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Abstract:  In this work, we derive general conditions to achieve high
efficiency cascaded third harmonic generation and three photon parametric
down conversion in Kerr nonlinear resonant cavities. We employ the general
yet rapid temporal coupled-mode method, previously shown to accurately
predict electromagnetic conversion processes in the time domain. In our
study, we find that high-efficiency cascaded third harmonic generation can
be achieved in a triply resonant cavity. In contrast, high-efficiency cascaded
three-photon parametric down conversion cannot be achieved directly in
a triply resonant cavity, although a combination of two doubly resonant
cavities and three waveguides is an effective alternative. The stabilities
of the calculated steady-state solutions for both processes are revealed by
applying Jacobian matrices. Finally, we find that the inclusion of self- and
cross- phase modulation introduces multi-stable solutions. Further study is
required to find a simple way to reliably achieve stable conversion at the
highest possible efficiency.
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1. Introduction

One of the key outstanding challenges associated with nonlinear optics since its inception [1]
is obtaining strong interactions without exceeding the damage threshold for materials [2]. It
has been theoretically predicted and experimentally confirmed that confining light in resonant
cavities with high quality factors and small modal volumes can enhance light-matter interac-
tions [3—-18]. In addition, use of a cavity introduces phenomena not seen in bulk materials,
such as resonant frequency shifts from self- and cross- phase modulation, limit cycle phe-
nomena, bi- and multistability [3,5, 6, 10, 11, 19-23]. Much theoretical and experimental work
has focused on second order (1(2)) nonlinear processes, such as second harmonic generation
(SHQ) [5, 8,24-30], sum and difference frequency generation (SFG/DFG) [9,31-34]), and op-
tical parametric amplification (OPA) [35, 36]). For example, recent work has shown that the
quantum limited frequency conversion can be achieved in a triply resonant ¥ cavity with a
critical relationship between pump and idler power [32]. Based on these work, DFG in triply
resonant cavities has been demonstrated to have potential applications in terahertz (THz) gen-
eration [10, 11]. There has also been some recent theoretical work on third harmonic generation
(THG) in a doubly-resonant Kerr cavity, which has already shown that 100% conversion effi-
ciency can be achieved with critical input power [5]. The input power required to achieve high
efficiency in this process is much lower than THG in singly resonant cavities or bulk nonlin-
ear materials. A follow-up paper [6] analyzed the stability of solutions calculated in [5], which
display interesting nonlinear dynamical behaviors, such as multistability and limit cycles. In ad-
dition, it has also analyzed the influence of self- and cross- phase modulation (SPM and XPM)
on the number of stable steady-state solutions. Recent experimental work has also supported
the principle that THG can be enhanced in microphotonic devices [37-39].

While the use of cavities is known to enhance nonlinear effects, every distinct nonlinear pro-



cess requires a new analysis. Although the author in [5] has shown the condition to achieve
100% efficiency in THG process, no one has theoretically studied a cascaded THG process in a
triply resonant Kerr cavity (0 + o+ o — 30, 3w+ 3w+ 3w — 9w as shown in Fig. 1(a). This
cascaded process can be used to achieve higher order conversion. Compared to 9" order har-
monic generation, this process is much better understood, and requires much lower input power.
Much like the standard THG process, cascaded THG processes will also show a limit cycle
phenomenon. However, compared to a standard THG process, cascaded THG processes can-
not achieve 100% conversion efficiency. In addition, the maximum theoretical efficiency may
not be stable in operation. Therefore, cavity parameters (quality factor in each resonant mode,
nonlinear integral overlap, self- and cross- phase modulation terms) should be designed with
specific optimal ratios to approach 100% stable conversion, as discussed in detail in Sec. 3.1.
Cascaded THG processes can be used to generate THz waves from microwave or THz sources,
as in [40], but with dramatically lower input powers. On a related note, cascaded phenomena
play a fundamental role in forming optical frequency combs in Kerr [41] and Pockels [42] me-
dia. Therefore, having a clear understanding of these cascaded processes will be helpful for
the design of a optical frequency comb with high performance. Although only a two-step THG
cascade is studied in detail here, the approach in this paper also applies to an n-step cascaded
THG.
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Fig. 1: (a) schematic for cascaded third harmonic generation (b) schematic for three-photon
parametric down conversion involving a coupled waveguide-cavity system. The nonlinear sys-
tem contains a waveguide used for input (output) photon flow coupled to a resonant cavity with
multiple resonant modes. |a;|? represents the number of photons in i, mode, and |S;, /- | rep-
resents the number of input/output photons per second. In both figures, ®; = ®, W3 =30, w9 =
0.

Another type of nonlinear phenomenon studied here is three photon parametric down con-
version (3PDC) in a doubly resonant cavity 3w — ® + ® + @, as shown in Fig. 1(b). Most
studies focus on the down conversion in 1(2) materials, and even do not even consider using
95(3) materials because of their low efficiencies. Some of previous work has studied the three
photon spontaneous parametric down conversion (SPDC) in x®) optical bulk materials [43],
fibers [44], resonators [45—-48] by both semiclassical or quantum field theory. However, three-
photon SPDC has a very high threshold power; thus the conversion efficiency is typically ex-
tremely low (~ 10729 [44]). In this paper, we will study three photon parametric down conver-
sion (3PDC) with a pulse at @ as a seed to excite high-efficiency conversion in a Kerr cavity,
then analyze its dynamical process. This method can both dramatically lower the input power
threshold while achieving up to 100% conversion efficiency at a critical input power, under ideal
conditions, since it is not subject to the Manley-Rowe limits of DFG processes. In addition, the
stabilities of all PDC processes will be analyzed in Sec. 3.2. This process has the potential to
generate three entangled photons with high brightness for applications in quantum communi-



cation. This work will show that cascaded 3PDC cannot be achieved in a single, triply-resonant
Kerr cavity, in contrast with cascaded THG. But we propose another method, which combines
two doubly resonant Kerr cavities and three waveguides to achieve cascaded 3PDC, suitable for
generating many low-energy photons, e.g., for THz communication.

This paper uses temporal coupled mode theory (TCMT) to analyze the cascaded THG and
3PDC process. In Sec. 2, we will first introduce the advantages of this method and derive
equations for conversion efficiency calculation and stability analysis. Sec. 3 will be divided
into three parts. In the first part (Sec. 3.1), we will show how to achieve high-efficiency stable
nonlinear generation in cascaded THG process in the absence of SPM and XPM based on the
theory in Sec. 2. In the second part (Sec. 3.2), conversion efficiency in 3PDC will be calculated
and stability of steady-state solutions will be analyzed. In addition, we will demonstrate that
cascaded 3PDC in a triply resonant Kerr cavity is impossible, and will propose an alternative
method to achieve cascaded 3PDC. And in Sec. 3.3, we briefly consider the effects of SPM and
XPM by using a simple model to illustrate the qualitative behavior of the system; in particular,
we demonstrate the existence of stable, maximal-efficiency solutions, including SPM and XPM
effects.

2. Theory
2.1. Temporal coupled mode theory (TCMT)

TCMT is a fairly general method of studying optical mode interactions even for complex sys-
tems with nonlinearities, assuming each mode is well-defined. Several numerical methods can
also be applied to simulate multi-mode nonlinear systems in the time domain. Among these,
the FDTD (finite-difference time domain) [49] method which directly solves the Maxwell equa-
tions, is the most general and flexible method. However, this method is very time and memory
consuming which makes exploration of multi-dimentional parameter spaces challenging. In-
stead, one can simplify the computation by focusing on the most critical degrees of freedom —
the amplitude and phase of a small set of normal modes. It can be shown that optical problems
coupling these modes can be analyzed using very general principles, such as the conservation
of energy. The optical process in the system can be described by a universal set of ODEs in
terms of several coefficients, which is determined by geometry and material of the system [50].
This approach is called temporal coupled mode theory (TCMT). It was first proposed by Haus
et al. [51] and be expanded to a more general form by W. Suh et al. [52]. It has recently been
shown that TCMT can accurately reproduce the nonlinear dynamics of complex nanophotonic
systems simulated in the time-domain more than an order of magnitude faster [53] and was
used to predict the threshold power of PDC in a spherical WGM resonator [54]. In this paper,
we employ TCMT to characterize the behavior of intracavity cascaded THG and three photon
PDC systems. Under the assumption of time-reversal invariance, we can derive the equations
of the coupling between cavity modes and input/output source [50].

Si- = =S8y +/2%ai, (D

where |a;|* represents the number of photons in mode i, |Si4 |* (|S;—|*) represents the number
of photons per second goes into (out from) mode i.
The TCMT equations for a general nonlinear Kerr cavity are rigorously derived by first quan-



tization in the Heisenberg picture [53], which yields:
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Here, 7; means the decay rate of one specific resonant mode consisting of two components.
¥s,i is the decay rate into S;_, and ¥,;; is the rate of external losses, so that ¥ = ¥ ; + ¥e,;. The
a;,S; in Eq. (2) is different from the a;, S; in references [5, 6, 10, 50], where |a,-|2 represents the
energy in each resonant mode, |Si|2 represents the power of the input/output source, and @¢*”
represents the resonant frequency of each mode. In this paper, since equations in Eq. (2) are
derived by first quantization, |a;|*> represents the number of photons in resonant mode i and
ISi +/— |? represents the input/output number of photons per second. Nonlinear coefficients m; i
and M; are determined by the geometry and materials of the nonlinear system, and can reflect
the strength of the nonlinear processes in this system. m;; is called self- (i = j) or cross- (i # j)
phase modulation term, which will shift the cavity resonant frequencies. Although detuning via
dispersion and self- and cross-phase modulation is allowed in Eq. (2), much of our discussion
assumes that pre-tuning is performed such that ®{*” = @;. This assumption leads to the best
conversion efficiencies, and is still a reasonable assumption when |@f*" — @;| < ¥. M;, which
is also called nonlinear integral overlap, characterizes energy transfer ability between different
modes. The expression for both m;; and M; terms are shown in Eq. (3).
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where E; represents the electrical field in specific resonant mode. From above equations, we
can see that both m; ; and M; terms scale with 1 /V, so the absolute values of these items are
related to the modal volume. A detailed derivation of Egs. (2) and (3) is given in Appendix A.

The equations describing 3PDC are very similar, except that the input source term is now
changed from Sy to S3;:

das Ceav .
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2.2.  Conversion efficiency calculation and stability analysis method

In this section, we will first show how to calculate efficiency at steady-state, and then the sta-
bility of those calculated fixed points will be analyzed.

2.2.1. Efficiency calculation in TCMT

In TCMT, the set of resonant modes a; = /r,e/%e'®!, where ¢; represents the phase of this
mode, and /r; represents the amplitude. At steady-state, both the amplitude /r; and phase



¢; of a; should be fixed, such that dr;/dt = 0 and d¢;/dt = 0. The conversion efficiency of
the cascaded THG process (i.e., the ratio between output power at 9 and input power at @)
can be expressed as 1 = 9[So_ /S1 4 |* = (1879r9) /|S14|>. Here, ro can be obtained by requiring
Eq. (2) to satisfy the stationary conditions for the amplitude and phase, and solving analytically.
A similar calculation can be made to obtain the conversion efficiency for three photon down
conversion (Nppc = % |Sl_/53+|2).

2.2.2. Stability analysis of fixed points

The commonly used method to analyze the stability of a steady state solution of nonlinear
dynamical equations is to solve for the eigenvalues of the Jacobian matrices about the fixed
point [55]. If the real part of each eigenvalues is negative, then the solution is stable. If we
assume rl(-), (])io to be the steady-state amplitude and phase under the driving source, the Jacobian
matrices for the amplitude J, and phase Jy of the cascaded THG processes are given by:

,0 0 0 0 '.O 0 rp
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0 b h h
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The eigenvalues of above matrix can be analyzed by using the Routh-Hurwitz algorithm [32,
56]. The characteristic polynomial for the eigenvalues of Eq. (5) can be written in the form
A3 +BA? +CA% 4 D = 0. Signs of the real parts of the Jacobian matrices’ eigenvalues will all
be negative if and only if B > 0, D > 0, and BC — D > 0. In cascaded THG, we conclude that
the steady-state amplitudes are unconditionally stable, while phase stability will be determined
by both cavity parameters (e.g., quality factors of each resonant mode and susceptibility of
material) and input source. For three-photon PDC, the corresponding Jacobian matrices are
very similar, but the opposite situation obtains: the phase terms are unconditionally stable,
while the amplitude stability depends on cavity parameters and the input source.

3. Results and discussion

In this section, we consider cascaded THG processes (Subsection 3.1) as well as three-photon
and cascaded three photon parametric down conversion processes (Subsections 3.2 and 3.3). In
both cases, the steady-state solutions based on temporal coupled-mode theory are calculated,
with their stability analyzed using the equations in Sec. 2.2. For convenience, the efficiency of
%) nonlinear conversion processes in cavities will first be calculated in the absence of self- and
cross-phase modulation terms in above sections, i.e., m;; = 0 (Subsection 3.2). The influence
of self- and cross- phase modulation terms will be analyzed in Subsection 3.3.

3.1. Cascaded THG

Without loss of generality, we can choose a set of specific parameters for one cavity (e.g., in
this paper, )y =71 =13 = Y = 107*, Mo = M; = M, = 10°° i2¥) /a, where a is the lattice
constant of a photonic crystal cavity [50]). The influence of varying these parameters on the
conversion efficiency and stability will be discussed later. By applying these parameters to our
prior conversion efficiency expression, we can plot it as a function of the input power, as shown
in Fig. 2. At low input power, the conversion efficiency is stable, but after the power increases
to the “Maximum stable efficiency point”, the conversion in the cavity system becomes un-
stable, entering a limit cycle. In addition, the calculation tells us that the calculated efficiency
peak is unstable, and the maximum stable efficiency is much lower than this peak. The average
efficiency in the limit cycle region (purple solid line in Fig. 2) is much lower than the calcu-
lated efficiency. Unlike THG processes, where the maximum theoretical efficiency can reach
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Fig. 2: Conversion efficiency in the function of input power. The blue solid line shows the stable
conversion efficiency, and red dash line shows the unstable calculated efficiency in steady-state.
The maximum stable efficiency (37%) is much lower than the maximum efficiency without con-
sidering stability (80%). In unstable region, the system goes into limit cycle and the efficiency
fluctuates with time which is shown in inset. The dark green dash dot line shows the bounds
of limit cycle in the unstable region from time domain simulation, where the solid purple line
shows the average efficiency.

100% (neglecting extrinsic losses), complete frequency conversion cannot be achieved in cas-
caded THG processes. Therefore, we need to find an alternative method to approach the 100%
efficiency.

3.1.1. Adjusting ratios of field overlap and decay rates

In the absence of self- and cross- phase modulation terms, five parameters determine the out-
come of the nonlinear conversion process. In this section, we will explore the change of conver-
sion efficiency by varying the ratio between two nonlinear integral overlap terms (M) /M>) and
the ratio between decay rate of three resonant modes (y; : 73 : %). In Appx. B, we will demon-
strate that the absolute value of system parameters (e.g., ¥;, M;) will not affect the maximum
stable conversion efficiency.

Figure 3 shows the conversion efficiency as a function of the field overlap ratio M, /M,
(71:73:% =1:1:1is fixed). If stability is ignored, the conversion efficiency will increase
monotonically with M, /M, near 1, since the output at 9@ mode will be enhanced, while the
output at 1@ and 3w will be suppressed. Thus, the result shown in the purple curve agrees well
with the definition of M; and M,. However, this picture changes in the presence of stability,
as shown in the blue curve. Here, the actual maximum conversion efficiency does not increase
monotonically with M, /M, but shows a peak for M, /M near 1. This is because an exceed-
ingly high M, /M, will eliminate the balance between the two steps of the cascaded conversion
process.

Next, we will explore the dependence of the maximum stable conversion efficiency on the
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ficiency peaks when M, /M| near 1.

ratios of the decay rate of the three resonant modes; the procedure of varying all the decay
rate ratios is shown in Fig. 4. One decay rate is varied at a time, while holding the other two
constant, which divides the problem into three cases (change ¥;, change 73, and change 7). In
addition, for each case, the problem has two conditions, e.g., if we change 7y, 73 will either
be bigger or smaller than %. In order to obtain the highest maximum conversion efficiencies,
the output at 9 should be enhanced, while the output at 1@ and 3® should be suppressed.
From Eq. (1), the output at 3w and 9w is proportional to the decay rate and the energy stored in
each mode. If % /73 is increased, the energy stored in 3@ will be increased, so the energy flow
transferred from 3@ to 9o will be increased (dag /dt o ag). As 7 increases, the energy stored in
9m mode will be easier to output, so |[So_ /S3_ |2 will be increased. Therefore, in order to obtain
high conversion efficiency, 7 should be higher than 3 and ;. Furthermore, in order to obtain
the highest conversion efficiency, y; should also be higher than 3. This is because ® mode is
the input mode, and its output can be expressed as S;— = —S11 +/2%ay, if ¥ is too small,
then a large part of input power will be reflected, which will lower the conversion efficiency.
Therefore, in order to obtain the highest conversion efficiencies, the decay rates should satisfy
the relation 3 < 91 < .

The results of exploring the six conditions summarized in Fig. 4 are shown in Fig 5. Sub-
figures (a) and (b) plot the maximum conversion efficiency as a function of ¥; /%. From these
two figures, the maximum conversion efficiency in the 3 < % condition is obviously higher
than it in the 93 > Y condition. In addition, we find that the maximum conversion efficiency
plotted in Fig. 5(a) shows a peak as a function of 7, /. Figure 5(c) and 5(d) plot the maxi-
mum conversion efficiency as a function of 93/%. From Fig. 5(c) in which ; < 79, we can see
that the maximum conversion efficiency approaches 100% when 73 decreases. However, when
T > 7%, the result is the opposite. This is because although decreasing 73 can both enhance the
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Fig. 5: The maximum conversion efficiency as a function of %;/7¥. Following the procedure
of Fig. 4, when ¥; is varied, the other two decay rates are fixed. In figure (a) and (b), 71 /7% is
varied. In figure (c) and (d), 13/ is varied. In figure (e) and (f), % /70 is varied.

Pout,9/ Pows 3 and Py 1/ Pows 3, in the case 71 > 7, the enhancement of the Py 1 /Pou 3 is larger
than the enhancement of P, 9/ Py 3. So the conversion efficiency drops with the decreasing of
13/ %. Figure 5(e) and 5(f) plot the maximum conversion efficiency as a function of % /%y. The
maximum conversion efficiency in the condition of y; < ;3 [Fig. 5(e)] is lower than it in the
condition of 9 > 3 [Fig. 5(f)]. In addition, the maximum conversion efficiency increases with
the increasing of % /1 in Fig. 5(f). Therefore, we can conclude that in order to approach 100%
conversion efficiency, the decay rate of resonant mode should satisfy the condition 3 < ¥ < 7,
and the maximum conversion efficiency will increase monotonically with 15 /y3 and 71 /7. We
can extend this conclusion for the n* cascaded THG process: to approach 100% conversion
efficiency, the decay rate of the output mode should be largest, the decay rate of intermediate
mode(s) should be smallest, and the decay rate of input mode should fall between those values.

As shown in Fig. 6, we can examine the combined effect on the maximum stable conversion
efficiency of varying M>/M; and y3/%. As shown in the top right inset figure of Fig. 6, if
Y1 : 75 P is fixed, the conversion efficiency curve will always peak at a finite M> /M, . However,
for a fixed M, /M, ratio, as shown in both the contour plot and the right bottom inset figure, the
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Fig. 6: Contour plot of maximum stable conversion efficiency as a function of M, /M, and y3 /7.
% = 0.1% and y = 10 are fixed. The right top inset figure shows the change of efficiency
along the horizontal dash line. The right below inset figure shows the change of efficiency
along the vertical dash line (M, /M, is varied). C point in the figure represents the case where
Yi:7: % =1:1:100, M,/M; = 100, and maximum stable conversion efficiency is 97%.

efficiency will always increase as y3 decreases, as predicted in the last paragraph.

3.2.  Three-photon and cascaded three-photon parametric down conversion

Three-photon parametric down conversion (3PDC) is a nonlinear process that converts a photon
at a frequency of 3 to three photons at a frequency of 1®; cascaded 3PDC extends this process
n times in cases where sufficiently low frequencies cannot be achieved in a single step. If
coherence is preserved, it can also generate three-photon entangled states.

3.2.1. Three-photon parametric down conversion

Similar to the procedure in Sec. 3.1, we will analyze 3PDC without considering phase modula-
tion at first [e.g., m;; = 0 in Eq. (4)). For convenience of plotting, the parameters in this section
aresetas Mo =M = 10’6h2x<3)/a and 7, = 107%,15 = 5 x 10~*. Here, the 7 should be bigger
than 7; as explained below.

As shown in Fig. 7, 3PDC efficiency as a function of input power peaks at 100% (neglecting
extrinsic losses). In this condition, the complete depletion of the pump photons () is required
(S3 = 0). If we set P.;; = has |S3+|2, and apply S3— = —S34 +/2¥3a3 = 0, the critical power

is given by:
: 2 | nn
Poyit = hoos S5 = heoy = [ L. 6
erit = hoo3 |5} %51\ 3070, (6)

For input powers below a threshold Pr, parametric down conversion cannot occur, since the
only solution has zero efficiency. Bifurcation into two solutions occurs above Pr: fortunately,
the solution with higher conversion efficiency is stable, while the one with lower conversion
efficiency is unstable. As mentioned before, the phase of steady-state solutions is stable, but
amplitude is not automatically so. In order to make the amplitude of the steady-state stable, two
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Fig. 7: Plot of the conversion efficiency from 3o to 1w as a function of P/Py. Here, P is the input
source power, and Py is the power of critical point as shown in the figure. The critical power
is the power for 100% efficiency. The threshold power in the figure means the lowest power
for PDC to start. In other words, if P < Pr, the conversion efficiency will always be zero. The
inset shows time-dependent power ratios of the 1@ and 3@ modes at the critical power input for
maximum conversion efficiency. The 3@ input source S3 (f) = S§7 (1 — e~"/%)e3®" gradually

. . . 2 2 - . .
increases to a stable value, while the 1@ input S;; = ;e ~2)7/A7¢i® j5 3 Gaussian pulse
that seeds the conversion process.

conditions must be satisfied: (1) 3 > v1 and (2) r1/r3 > y3/71. If the ratio r;/r3 is set to be
X = y3/7, we can use Eq. (4) to show that S5y = (X +371/13)/ [(\/273/1() (3K/yl)3/2X1/4] ,

where Kk =M,/ wfa)g. In order to calculate the threshold power for three photon PDC, we set
the derivative of S3, to zero, and obtain:

in|2 8 "
PT:MB‘SE’W :hw327M wl3a)3
i

~ O.77Pc‘rit (7)

In addition, with power input Pr, the ratio of steady-state solution ry and r3 is r1 /r3 = 13/%,
which is equivalent to the stability condition. This explains why the threshold power point
divides the bifurcation curve into two parts, where the higher efficiency is always stable and the
lower efficiency is always unstable.

The inset figure of Fig. 7 shows the 3PDC power versus time. From the figure, we can see
that the conversion efficiency is initially zero when the amplitude of the source with frequency
of w is very small. The oscillation between ® and 3® starts when the amplitude of source with
frequency of @ gradually increases. After the pulse the output power gradually stabilizes, for a
time-averaged final conversion efficiency of 100%. Therefore, a 1@ “seed” pulse is necessary
to catalyze 3PDC in cavities.



3.2.2. Cascaded three-photon parametric down conversion

As mentioned earlier, cascaded 3PDC in a triply resonant cavity is impossible. In this
section, we will explain the reason by using the stability analysis method in Sec. 2. In the
same fashion as in Section 2.2.2, the amplitude Jacobian matrix here can be calculated,
and the Routh-Hurwitz algorithm can again be applied. However, we find two mutually
contradictory conditions for B and BC — D; they should both be positive, yet we find if
B =1y —y — 1 is positive, then BC—D = —np(vi + 1) — 3(n + 1)vir/rs — (=1 —
B+ W) [nw+BP+Inwr/r+innr/ro+ vt/ (rr)+irs/ro] — G/ +
%y]sr% /rarg + y32r3 /r9) is always negative. This implies that cascaded photon down con-
version cannot be achieved in a triply resonant Kerr cavity. Thus, we shall consider another
method for multiple down conversion steps, which combines two doubly resonant cavity and
three waveguides, as shown in Fig. 8.

/N 7N )
SQ,'z'n ' 514;”/
*+— Soout ./ 1 %
Waveguide 1 Cavity 1 Waveguide 2 Cavity 2 Waveguide 3

Fig. 8: Schematic for cascaded 3PDC involving a coupled waveguide-cavity system. The non-
linear system contains three waveguides. The left waveguide is used for input (output) source at
9w. The middle waveguide used to transfer 3@ photons between cavities. And the right waveg-
uide is used to output 1@ photons. The decay rate in cavity one are set as ygav(l) and y;avm, and
those in cavity two are set as yf“vz and yg’“vz. Similarly, the nonlinear integral overlap in cavity

one is M) and in cavity two is M2,

If we set the decay rate in cavity 1 to y; and 73, in cavity 2 to 73 and 9, then achiev-
ing 100% conversion efficiency requires equal input and output for the intermediate mode, or
Scav(l) 2 _

. 2 . 3 . . 3 .
ot | = S;‘f;fz)’ . This is equivalent to the condition \/ (D) D) (@) a2 -

%M”"V(” /MC“V(2>, where M) and M) denotes the nonlinear field overlap integrals in
cavity 1 and 2, respectively.

3.3.  Self- and cross- phase modulation
3.3.1. Cascaded THG
In cascaded THG, nonlinear self- and cross-phase modulation could disrupt the conversion

process by shifting the cavity frequencies. To offset this effect, we may pre-compensate the
cavity frequencies based on the steady-state condition of Eq. (8):

oY — ()]
= - -
1 — wy3mz r{™ — 6032m33r§”l
WY — w3
3 T 1—w crit _ g2 crit crit (8)
| W3m31 1] 3M3373 W3W9my3ry
9y
cav __
Wy =

1 — 0309mo3r™ — W3mogrs™

Here, we will explore the influence of self- and cross- phase modulation at the C point from
Fig. 6. The r{™ represents the steady-state amplitude of a,-2 —1i.e., the number of photons required
in the i,; resonant mode for maximum stable conversion efficiency. For convenience, we define:

miy =m3 =m3; =& X My, mo3 = m3g = mog = & x Ma, m33 = \/EC x M M,.



The inclusion of self- and cross- phase modulation introduces new steady-state solutions (as
shown in Fig. 9(a), but the original solution in the case & = { = 0 still remains; the stabilities
of the old and new solutions are then examined again using the method from Sec. 2.2.

Fig. 9: (a) Contour plot of number of stable solutions ny as a function of & and { , and the
system parameters are based on point C in Fig. 6(b). Contour plot of number of stable solutions
ns (zero efficiency solution is not included) as a function of 3/¥; and m/M; for input power
P=PFr.

3.3.2. Three photon PDC

For 3PDC processes, the inclusion of self- and cross- phase modulation will also shift the cav-
ity resonant frequencies. Therefore, by using the same method mentioned in cascaded THG
section, the resonant frequencies of cavity should be pre-compensated as in Eq. (8). The max-
imum stable conversion efficiency in 3PDC is always 100% and the analytical expression for
critical input power can be derived. Compared to cascaded THG, where we can only analyze
the influence of SPM and XPM for one specific set of cavity parameters (the C point in Fig. 6),
we can perform a more general analysis of their influence on efficiency and stability for 3PDC.

The stability of the conversion is determined by 3/71 and m;;/M,. If we define V; jm = m;j,
this allows us to fully characterize variation in the number of stable steady-state solutions as
a function of y3/y; and m/M;, as depicted in Fig. 9(b). This result is similar to the case of
cascaded THG in Fig. 9(a). The inclusion of self- and cross- phase modulation introduces new
steady-state solutions without destabilizing the original solution for m;; = 0. One distinction is
that instability in the steady-state solution for 3PDC may be caused by its amplitude, which dif-
fers from the potential phase instability of cascaded THG. Therefore, the nonlinear dynamical
system of PDC will not follow a limit cycle, but will remain at one of the stable solutions.

For both cascaded THG and 3PDC, the inclusion of SPM and XPM will introduce multi-
stable solutions. So it is necessary to find a method to excite the maximum-efficiency solution.
The author in [6] has already proposed a simple method to excite the solution with maximum
efficiency from several stable solutions in THG process. The cascaded THG process and 3PDC
show more complex result compared to THG process, which may make it more difficult to
excite high-efficiency solutions. How to excite the maximum-efficiency solution is beyond the
scope of this paper, but in future we will study the method to excite highly efficient and stable
solution in real Kerr cavity for both cascaded THG and 3PDC.



4. Conclusion

Using temporal coupled-mode theory, we have demonstrated two key results for frequency
conversion of photons. First, we demonstrated that highly efficient and stable cascaded third
harmonic generation (THG) can be achieved in a triply resonant cavity. Here, changing field
overlap and cavity decay ratios proportionately will not change the maximum stable conversion
efficiency; however, adjusting the ratios of these values with respect to one another yields a
certain set of best values. Ideally, the decay rate of the intermediate frequency mode y3; should
be small (i.e., the 19/¥3 and ¥; /73 ratios should be large). Second, we found the threshold power
Pr at which three-photon parametric down conversion (3PDC) could be achieved for a doubly
resonant cavity, as well as the critical power F,.; at which 100% conversion could be achieved
with seeding (neglecting extrinsic losses, self- and cross-phase modulation). In addition, we
demonstrated that cascaded 3PDC cannot be achieved directly in triply resonant Kerr cavities,
but proposed an alternative using two doubly resonant Kerr cavities and three waveguides to
achieve 100%-efficient cascaded 3PDC. The inclusion of SPM and XPM introduces more stable
solutions with different conversion efficiencies, but the original solution in their absence still
remains with unchanged stability. In a future manuscript, we plan to explore cascaded THG,
3PDC and cascaded 3PDC in realistic cavities such as nano beam cavities, ring resonators,
or Fabry-Perot cavity, and study the method to excite the maximum-efficiency solution from
multi-stable solutions.

Appendix A: Derivations for TCMT dynamic equations

In this section, we derive the TCMT equations for nonlinear frequency conversion in general
Kerr nonlinear cavities. The electromagnetic field Hamiltonian in Kerr nonlinear media is:

H:/dreo[ D)+ 2 () |E( )ﬂ [SE(r)Z—l—glﬂB(r)z] (A)

The electrical field can be expressed as E(r,1) = ¥ Ci [ﬁkgk(r)e”'“’k’ + ézTg*( ) ""k’} , where dy,

and dz are the annihilation and creation operators, respectively. g (r) represents the complete
set of orthonormal modes.

In the absence of the Kerr effect, the electrical Hamiltonian is Hyyx =
C? [dre(r) |gi(r )| (dkd}: +akak) And after adding the magnetic energy part, the total
Hamﬂtoman now becomes:

Hy = 2C? / dre(r) |gi(r) 2 (ea] +day) (A2)

In order for mode & to evolve with its characteristic frequency @y through the Heisenberg equa-
tion of motion, the equality H = %hwk(&k&,'( + d}:ék) must also hold. So the coefficient C;, can
be expressed as:

1
Cp =~ L (A3)

2
2\ Jdre(r) |g(r)l
Now, taking nonlinearity into consideration, the Hamiltonian can be expressed as:

H= Zha)k akakJr )+2 Y T Cox [a¢g¢ r)e O 4l g5 (1) i%f} (A4)
i,7.kl9=i,jk,l
From the Heisenberg equation, the derivative of the annihilation operator is % = li [@;,H]. The

commutator relation between annihilation and creation operators is [di, d;] = &;j, [ai,a;] =0.



If we assume that the reaction happens in a cavity with ®,3®,9® three resonant modes and
i= 1,0 = o, then the evolution of a; can be expressed as:

da 2 A L
d—tl = —imad; — ECI (g1 Y, ] Co x {d(pg(p(r)e*lw"’l +aygp(r)e ™ (A5)
Jklo=jkl

Here, ¢/(®+®j+@@)" should not vary with time, so that ; + @; + @y + @ = 0 should be
satisfied. Since d};dk |¥) = n|¥) and n means number of photon in mode k, we can also write
4y as a, d}: as a;, and |ak|2 as number of photons. Then above equation can be written as:

% = —i(Dl (1 — a)12m11 |a1 |2 — a)3m13|a3|2)a1 — iM] \/ (1)13(1)3613(aT)Z, (A6)

where m is the self-phase modulation term, representing the case where ® —w+ o — ® =0,
which can be expressed as m; = 2 x 3!/2! x (C1)*/ a)lz, my3 is the cross-phase modulation
term, representing the case where ® — ® + 3@ — 3w = 0, which can be expressed as m3 = 2 X
31 x (C1)*(C3)? /(@ @3), and M is the nonlinear integral overlap, representing the case where
®+ 0+ o — 30 = 0, which can be expressed as M| = 2 x 3!/2! x (C1)3C3/[(@1)*/?(w3)"/?].

Finally, by applying the above analysis method to other two modes, and adding the cavity
loss and input source terms into the equations, the TCMT equations for cascaded THG, Egs. (2)
and (3), can be fully derived.

Appendix B: Proportionate scaling of field overlap and decay rates

In this appendix, we will demonstrate that the absolute of system parameters will not affect
maximum conversion efficiency. We consider the effects of proportionately scaling the nonlin-
ear field overlap integral (M| = M, = aM,), as well as the decay rate of each resonant mode.
(71 = 73 = Y% = BW). In brief, the power requirements vary with & and f3, but the maximum
conversion efficiencies remain unchanged.
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Fig. 10: (a) Maximum stable efficiency as a function of o = M, /My = M, /My, as defined in
Fig. 2. The inset shows the required input power for obtaining maximum stable efficiency. (b)
Maximum stable efficiency as a function of B = y1/% = ¥3/% = 1/%- The inset shows the
required input power for obtaining maximum stable efficiency.



Figure 10(a) shows that the maximum stable conversion efficiency is independent of @ =
M, /My = M, /My, as defined in Fig. 2. The inset figure shows that the input power P, required
for maximum stable conversion efficiency is inversely proportional to &t. The nonlinear integral
overlap M| is proportional to the energy transfer rate from w and 3, while M, corresponds to
the energy transfer rate between 3 and 9. Since energy transfer is enhanced by increasing
both M and M>, the power required for achieving equal nonlinear conversion will be lowered
(as shown in the inset figure of Fig. 10(a). At this newly lowered power, the final conversion
efficiency remains unchanged.

Figure 10(b) shows that the maximum stable conversion efficiency is also independent of
B=v/%=7/%=%/%. The inset figure shows that the required input power for maximum
stable conversion efficiency is proportional to 3, since the stored energy in the cavity will de-
crease linearly with 8 for a constant input power. So the maximum stable conversion efficiency
remains unchanged.

In summary, Fig. 10 demonstrates that the absolute value of system parameters (e.g. %, M;)
will not affect the maximum stable conversion efficiency.
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