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ABSTRACT  

Simultaneously controlling both the spectral and angular emission of thermal photons can qualitatively change the nature 
of thermal radiation, and offers a great potential to improve a broad range of applications, including infrared light 
sources and thermophotovoltaic (TPV) conversion of waste heat to electricity. For TPV in particular, frequency-selective 
emission is necessary for spectral matching with a photovoltaic converter, while directional emission is needed to 
maximize the fraction of emission reaching the receiver at large separation distances. This can allow the photovoltaics to 
be moved outside vacuum encapsulation.  In this work, we demonstrate both directionally and spectrally-selective 
thermal emission for p-polarization, using a combination of an epsilon-near-zero (ENZ) thin film backed by a metal 
reflector, a high contrast grating, and an omnidirectional mirror. Gallium-doped zinc oxide is selected as an ENZ 
material, with cross-over frequency in the near-infrared. The proposed structure relies on coupling guided modes 
(instead of plasmonic modes) to the ENZ thin film using the high contrast grating. The angular width is thus controlled 
by the choice of grating period. Other off-directional modes are then filtered out using the omnidirectional mirror, thus 
enhancing frequency selectivity.  Our emitter design maintains both a high view factor and high frequency selectivity, 
leading to a factor of 8.85 enhancement over a typical blackbody emitter, through a combination of a 22.26% increase in 
view factor and a 6.88x enhancement in frequency selectivity. This calculation assumes a PV converter five widths away 
from the same width emitter in 2D at 1573 K.  
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1. INTRODUCTION  
 
Highly spectral and angular-selective thermal emitters have recently been realized via nanostructuring of surface 
features; these structures may significantly benefit a range of applications, such as infrared light sources and 
thermophotovoltaics (TPV).1–3 TPV is a method to convert heat into electricity via radiation of thermal photons toward a 
PV cell.4 Typically, thermal photons are emitted by a hot radiator toward a PV cell to generate electricity. A good match 
between the emitted photon spectra and the PV bandgap is essential for enhancing TPV conversion efficiencies. Thus, 
there has already been a great deal of work to design spectrally-selective thermal emitters using both natural materials 5,6 
and engineered photonic and plasmonic structures 7–10. Nonetheless, much further improvement is possible if one also 
incorporates the angular selectivity, since this can greatly increase light reaching the cell, as quantified by the view 
factor 11. Particularly, for planar compact TPV devices 12, this may relax the design parameters of the TPV device, by 
placing the emitter at larger separation distances, while maintaining a high view factor. Furthermore, with the need to 
place the entire set up inside a vacuum enclosure to reduce convection and conduction losses, effective cooling of the PV 
device becomes challenging. Directional thermal emission could allow for placing the PV device outside the vacuum 
enclosure, while allowing the device to cool through alternative methods like radiative cooling 13,14. Consequently, a 
TPV system may benefit from a thermal emitter that simultaneously satisfy spectral and angular selectivity. In this work, 
we quantify the enhancement of the TPV efficiency expected when using a simultaneously spectral and angular selective 
thermal emitter.  
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voltage, fill factor, short-circuit current, and the total emitted power, respectively. The short-circuit current SCI  includes 

a wavelength-dependent view factor using ( ) ( )r 10

g

SC SCI d J A
λ

λ λ φ λ= ∫ , where ( )SCJ λ   is the photo-generated 

current at each wavelength and ( )rφ λ  is the numerator of (2).  

3. RESULTS 
3.1 Emitter design 

The emitter structure shown in Fig. 2, is composed of a GZO thin film as an ENZ material of thickness tENZ backed by a 
lossless metallic substrate of permittivity=-50. The ENZ thin film is covered by an HCG of thickness tg=0.1a, where a is 
the period of the grating, and a groove width w=0.525a. For simplicity, we assume that the HCG is made of a lossless 
and dispersion-less material of refractive index ng=3.5, similar to the refractive index of Si. Above this structure, a 1D 
PhC acting like an omni-directional mirror is placed at a vacuum gap of thickness tgap=2.45a to filter out unwanted 
modes. The omni-directional mirror is composed of 18 bi-layers of alternating high- and low-index materials using the 
configuration L0.5(HL)8H0.5. Here, we also assume lossless and dispersion-less refractive indices of 3.6 and 1.6 for the 
high- and low-index materials, respectively, and the ratio between their thicknesses is dH/dL=1/2. The ENZ layer’s 
thickness is assumed to be 0.01a. In this analysis, only p-polarized incident modes in the Littrow mounting configuration 
32 are taken into consideration. 

3.2 Spectral and angular selective emissivity 

From Kirchhoff’s law of thermal radiation, it is possible to identify key emission modes from analyzing the absorption 
dependence at different wavelengths and incident angles. In absence of the top filter of the structure in Fig. 2, there are 
three types of modes that can be supported in the thin film ENZ. These modes are associated with the cross-over 
frequency of the GZO that can be readily controlled by adjusting the doping concentration and growth conditions 23. 
When the ENZ layer is thin enough, it is possible to guide two perfect absorption modes 25. The shift in the lateral 
momentum added by the HCG couples all the incident angles below the light line of the grating to high-k modes in the 
ENZ thin film. Per the diffraction equation of the grating, all incident angles less than a critical angle defined by 

( )1sin 1 ,c m aθ λ−= −   where λ is the wavelength, are coupled to guided modes that will be eventually absorbed in 
the ENZ layer. These modes appear particularly near the wavelengths where the permittivity of the ENZ thin film is 
larger than 0 but less than 1, and this in turn implies spectral selectivity. Consequently, the coupled modes are 
collimated, spectrally-selective absorption modes. However, the change of the dielectric constant at the cross-over 
frequency induces other types of modes, including the ENZ mode and the Ferrell-Berreman mode 22,24,28. The ENZ mode 
is the long-range surface plasmon polariton mode that propagates near the surface of the thin film. Thus, the ENZ mode 
is a non-radiative mode that is efficiently coupled by the grating for angles larger than the critical angle cθ . On the other 
hand, the Ferrell-Berreman mode is a radiative mode that is coupled to the ENZ thin film for p-polarization even in 
absence of the grating coupler. Thus, this mode is present for angles larger than cθ . This mode is a result of volume-
plasmon oscillations inside the thin film 33, and is noticeable for frequencies larger than the cross-over frequency. It is 
worth mentioning that the ENZ mode, the Ferrell-Berreman mode and the perfect absorption modes are all dependent on 
the film’s thickness. For ultra-thin films, all the three types of modes are found close to the cross-over frequency, but 
they become well-separated for thicker films 22. Also, the center frequencies and the quality factors of the perfect 
absorption modes both depend on the film’s thickness 25. Since the ENZ mode and the Ferrell-Berreman mode are non-
directional near the cross-over frequency because of flat bands at large momentum values, there is a need to filter them 
out for the best performance. Thus, we use the omni-directional reflection mirror to keep only the perfect absorption 
modes, while recycling any other modes.  In Fig. 3, contour plots of the calculated emissivity for the proposed emitter in 
Fig. 2 are shown as functions of the normalized frequency and the incident angle θ . Fig. 3(a) shows a frequency and 
angular selective mode at a frequency of 0.75c/a, and the half beam width at the normal direction is almost 12˚, as 
expected by the critical angle value. For longer wavelengths, the emissivity function is plotted in Fig. 3(b), where we 
only take into consideration the dispersion of the GZO layer. We notice a residual mode around a frequency of 0.4536c/a 
and an incident angle of ~70˚. This mode marks the unfiltered portion of the ENZ mode that is coupled by the HCG and 
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Also, the achieved results assume a high emitter temperature of 1573 K; this assumption however is limited by the 
melting point of the involved materials and the thermal stability of the structure at high temperatures. It is worth 
mentioning that the base ZnO material has a sufficiently high melting point. However, high doping levels could cause a 
significant drop in the melting point of the GZO film.  

Another consideration of the design is the dielectric function change due to high temperature. Since transparent 
conducting oxides in general can be fitted with a Drude-Lorentz model, it is possible to tune the cross-over frequency as 
well as the damping coefficient to adjust for high temperature operations.37,38 Taking an accurate high temperature model 
into consideration will help design appropriate thickness and geometric parameters of the HCG and the filter for 
fabrication. Parasitic losses in dielectrics and their high temperature dielectric functions should also be taken into 
consideration. 

Finally, the polarization dependence of the HCG structure limits the application to the p-polarized component of the 
emitted heat. However, employing 2D structures 39 with symmetric shapes can also solve this problem by coupling s-
polarized modes into the GZO thin film. 

5. CONCLUSION 
A spectrally and directionally-selective thermal emitter has been theoretically demonstrated using an ENZ thin film, a 
grating coupler, and a multilayer filter. A combination of the ENZ material properties and the perfect absorption 
phenomenon previously demonstrated in metamaterials is utilized to achieve both frequency and angular selectivity. An 
omnidirectional filter is used to filter out non-directional plasmonic modes and maintain high spectral selectivity. The 
proposed emitter structure shows a factor of 8.85x absolute enhancement of the TPV efficiency for a distant receiver 
compared to a blackbody emitter. The efficiency enhancement is a combination of frequency selective enhancement and 
angular selectivity to improve the view factor. In future work, adjustment of the doping concentration and modification 
of the grating design is necessary to match available technology of PV cells and to account for polarization effects, 
respectively. 

ACKNOWLEDGMENTS 
Support was provided by the NSF Award EEC 1454315 - CAREER: Thermophotonics for Efficient Harvesting of Waste 
Heat as Electricity, Northrop Grumman Aerospace Systems in support of “Ultra-thin metasurfaces for redirecting light 
and managing thermal emission,” and the Department of Energy, under DOE Cooperative Agreement No. 
DEEE0004946 (PVMI Bay Area PV Consortium). 

REFERENCES 

[1]  Greffet, J.-J., Carminati, R., Joulain, K., Mulet, J.-P., Mainguy, S.., Chen, Y., “Coherent emission of light by 
thermal sources.,” Nature 416(6876), 61–64, Macmillian Magazines Ltd. (2002). 

[2]  Blanchard, C., Lévesque, Q., Costantini, D., Jamois, C., Leclercq, J.-L., Coutrot, A.-L., Marquier, F., Milord, L., 
GRILLET, C., et al., “Directional and Selective Mid-Infrared Thermal Emitters for Sensing Applications,” Adv. 
Photonics 2015, SeW2B.2, OSA, Washington, D.C. (2015). 

[3]  Sakr, E., Dhaka, S.., Bermel, P., “Asymmetric angular-selective thermal emission,” Proc. SPIE 9743, Physics, 
Simulation, Photonic Eng. Photovolt. Devices V 9743, 97431D (2016). 

[4]  Bauer, T., [Thermophotovoltaics: Basic Principles and Critical Aspects of System Design], Springer, Berlin 
(2011). 

[5]  Chubb, D. L., Pal, A. T., Patton, M. O.., Jenkins, P. P., “Rare earth doped high temperature ceramic selective 
emitters,” J. Eur. Ceram. Soc. 19, 2551–2562 (1999). 

[6]  Bitnar, B., Durisch, W.., Holzner, R., “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 
430–438 (2013). 

[7]  Rinnerbauer, V., Ndao, S., Yeng, Y. X., Chan, W. R., Senkevich, J. J., Joannopoulos, J. D., Soljačić, M.., 
Celanovic, I., “Recent developments in high-temperature photonic crystals for energy conversion,” Energy 
Environ. Sci. 5, 8815 (2012). 

[8]  Lenert, A., Bierman, D. M., Nam, Y., Chan, W. R., Celanović, I., Soljačić, M.., Wang, E. N., “A nanophotonic 
solar thermophotovoltaic device,” Nat. Nanotechnol., 1–5 (2014). 

Proc. of SPIE Vol. 10099  100990A-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 

[9]  Wu, C., Neuner, B. I., John, J., Milder, A., Zollars, B., Savoy, S.., Shvets, G., “Metamaterial-based integrated 
plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012). 

[10]  Liu, J., Guler, U., Li, W., Kildishev, A., Boltasseva, A.., Shalaev, V. M., “High-temperature plasmonic thermal 
emitter for thermo-photovotaics,” CLEO 1, FM4C.5 (2014). 

[11]  Modest, M. F., [Radiative Heat Transfer], Academic Press (2013). 
[12]  Chan, W. R., Bermel, P., Pilawa-Podgurski, R. C. N., Marton, C. H., Jensen, K. F., Senkevich, J. J., 

Joannopoulos, J. D., Soljacic, M.., Celanovic, I., “Toward high-energy-density, high-efficiency, and moderate-
temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. 110(14), 5309–5314 (2013). 

[13]  Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E.., Fan, S., “Passive radiative cooling below ambient air 
temperature under direct sunlight,” Nature 515(7528), 540–544, Nature Publishing Group, a division of 
Macmillan Publishers Limited. All Rights Reserved. (2014). 

[14]  Zhou, Z., Sun, X.., Bermel, P., "Radiative cooling for thermophotovoltaic systems," Proc. SPIE 9973, Infrared 
Remote Sensing and Instrumentation XXIV, 997308 (2016). 

[15]  Biener, G., Dahan, N., Niv, A., Kleiner, V.., Hasman, E., “Highly coherent thermal emission obtained by 
plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008). 

[16]  Costantini, D., Lefebvre, A., Coutrot, A.-L., Moldovan-Doyen, I., Hugonin, J.-P., Boutami, S., Marquier, F., 
Benisty, H.., Greffet, J.-J., “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” 
Phys. Rev. Appl. 4(1), 014023 (2015). 

[17]  Rephaeli, E.., Fan, S., “Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency 
exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145–15159 (2009). 

[18]  Sakr, E., Dimonte, D., Bermel, P., "Metasurfaces with Fano resonances for directionally selective thermal 
emission," MRS Adv. 1(49), 3307–3316 (2016). 

[19]  Mahmoud, A. M., Engheta, "Wave–matter interactions in epsilon-and-mu-near-zero structures," Nat. Commun. 
5(5638), (2014). 

[20]  Luo, J., Xu, P., Gao, L., Lai, Y.., Chen, H., “Manipulate the Transmissions Using Index-Near-Zero or Epsilon-
Near-Zero Metamaterials with Coated Defects,” Plasmonics 7(2), 353–358, Springer US (2012). 

[21]  Kim, J., Dutta, A., Naik, G. V., Giles, A. J., Bezares, F. J., Ellis, C. T., Tischler, J. G., Mahmoud, A. M., 
Caglayan, H., et al., “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 
3(3), 339 (2016). 

[22]  Vassant, S., Hugonin, J.-P., Marquier, F.., Greffet, J.-J., “Berreman mode and epsilon near zero mode,” Opt. 
Express 20(21), 23971 (2012). 

[23]  Naik, G. V., Kim, J.., Boltasseva, A., “Oxides and nitrides as alternative plasmonic materials in the optical range 
[Invited],” Opt. Mater. Express 1(6), 1090 (2011). 

[24]  Newman, W. D., Cortes, C. L., Atkinson, J., Pramanik, S., DeCorby, R. G.., Jacob, Z., “Ferrell–Berreman Modes 
in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7, American Chemical Society (2015). 

[25]  Luk, T. S., Campione, S., Kim, I., Feng, S., Jun, Y. C., Liu, S., Wright, J. B., Brener, I., Catrysse, P. B., et al., 
“Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 
(2014). 

[26]  Karagodsky, V., Sedgwick, F. G.., Chang-Hasnain, C. J., “Theoretical analysis of subwavelength high contrast 
grating reflectors.,” Opt. Express 18(16), 16973–16988 (2010). 

[27]  Winn, J. N., Fink, Y., Fan, S.., Joannopoulos, J. D., “Omnidirectional reflection from a one-dimensional 
photonic crystal,” Opt. Lett. 23, 1573–1575 (1998). 

[28]  Campione, S., Brener, I.., Marquier, F., “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B - 
Condens. Matter Mater. Phys. 91(12), 1–5 (2015). 

[29]  Han, S. E., "Theory of thermal emission from periodic structures," Phys. Rev. B 80(15), 155108 (2009). 
[30]  Liu, V., Fan, S., "S4 : A free electromagnetic solver for layered periodic structures," Comput. Phys. Commun. 

183(10), 2233-2244 (2012) 
[31]  Sakr, E. S., Zhou, Z.., Bermel, P., “High efficiency rare-earth emitter for thermophotovoltaic applications,” 

Appl. Phys. Lett. 105, 111107 (2014). 
[32]  Ko, Y. H., Niraula, M., Lee, K. J.., Magnusson, R., “Properties of wideband resonant reflectors under fully 

conical light incidence,” Opt. Express 24(5), 4542–4551 (2016). 
[33]  Kittel, C., [Introduction to solid state physics], Wiley (2005). 
[34]  Huang, M. C. Y., Cheng, K. B., Zhou, Y., Pesala, B., Chang-Hasnain, C. J.., Pisano, A. P., “Demonstration of 

piezoelectric actuated GaAs-based MEMS tunable VCSEL,” IEEE Photonics Technol. Lett. 18(10), 1197–1199 
(2006). 

Proc. of SPIE Vol. 10099  100990A-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 

[35]  Tripathi, D. K., Jiang, F., Rafiei, R., Silva, K. K. M. B. D., Antoszewski, J., Martyniuk, M., Dell, J. M.., 
Faraone, L., “Suspended Large-Area MEMS-Based Optical Filters for Multispectral Shortwave Infrared Imaging 
Applications,” J. Microelectromechanical Syst. 24(4), 1102–1110 (2015). 

[36]  Zhao, L., Yang, S., Bhatia, B., Strobach, E.., Wang, E. N., "Modeling silica aerogel optical performance by 
determining its radiative properties," AIP Adv. 6(2), (2016). 

[37]  Reddy, H., Guler, U., Kildishev, A. V., Boltasseva, A.., Shalaev, V. M., “Optical properties of gold thin films at 
elevated temperatures,” Opt. Mater. Express 6(9), 5–6 (2016). 

[38]  Zhu, C., Li, J., Yang, Y., Lan, P., Huang, J., Lu, Y., Tan, R., Dai, N.., Song, W., “Tailoring the resonance 
wavelength and loss of highly Ga doped ZnO plasmonic materials by varied doping content and substrate 
temperature,” Thin Solid Films 605, 95–101, Elsevier B.V. (2016). 

[39]  Sakat, E., Vincent, G., Ghenuche, P., Bardou, N., Dupuis, C., Collin, S., Pardo, F., Haïdar, R.., Pelouard, J.-L., 
“Free-standing guided-mode resonance band-pass filters: from 1D to 2D structures,” Opt. Express 20(12), 13082 
(2012). 

 

Proc. of SPIE Vol. 10099  100990A-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx




