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Despite their great promise, small experimental thermophotovoltaic (TPV) systems generally ex-
hibit modest power conversion efficiencies (2.4% or less), mostly due to heat losses such as thermal
emission of undesirable mid-wavelength infrared radiation. Photonic crystals (PhC) have the po-
tential to strongly suppress such losses. However, PhC-based designs present a set of non-convex
optimization problems requiring efficient objective function evaluation and global optimization al-
gorithms. Both are applied to two example systems: improved micro-TPV generators and solar
thermal TPV systems. Micro-TPV reactors experience up to an 11-fold increase in their efficiency
and power output; solar thermal TPV systems see an even greater 24-fold increase in their efficiency
(exceeding the Shockley-Quiesser limit for a single-junction photovoltaic cell).

1 INTRODUCTION

Thermophotovoltaic (TPV) systems convert
heat into electricity by thermally radiating heat
onto a low-bandgap photovoltaic (PV) diode,
known as a TPV diode [1–5]. In principle, the ef-
ficiency of this process can approach the Carnot
limit [6]. However, in practice, efficiencies ob-
served in experimentally tested systems are often
dramatically lower, ranging from 0.8% or less [7, 8]
up to 2.4% [9, 10]. While losses occur at multi-
ple stages in these systems, one of the foremost
sources of loss is emission of thermal photons with
energy below the TPV bandgap. This reduces the
fraction of emitted power containing useful pho-
tons, and also tends to heat up the temperature-
sensitive TPV diode.

Photonic crystals (PhCs) offer an unprecedented
ability to control and mold the flow of light [11].
The most important property of a PhC is its full
photonic bandgap (PBG) – a range of frequencies
over which light of all incident angles and polar-
izations is completely reflected. In the context of
TPV, PhCs can play an important role in reduc-
ing problems associated with below-bandgap pho-
tons in several ways. First, they can introduce
a PBG in order to suppress emission at critical
near-IR wavelengths [12, 13]. This concept was
advocated in Refs. 4 and 14. Second, they can
enhance emissivity for photon energies above the
TPV electronic bandgap, via Q-matching – an ap-
proach implicitly utilized in Refs. [15] and [16],
and discussed theoretically in Refs. 8 and 17. Fi-
nally, they can reflect low-energy photons back to
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FIG. 1: Illustration of a µTPV system. An inlet brings
fuel to the micro-combustor with a selective emitter on
its surface. It radiates onto TPV cells above and be-
low, which generates an output current routed through
a maximum power-point tracker (not shown).

the source – an approach referred to as “photon
recycling” [3, 5].

In this paper, all three unique properties of
PhCs are applied to two particular problems: a
portable power generation system known as a
µTPV generator, and a utility-scale renewable
power generation system for converting sunlight
into electricity. The µTPV portable power gener-
ator illustrated in Fig. 1 boasts a very small form
factor, high power density, and flexibility in terms
of fuel source. The solar TPV system illustrated in
Fig. 2 offers greater generation capacity and higher
efficiencies in exchange for a larger footprint and
higher capital cost.



FIG. 2: Illustration of a solar TPV system. Sunlight
is collected in a solar concentrator and focused on a
selective solar absorber in the middle. It is thermally
coupled to a selective emitter, which radiates onto a
TPV diode in order to produce electricity.

2 NUMERICAL MODEL

The differential direct view factor dF , measuring
the probability of a photon emitted by a blackbody
emitter of infinitesimal area dA1 directly reaching
a target area dA2 at a separation d, is as follows:

dF0 =
cos θ1 cos θ2

πd2
dA2, (1)

where θ1 and θ2 are the angles between the line
connecting the two areas and the normal vectors
for dA1 and dA2, respectively.

The emitted power per unit area Φ(λ) for a
blackbody emitter can thus be calculated by inte-
grating over a hemisphere of radius r surrounding
the area dA1:

Φ(λ) =

∫
r2IBB(λ)dF0 =

2πhc2

λ5 [exp (hc/λkT ) − 1]
,

(2)

where k is Boltzmann’s constant, h = 2πh̄ is
Planck’s constant, and T is the temperature of
the emitter, which reproduces the well-known re-
sult for angle-integrated emission of a blackbody.
The total emitted power is then given simply
by Pem(λ) =

∫
dA1Φ(λ). Following along similar

lines, it can be calculated that an emitter with
angularly-dependent emissivity ε(λ, θ) will emit
power per unit area:

Φ(λ) =
2πhc2

λ5 [exp (hc/λkT ) − 1]

∫ π/2

0

dθ [ε(λ, θ) sin 2θ] .

(3)

Note that the angle-dependent emissivity can have
both diffuse and specular components. This can
be captured by defining ε(λ, θ) = DεD(λ) + (1 −
D)εS(λ, θ), where D is the diffuse emission fraction
(which must fall between 0 and 1).

However, note that some of this emitted power
will be reflected back by the receiver. This amount
can be calculated as follows. First, following
Ref. 18, we can define a differential view factor
dFn for n reflections as follows:

dFn =
cos θ′1 cos θ′2,n

πd′2n
dA′n (4)

where Sn is a virtual surface constructed via n

additional reflections with differential surface area
dA′n, located at a distance d′n from the initial emit-
ter dA1. All of the even values of n represent indi-
rect reflection to the opposite surface; odd values
represent reflection of the surface back to itself.

The differential power reabsorbed by the emitter
will thus be:

dPnre =
IBB(λ)Rn+1

2 Rn1 (1−R1)ε(λ, θ′n) cos2 θ′n
πd′2n

dA′ndA1

(5)

Integrating Eq. (5) and summing over odd values
of n yields the total reabsorbed power Pre.

In order to calculate the total number of pho-
tons reaching the opposite surface, the nth contri-
bution to the differential short-circuit current can
be written as follows:

dInsc =
2qc · EQE(λ) (R1R2)n−1ε(λ, θ′n) cos2 θ′n

d′2n λ4 [exp (hc/λkT )− 1]
dA′ndA1

(6)

where q is the elementary charge of a proton, c
is the speed of light, and EQE(λ) is the external
quantum efficiency of the TPV diode. The to-
tal short-circuit current Isc comes from integrating
Eq. (6) and summing over even values of n.

The total current I as a function of ap-
plied voltage V is given by I(V ) = Isc −
ID
[
exp
(
qV/mkTd

)
− 1
]
, where ID is the total dark

current, given by:

ID =
q(n2 + 1)E2

gkTdA2

4π2h̄3c2
e
−Eg/mkTd + Inr, (7)

where Eg is the bandgap of the TPV device, m
is the device ideality factor [19], Td is the device
temperature, n is the refractive index of the TPV
semiconductor region, Inr is the dark current in-
duced by nonradiative recombination, and V is the
applied voltage. The output power is obtained by
maximizing the electrical output power (per unit
area) P = IV (i.e., by setting d(IV )/dV = 0 and
back-substituting V ). The efficiency η is obtained
by dividing P by the integrated net radiative ther-
mal emission Pem − Pre.

In order to rapidly compute the emissivity as a
function of angle, we employ CAMFR and RODIS,
a pair of python-based libraries for computing
transmission and reflection for layered structures
in any number of spatial dimensions, developed at
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FIG. 3: Contour plot of figure of merit for a 1D PhC
selective emitter, as a function of the period a and rel-
ative first layer thickness t/a. Note many local optima
are observed, particularly in the vicinity of half-integer
values of t/a.

the University of Ghent [20, 21]. Previous work
has confirmed a close match between their re-
sults and time-domain approaches, such as MEEP,
which are generally considered to be highly accu-
rate [8, 22].

The temperature of our system for a given ther-
mal input power is determined by making an ini-
tial guess for the temperature of the system, fol-
lowed by a calculation of the output power at
such a temperature, then employing the Newton-
Raphson method to iteratively converge to the ac-
tual equilibrium temperature. Typically, conver-
gence to within 0.1% can be achieved in 5 itera-
tions or less.

In order to determine the optimal parameters for
each particular design considered in this paper, we
start with the fact that our optimization problem
is highly non-convex, marked by a large number
of local optima – see, e.g., Refs. 8 and 23. This is
demonstrated in the case of µTPV in Fig. 3, where
a large number of localized peaks can potentially
serve as traps for a local search algorithm. In order
to avoid this problem, we employ a global search
algorithm instead, as described in Refs. 8 and 23.

3 RESULTS AND DISCUSSION

3.1 Micro-TPV generator
We employ a realistic model of the µTPV sys-

tem shown in Fig. 1 to calculate its overall effi-
ciency. In this model, we include several sources of
loss unique to a portable power-generation system:
namely, the heating of the input gases (propane
and oxygen) and lack of thermal recovery of hot
exhaust gases, as well as emission off to the sides
due to the finite thickness of our emitter (it is

shaped like a box with dimension of 10 × 10 ×
1.3 mm). We also assume that packaging consid-
erations prevent the emitter and TPV diode from
coming closer than 1.1 mm, which corresponds to
a view factor of 80%. We also model our TPV
diodes to have the same electrical characteristics
found in Ref. [24]. Finally, we assume that due to
the thermal tolerances of the experimental device,
our temperatures cannot exceed 1100 K.

In the base case, we use a graybody emitter with
flat emissivity, i.e., a silicon wafer. We find the
maximum output at a flow rate of 12 sccm propane
(corresponding to an input thermal flow of 18 W)
is 340 mW, for an efficiency of 1.89%. If we then
optimize a 1D PhC consisting of alternating layers
of silicon and silicon dioxide, we find that the op-
timal structure has 3 bilayers with a period of 803
nm and a first layer of 434 nm. At an input flow
rate of 9.58 sccm (14.36 W), the maximum output
possible is 448 mW, for an efficiency of 3.12% – a
65% improvement.

Since both structures examined above experi-
ence substantial losses of photons emitted on the
sides, we also examined what happens if platinum
is put on the sides instead. We found that at an
input flow rate of 7.70 sccm (11.55 W), the maxi-
mum output possible is 452 mW, for an efficiency
of 3.91%. Furthermore, if platinum is used to coat
the entire structure, and a thin layer of silica (429
nm) is placed on the faces pointed toward the TPV
diodes, the maximum output is 184 mW at a flow
rate of only 2.44 sccm (3.66 W), for an efficiency
of 5.02%.

We also consider an emitter structure made en-
tirely of tungsten, with a 2D array of holes etched
into the faces pointed toward the TPV diode to en-
hance short-wave emissivity. We find in this case
that the maximum output is 315 mW at a flow rate
of 2.85 sccm (4.27 W) for an efficiency of 7.38%.

The overall performance of each design as a
function of flow rate is summarized by Fig. 4.

If several of the input parameters were to be
improved to their theoretical maximum values,
namely temperature, view factor, and external
quantum efficiency, then the overall device effi-
ciency for the optimized 2D tungsten PhC struc-
ture could reach as high as 20.48%.

3.2 Solar TPV
A solar TPV system is a variant of TPV in which

optical concentrators are used to collect heat from
the sun, as shown in Fig. 2 [6, 10, 25–27]. The
most important and unique attribute of solar TPV
is its use of selective solar absorbers. The key fig-
ure of merit for the selective absorber is the maxi-
mum fraction of incident sunlight that can be cap-
tured as heat for a particular solar concentration
C and equilibrium temperature T . The expression
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FIG. 4: Predicted output power for several selective
µTPV selective emitters as a function of propane flow
rate.

is given by [28]:

ηt = Bα− εσT 4

CI
(8)

where I is the solar constant, σ is the Stefan-
Boltzmann constant, B is the transmittance of the
glass vacuum enclosure (taken in this manuscript
to be 1), α is the average absorbance, given by:

α =
1

I

∫ ∞
0

dλ

∫ θc

0

dθ
[
ε(λ, θ) sin 2θ

dI

dλ

]
(9)

where dI/dλ is the AM1.5 solar spectrum [29], and
ε is the angular-averaged emittance, given by:

ε =
1

σT 4

∫ ∞
0

dλ

∫ π/2

0

dθ

{
2hc2ε(λ, θ) sin 2θ

λ5 [ehc/λkT − 1]

}
.

(10)

The angularly-dependent expression ε(λ, θ) oc-
curs in both α and ε because of Kirchoff’s law;
however, the first integration is only up to θ = θc,
which increases with higher solar concentrations,
due to geometric optics. In the remainder of this
paper, we focus on the case of any absorber with
maximum concentration in the polar direction, like
the parabolic trough illustrated in Fig. 2, where
θc = π/2, or an isotropic emitter under any con-
centration. In this case, maximizing ηt is a concep-
tually straightforward exercise, wherein one sets
emissivity to one for wavelengths where input sun
power outweighs the thermally emitted power, and
zero otherwise. An example of the ideal emitter
spectrum for the particular situation of a concen-
tration of 2000 suns and a temperature of 2120 K
is shown in Fig. 5. Note that atmospheric absorp-
tion introduces distinct dips in what would other-
wise be a simple step function. The overall ther-
mal transfer efficiency of an optimized step func-
tion emissivity under these conditions is 68.8%.

FIG. 5: The emissivity spectrum of an isotropic ideal
selective solar absorber for C = 2000 and T = 2120 K,
superimposed on the AM1.5 solar spectrum. Note the
dips in both spectra at wavelengths around 1.3 µm,
where atmospheric gases strongly absorb most incom-
ing sunlight.

FIG. 6: The thermal transfer efficiency of ideal selec-
tive absorbers described in the text, as a function of
solar concentration (x-axis) and temperature in K (y-
axis).

However, using the tailored approach illustrated
in Fig. 5 leads to an efficiency of 73.5% – a rela-
tive improvement of 6.8%.

The overall thermal transfer efficiency for a
range of concentrations and temperatures has been
calculated and illustrated in Fig. 6. As one might
expect, thermal transfer is most efficient at high
concentration and low temperatures, where the
relative impact of radiation is lowest.

The maximum theoretical power conversion ef-
ficiencies for a single-junction TPV diode with
bandgap Eg and a selective emitter with a top-
hat emissivity function (equal to one for energies
Eg to Eg+∆E and zero otherwise) are displayed in
Fig. 7. In order to introduce a degree of realism,
reflectivities are assumed to be no greater than
99.9% for any wavelength. This prevents unrea-
sonable results, such as extremely high efficiencies
with large bandgaps at modest temperatures. As
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FIG. 7: Maximum efficiency of a TPV diode with
bandgap Eg illuminated by a selective emitter of
100% emissivity for photon energies between Eg and
Eg + ∆E only, and 0.1% emissivity otherwise, as a
function of Eg (x-axis) and temperature (y-axis).

expected, higher temperatures allow for higher ef-
ficiencies, since they are bounded from above by
the Carnot efficiency. Also, higher temperatures
imply higher ideal bandgaps, in a nearly linear re-
lationship.

Combining the results of Figs. 6 and 7, it is
found that the maximum combined efficiencies of
the ideal selective absorber and selective emitter
system applicable to solar TPV, assuming a max-
imum concentration of 2000 suns (well below the
theoretical maximum of 46200 suns) is 44.8% at a
temperature of 2120 K, with a bandgap of 1.1 eV

– close to that of crystalline silicon. This sub-
stantially exceeds the Shockley-Quiesser efficiency
limit [30] for a single junction photovoltaic cell of
38% at 2000 suns [31].

4 CONCLUSION

In summary, we have presented a unique ap-
proach to modeling TPV systems that accounts
for angular-sensitive emission – particularly im-
portant for surfaces with complex wavelength scale
designs such as PhCs. We have used this approach
to show that portable TPV systems, such as the
µTPV laboratory system, can see up to a factor
of 11 improvement in their efficiencies compared
to a graybody emitter. We also demonstrated
that solar TPV systems can be designed in two
stages: first, by optimizing the thermal transfer
efficiency of the selective absorber by maximizing
the contribution for each wavelength separately,
and second, by optimizing the range of selective
emitter emission and the bandgap of the TPV
diode. Even if the concentration is constrained to
a maximum of 2000 suns, it is found that a single-
junction TPV system at a temperature of 2120 K
and with a bandgap of 1.1 eV can in principle offer
an efficiency as high as 44.8%, thus exceeding the
Shockley-Quiesser efficiency limit for a single junc-
tion photovoltaic cell at the same concentration.
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