures 5.10-5.12 (where (0,0) — (1,0)), the
lowest linear dispersion is the non-trivial mode, and the higher linear dispersion in the
trivial mode.

Furthermore, there are multiple Bragg reflections. While that is generally expected
within the context of periodic band structures, that is surprising for a cholesteric, which
only has one gap at normal incidence. These reflections are like the elastic scattering
of an electron in a crystal, and so they will take place when the incoming and outgoing
wavevectors are the same modulo a reciprocal lattice vector, i.e., when k* = (k + G)2.
This condition is equivalent to 2k - G = G2, and yields k, = +n/2 for n integer. At a
given angle of propagation # > 0 such that l~ﬂp = ksinf and k, = kcos@, the reflections
will take place at k = +n/(2 cos ).

However, the data in figures 5.10- 5.12 is not directly applicable to experiment. That

is because at an interface between the cholesteric medium and a homogeneous medium,
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Figure 5.12: Full dispersion relation at multiple angles for a helix distorted by a strain
¢ =18 >e; (r=139).

not all components of k are conserved. Based on the previous arguments about boundary
conditions given in chapter 4, it can be shown that while k, will be conserved across the
boundary, k, will not be (Snell’s law). Nonetheless, the information in the previous curves
can be processed to yield experimentally useful data. One approach is based on the work
of Yoel Fink and colleagues [40]. If the value for fcp is fixed, then sweeping across all
the unique values of k, will yield all of the allowed frequencies for that IEP. Repeating
over a number of izp yields a diagram that has “bubbles” corresponding to forbidden
combinations of ﬁép and @, as shown in figure 5.16. Thus, at least one polarisation of light
in the shaded regions will be transmitted, while the light in the bubbles will be wholly
reflected for all polarisations. If one fixes the slope of the relation between k and @, it
will correspond to fixing the angle of incidence outside the medium while varying the
frequency of the incident light. In this case, one finds total reflections spaced at integer
multiples of a fundamental frequencies at angles ranging from 22.5° to 67.5° incidence.
Also, the frequencies at which the reflections take place increase as the angle away from
normal incidence is increased, as is predicted by the previous considerations for elastic

scattering, and observed experimentally by Takezoe et al. [41].
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Figure 5.13: A plot of the angle @ versus the y and z coordinates for t he first eigenmode
(y axis is on the bottom).

Figure 5.14: A plot of the angle ¢ versus y and z for the first eigenmode.
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Figure 5.16: Omnidirectional band structure diagram for an ideal helix. Shaded regions
correspond to allowed modes, while white regions correspond to forbidden modes. The
red line represents a naive lower bound on &. States with k = 0 correspond to normal
incidence, whereas states near the red line correspond to h1gh1y oblique (nearly grazing)
incidence.
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Figure 5.17: Omnidirectional band structure for a distorted helix (e = 0.1, r = 1.9).
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Chapter 6
Conclusions

In this thesis, I have reviewed the mechanical properties of a cholesteric elastomer, and
have developed two methods to calculate how stretching will affect the underlying optical
properties — de Vries’ technique and the more modern band structure approach. However,
most of the results are calculated using the band structure approach, because of its greater
versatility. At normal incidence, de Vries finds a single gap for one polarisation. Tt is also
found that stretching gives rise to gaps at multiple Brillouin zone boundaries, which scale
as power laws of the strain, for small strains. The scaling exponents can be calculated
by combining second-order degenerate perburbation theory with numerical results for the
scaling of the Fourier components, ¢, and Sn. The lower gaps have a lower exponent and
are thus much larger. Interestingly, a gap also opens up for the opposite handedness of
light, which represents a decrease in the circular dichroism. This phenomenon can be
explained in the context of de Vries’ approach by the fact that the helix twists back and
forth in the rotating frames of both handednesses upon stretching. I can also calculate
the optical properties of a helix at oblique incidence. However, interpreting the data is
more challenging than for normal incidence, due to the refraction which occurs at bound-
aries as well as the non-trivial relationship between polarisation and dispersion relations.
Fortunately, the omnidirectional band structure successfully summarises the experimental
situation of interest, by predicting what happens to light of a given frequency and angle
of incidence. Following a line with a particular slope corresponds to an experiment that
takes place at a specific angle of incidence outside the medium. It is evident that there
are many Bragg-like reflections which are spaced more widely apart at larger angles. Ul-
timately, at grazing incidence, no Bragg reflections occur, and the dispersion grows with
the magnitude of k (which in the higher bands, may include a reciprocal lattice vector).

Several experiments support these conclusions. Finkelmann’s experiments with cholesteric

elastomers have shown that the optical properties change with mechanical deformation.

The frequencies reflected at normal incidence increase with stretching, as predicted [6].
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Furthermore, a loss of circular dichroism corresponding to a cross-over at a deformation
)\, is observed after leaving the sample overnight [22]. Finally, the frequencies reflected
at a particular harmonic have been experimentally shown to increase with an increase in
the angle of incidence [41].

The most immediate application of these results is in the field of cholesteric lasing,
which has already been successfully demonstrated in experiments [5, 37, 6]. It explains
how modes just above the first band edge in an ideal helix are able to lase — as is evident
from the omnidirectional band structures, they are forbidden beyond a small angle away
from normal, which keeps them collimated. This work gives detailed results that may be

used to tune the lasing frequencies and modes in non-trivial ways using relatively simple

materials. Such tunable lasing technology, in turn, may prove important in applications

such as telecommunications and industry.
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