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Abstract: Nonlinear interactions within compact, on-chip microring
resonant cavities is a topic of increasing interest in current silicon photonics
research. Frequency combs, one of the emerging nonlinear applications in
microring optics, offers great potential from both scientific and practical
perspectives. However, the mechanisms of comb formation appear to differ
from traditional frequency combs formed by pulsed femtosecond lasers,
and thus require detailed elucidation through theory and simulation. Here
we propose a technique to mimic the accuracy of finite-difference time
domain (FDTD) full wave nonlinear optical simulations with only a small
fraction of the computational resources. Our new hybrid approach combines
a single linear FDTD simulation of the key interaction parameters, then
directly inserts them into a coupled-mode theory simulation. Comparison of
the hybrid approach and full FDTD shows a good match both in frequency
domain and in time domain. Thus, it retains the advantage of FDTD in
terms of direct connection with experimental designs, while finishing much
faster and sidestepping stability issues associated with direct simulation of
nonlinear phenomena. The hybrid technique produces several key results
explored in this paper, including: demonstrating that comb formation can
occur with both anomalous and normal dispersion; suggesting a new mech-
anism for incoherent (Type II) frequency comb formation; and illustrating a
method for creating soliton-like pulses in on-chip microresonators.
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1. Introduction

Optical frequency comb formation is a very powerful technology, in which optical narrowband
signals are created at predetermined frequency intervals with precisely controlled amplitudes
and phases [1]. With a bandwidth of at least an octave (frequencies from ω to 2ω), coherent
combs can be generated to span a very broad frequency spectrum. Optical frequency combs
have a number of important current and potential applications, including precision metrology
for improved GPS [2, 3], pulse shaping [4], terahertz spectroscopy and sensing, RF modula-
tion [4], quantum photonics [5] and high-harmonic generation for extended UV (XUV) sources
for lithography. Typically, optical combs are generated by using a pulsed femtosecond laser.
However, such a solution tends to be relatively bulky and expensive. With recent advances in
fabrication techniques, on-chip microresonators have recently been developed [6, 7]. If these
microresonators are then excited by common continuous-wave (cw) pump lasers, optical fre-
quency combs can now be generated within a compact form factor [1–5, 8–13]. Additionally,
the microresonator combs have enabled novel features, including in particular very large (hun-
dreds of GHz or above) free spectral range, increased flexibility in dispersion matching, and
especially very high field intensities compared to macroscopic resonators [14]. For four-wave
mixing processes, a 1,000-fold increase in intensity associated with photonic mode confinement
can increase signal and idler generation by a factor of 1,000,000 or more [15].

In this manuscript, we will explore the detailed behavior of microresonator optical frequency
combs, since recent experiments to characterize their performance have revealed several sur-
prising phenomena. In particular, as input power increases, the mode spacing decreases, and
the total bandwidth of all modes generated increases dramatically, as does the noise. However,
experimental microresonator combs typically experience too much incoherence for full spectral
control at this time. Several theories have been proposed to explain the generation of coherent
and incoherent combs, including multilevel comb growth [16], modulation instability [13], and
deterministic chaos [17, 18]. To date, not enough theoretical or experimental work has been
performed to distinguish between the different mechanisms, and accurately predict qualitative
and quantitative behavior.

There have been several theoretical microresonator frequency comb studies performed us-
ing approaches such as Lugiato-Lefever (L-L) equation [19, 20] and the closely related general
nonlinear Schrodinger equation [13]. These methods can provide excellent agreement with the
experiment [21] under certain approximations. In particular the L-L equation takes the mean-
field limit of the Maxwell-Bloch equations while also dropping higher-order spatial derivatives
along the axis of propagation. Thus, systems with rapidly changing field intensity and spatial
field variation may not be treated completely accurately using this model [22]. This may lead to
less accurate results for systems under fast excitation (relative to the round trip time of the cav-
ity) and small-scale devices such as small radius microresonators. Additionally, the use of these
methods will not be appropriate for multimode-family analysis where sub-FSR mode spacing
is required. Alternatively, coupled mode theory (CMT) [23–26] circumvents the described ob-
stacles and has been extensively used to model nonlinear processes in microcavities. However,
a one-to-one match between realistic comb formation processes in microring systems obtained
with fully vectorial methods and corresponding coupled mode theory parameters has not been
directly demonstrated in the previous work. In order to study the comb formation in the regime
approaching experimental systems we implement a hybrid simulation method. In this approach,
the key degrees of freedom are modeled through coupled mode theory with parameters such as
mode profiles, mode frequencies and quality factors calculated in finite-difference time-domain
(FDTD) simulations. A similar approach has been used previously to analyze bistability in the
single mode cavity coupled to a waveguide [27]. In our study, we have shown that the hybrid
CMT/FDTD method can be extended to model interactions of multiple modes occupying the



same volume, subject to conservation rules and nonlinear coupling. This approach assumes
perfect k-matching and dispersion was implemented via mode frequency definitions. Over the
course of our studies, good agreement between CMT/FDTD and direct nonlinear FDTD simu-
lations have been demonstrated.

For all cases where FDTD direct simulations are too time-consuming, and analytical esti-
mates of nonlinear CMT parameters are unavailable or may not present an accurate picture
of real performance (e.g., for small-radius microring resonators), our CMT/FDTD technique
offers a potential advantage. There are many situations where this could be true because the
field profile of even a microring resonator with any external symmetry breaking may no longer
be given by Bessel functions. This method can be particularly useful to solve the cases when
the eigenmodes of the cavity are significantly perturbed via coupling to other microrings or
waveguides. Additionally, this method is extremely general, and encompasses not only micror-
ing systems with broken symmetry, but also has great potential for emerging nonlinear systems
including but not limited to photonic crystals, plasmonics and metamaterials.

In the remainder of the paper we present a theory that shows the connection between the
structure, generated FDTD field profiles, and CMT coupling parameters. We compare results
obtained using hybrid CMT/ FDTD and FTDTD methods in the different dispersion regimes.
After establishing a close match between solutions we explain advantages of the hybrid ap-
proach. We then explore the example of bright soliton-like mode formation in a microring, and
show again that the hybrid method offers accurate, experimentally relevant results. Finally, we
propose a mechanism explaining Type II frequency comb formation through the emergence of
soliton-like pulses.

2. Theory

We can derive the equations of motion for Kerr nonlinear coupled mode theory as follows. We
begin with the well-known electromagnetic field Hamiltonian:

H =
∫

dr
[

εE(r)2 +
1
µ

B(r)2
]

(1)

In the presence of a Kerr medium, we can generally write the refractive index as follows:

ε(r) = εo(r)+ ε2|E(r)|2 (2)

Substituting this expression in yields:

H =
∫

dr
[
εo(r)+ ε2|E(r)|2

][
E(r)2 +

1
µε

B(r)2
]

(3)

We can represent the electric field associated with mode k in terms of quadrature operators:

Ek(r) =Ck ·gk(r)(ak +a†
k) (4)

where ak is the annihilation operator, a†
k is the creation operator and gk(r) is the normalized

amplitude function. Ck is a normalization constant, to be determined.
We can simplify Eq. (3) by considering only the electric field contribution to the energy in

the absence of nonlinearities:

Hel = C2
k

∫
ε0(r)gk(r)2(ak +a†

k)
2dr (5)

Hel = C2
k

∫
ε0(r)gk(r)2dr(a2

k +aka†
k +a†

kak +a†2
k ) (6)



Canceling quadratic terms and adding linear terms from the magnetic energy part of the Hamil-
tonian, the total energy becomes:

H = 2C2
k

∫
ε0(r)gk(r)

2dr(aka†
k +a†

kak) (7)

In order for mode k to evolve with its characteristic frequency ωk through the Heisenberg equa-
tion of motion, the following equality must also hold:

H =
1
2

h̄ωk(aka†
k +a†

kak) (8)

Therefore:

Ck =
1
2

√
h̄ωk∫

ε0(r)gk(r)
2dr

(9)

Then the total field in the cavity can be written as:

E(r) = ∑
k

1
2

√
h̄ωk∫

ε0(r)gk(r)
2dr

gk(r)(ak +a†
k) (10)

Including nonlinear terms in Eq. (3) leads to the following result:

H = ∑
k

h̄ωk(a
†
kak +

1
2
)+

h̄2
ε2

2 ∑
i, j,k,l

√
ωiω jωkωlMi jkla

†
i a†

jakalei(ωk+ωl−ωi−ω j)t (11)

where

Mi jkl =

∫
gi(r)g j(r)gk(r)gl(r)dr[∫

ε0(r)gi(r)
2dr
]1/2[∫

ε0(r)g j(r)
2dr
]1/2[∫

ε0(r)gk(r)
2dr
]1/2[∫

ε0(r)gl(r)
2dr
]1/2 (12)

Applying Heisenberg equations of motion with commutator relations:

dai

dt
=

1
ih̄

[ai,H] (13)[
ai,a

†
j

]
= δi j (14)

[ai,a j] = 0 (15)

yields to :
dai

dt
=−iωiai− i

h̄2
ε2

2
√

ωiω jωkωlMi jklei(ωk+ωl−ωi−ω j)ta†
jakal , (16)

Self-phase modulation coupling is given by:

Miiii =

∫
gi(r)

4dr(∫
ε0(r)gi(r)

2dr
)2 (17)

while cross-phase modulation coupling is given by:

Mi ji j =

∫
g2

i (r)g
2
j(r)dr∫

ε0(r)gi(r)
2dr

∫
ε0(r′)g j(r′)

2dr′
(18)



3. Numerical methods

In this manuscript, we will perform a comprehensive set of simulations to predict and char-
acterize the performance of photonic microresonator-based optical combs. The uniqueness of
our approach will come from combining two distinct simulations in a unified framework: finite-
difference time domain and coupled mode theory. We will essentially perform two types of time
domain simulations: first is a direct simulation of the whole problem, including Kerr nonlinear-
ities; the second will be a simulation of only the linear properties of the system, to be used as
inputs for the coupled-mode theory.

A key enabling strategy will be reducing quasi-2D experimental structures consisting of ap-
proximately 14 million degrees of freedom down to about 11 weakly-coupled degrees of free-
dom - a reduction in complexity by a factor of a million. This greatly simplified approach
captures the key dynamics of the system in terms of weakly coupled independent resonant
waveguide and cavity modes, including both linear and nonlinear interactions. This can also
be thought of in terms of lumped circuit-element models used in electrical engineering design.
While the system behavior in the linear regime can be obtained semi-analytically, detailed anal-
ysis of nonlinear interactions requires numerical solutions of the appropriate (coupled) ordi-
nary differential equations. The predictions of this approach will be confirmed computationally
through comparison with separate, direct full-wave simulation of the same design.

Fig. 1. (a) Radial distribution of the normalized amplitude function |g(r)| for the funda-
mental normal dispersion mode (b) Radial distribution for the order 1 anomalous dispersion
mode. The boundaries of the microring core region are shown as dotted lines.

The FDTD simulations in this paper are performed using a freely available software pack-
age, known as MEEP [28]. To reduce the computational load while preserving accuracy, the
system is treated in 2D (which makes the effective height of the ring large). For normal and
anomalous dispersion cases we selectively coupled to the modes having fundamental and first
harmonic radial profile (order 0 modes and order 1 modes respectively, Fig. 1). The distrib-
uted, soft-source excitation was positioned within the microring core. The source amplitude
is set to As = |As|e−(t−t0)2/2τ2

e−(φ−φ0)
2/2σ2

where τ is the standard deviation in time and σ is
the standard deviation in azimuthal angle. The phase is given by kφ φ where kφ corresponds
to the azimuthal wavevector of the ”cold” cavity. In the radial direction, for excitation of the
fundamental mode follows a cos(r) profile with the maximum corresponding to the core cen-
ter. Similarly, for excitation of order 1 mode, the radial variation has a sin(r) profile with zero
corresponding to the core center. Polarization in all cases is in the z direction (into the plane in
Fig. 2). The source center frequency was chosen to coincide with the natural resonant frequency
of the microring obtained using filter diagonalization [29]. In both normal and anomalous dis-



Fig. 2. Distribution of the electric field of a mode with a fundamental radial profile. The
component of the field going into the plane (Ez) is shown. Red designates positive values;
blue negative; white zero.

Fig. 3. (a) Dispersion parameter data for normal dispersion region of fundamental radial
(order 0) profile modes; (b) the anomalous dispersion region of order 1 modes.

persion case |As| was set to produce the uniform ”cold” cavity mode of amplitude 5 (V/a). In
normal dispersion case source frequency was set to f = 0.5916 (c/a) and in anomalous case it
was set to f = 0.3618 (c/a) where c is the velocity of light and a= 1 µm is a unit length (MEEP
units). These frequencies correspond to the source wavelengths λ = 1.69 µm and λ = 2.76 µm
respectively. In this paper, two source excitation regimes were studied: narrowband source with
τ = 1000 (a/c) and σ = 0.1 rad that mimic CW single frequency excitation and broadband
source with τ = 12.02 (a/c) and σ = 0.01 rad to explore pulse propagation in the micror-
ing. There are several ways to introduce dispersion in the microring systems, such as adding
material dispersion or perturbing the geometry [30, 31]. In order to avoid significant losses
associated with large material dispersion, materials were taken to be dispersion-free, with dis-
persion being introduced via geometry. Furthermore, refractive indices were chosen to restrict
the number of modes excited in the ring. Cladding refractive indices were set to nnorm

clad = 2.33
and nanom

clad = 2 (based on tantalum pentoxide) for normal and anomalous dispersion, with the



core refractive index fixed at ncore = 2.53 (based on titanium dioxide). Geometric dispersion
(Fig. 3) was derived from the frequencies of the resonant modes of the specific family obtained
using harminv, a filter diagonalization MEEP program. The core material Kerr susceptibility
was set to X (3) = 0.004 (a2/W ). Dimensions of the microring used in simulation correspond to
r = 40 µm (microring outer radius) and w = 2 µm (core width).

Table 1. Resonant mode parameters from FDTD and Haminv used in CMT
Resonance number Frequency Q Amplitude Relative error

(c/a) (MEEP units)
1 0.585039 401172 0.0330443 5.789262e-11
2 0.586622 415560 0.0788294 2.503092e-11
3 0.588206 431139 0.146794 1.336046e-11
4 0.58979 447318 0.213382 9.271911e-12
5 0.591374 463984 0.242161 8.396964e-12
6 0.592958 481228 0.214549 9.278247e-12
7 0.594541 499082 0.148396 1.434943e-11
8 0.596125 517695 0.0801344 2.530687e-11
9 0.597708 536495 0.0337884 5.216343e-11

Coupled mode theory parameters were chosen to match those used in the FDTD simulation.
Table 1 lists parameters extracted from a ”cold” cavity FDTD simulation using harminv for
normal dispersion case analysis. As before, a Gaussian current source was used, with τ = 16.7
(a/c) and a point-like spatial distribution. The interpolated CMT frequencies were set to match
the linear dispersion slope obtained from harminv frequencies with dispersion approximated
up to B2 parameter. The number of coupled modes playing significant role in the time dynamics
was determined to be N = 15 in the normal case and N = 9 in the anomalous case, by inspection.
Alternatively, we can find the number of modes a priori by making an initial guess for the CMT
simulation, and then refining this number, such that the energy contained in the modes on the
extremities of the steady-state spectrum would be below predefined threshold (< 1% of the
pump energy in our case). The normalized amplitude function was found using steady state
single mode field distribution as gi(r) = Ei(r)/Emax, while the coupling coefficient Mi jkl was
computed by assuming perfect spatial mode overlap between modes (following Eq. (12)). The
resulting system of governing equations has the following form:

dai

dt
=−iωiai− i

h̄2
ε2

2
√

ωiω jωkωlMi jklei(ωk+ωl−ωi−ω j)ta†
jakal + s, (19)

with the source term s given by:

s = Ese−(t−to)2/2τ2
eiωst (20)

where ωs is the pump frequency, Es is the pump amplitude and h̄ = 1 in all simulations. The
resulting system of coupled differential equations was solved using the ode15s stiff ODE
solver in MATLAB.

In order to directly compare FDTD results to CMT simulations, the electrical field Ez in
FDTD was sampled at a single point, and compared to a sum of the cavity mode fields in the
CMT simulation. The sampling location in FDTD was set at the point inside the microring core
corresponding to the maximum of the radial mode profile (Fig. 1), 45◦ away from the source
center. The resolution of the simulation was set to be 40 grid points / µm (i.e., a grid spacing
of 25 nm).



Fig. 4. Comparison of FDTD and CMT results for the normal dispersion case: (a) FDTD
time domain; (b) CMT time domain; (c) FDTD frequency domain; and (d) CMT frequency
domain.

4. Results and discussion

In this part of the manuscript, we show that our expectations of comb generation dynamics are
confirmed with direct finite-difference time domain simulation, and show the corresponding
coupled-mode theory simulations that corroborate our prior observations.

We can observe a close correlation between the FDTD and CMT simulations performed
using narrowband excitation, from perspectives in the time domain in Figs. 4(a), 4(b), 5(a),
and 5(b), as well as perspectives in the frequency domain in Figs. 4(c), 4(d), 5(c), and 5(d). In
particular, the time domain envelopes of the CMT and FDTD simulations match very well with
key features such as self-phase modulation induced initial peak and beat tones corresponding
to round trip times in the cavity. The shapes of the periodic pulses are also closely matched
in both cases. The low frequency beat tone present in the FDTD anomalous simulation shown
in Fig. 5(a) is due to the coupling of the source having a mode 1 spatial profile to the mode
0 family. This coupling could not be completely eliminated in the anomalous case, as the two
modes nearly coincide in frequency and propagation of mode 0 is allowed. In the normal case,
we were able to prohibit mode 1 propagation by increasing the cladding index; hence, no low-
frequency beat tones were observed there.

As far as the frequency domain, the graphs can be seen to match well in terms of their
bandwidth and frequency spacing. However, the FDTD simulation show a slight asymmetry
in its frequency spectrum compared to CMT. We can again observe the effects of undesirable
coupling in anomalous case seen as lowering of the FDTD spectral amplitude compared to
CMT shown in Figs. 5(c) and 5(d), as some energy is channeled into the mode 0 family.



Fig. 5. Comparison of FDTD and CMT results for the anomalous dispersion case: (a) FDTD
time domain; (b) CMT time domain; (c) FDTD frequency domain; and (d) CMT frequency
domain.

We further investigate the root cause of the observed asymmetry in the spectrum shape. Tak-
ing advantage of the CMT ability to separate different nonlinear coupling mechanisms, we
perform the time domain envelope comparison of FDTD with CMT selectively disabling dif-
ferent CMT coupling channels (Fig. 6). We compare simulations done using the full CMT
approach, CMT with only self-phase modulation (SPM) terms included, and CMT with both
SPM and cross-phase modulation (XPM) terms included. For the steady state region (t > 6000),
the full CMT simulation provides the best match with FDTD, since it does not omit any terms.
On the other hand, the SPM envelope is constant and SPM+XPM envelope modulation is sig-
nificantly reduced, reflecting the fact that energy transfer to the sideband modes is inhibited.
For the initial FDTD transient, a CMT simulation with only SPM provides a very good match,
while CMT with both SPM and XPM quenches the initial peak. This implies that magnitude of
XPM interactions in FDTD is reduced from those in CMT in the initial phase. To explain this
observation, we can further note that the onset of CMT XPM interactions occurs as the enve-
lope of the source starts to flatten - i.e., where the Gaussian input waveform reaches its peak.
Indeed, when the Gaussian reaches its maximum value the amplitudes and consequently the
frequencies of the sideband modes are stabilized and coupling with the pump mode will occur.
It can be observed as quenching of the initial envelope As shown in Fig. 6(a): in the SPM+XPM
case, labeled as CMT.SPM+XPM, and the full CMT case, labeled as CMT. However, in FDTD
microring systems, the source pulse must travel around the microring. As a result, the stabiliza-
tion does not take place everywhere simultaneously, but rather is reached gradually, leaving the
initial transient unperturbed, as shown in Fig. 6(a) and labeled as FDTD. It seems feasible to
design a more complex excitation procedure that will emulate the effects described above, if



Fig. 6. Time domain envelopes of different coupling and excitation regimes in FDTD and
CMT: (a) Comparison of FDTD and CMT envelopes for different coupling mechanisms:
(solid blue) FDTD results, (solid red) CMT results, (dashed black) CMT results with only
self-phase modulation (SPM) terms, (dotted green) CMT results with only SPM and cross-
phase modulation (XPM) terms, (solid cyan) amplitude scaled source transient; (b) Com-
parison of FDTD and CMT for different excitation regimes: (dotted green) uniform source,
(solid red) source with σ = 3.14, (solid black) CMT results with only SPM terms and
σ = 0.1.

one would like to achieve greater accuracy in the frequency domain.
As an alternative, a natural course of action would be to attempt to use an FDTD source with

a spatially uniform envelope. Figure 6(b) shows the results for sources with uniform distribution
(no angular variation) and source with angular standard deviation σ = 3.14 rad. Same as before
the amplitudes we set to produce 5 (V/a) uniform ”cold ” cavity mode amplitude; the source
bandwidth and nonlinear coefficient were held the same. Compared to the previous simulation
in Figure 6(a) having σ = 0.1 rad, comb formation is strongly inhibited, suggesting that the
uniform source does not produce enough intermode coupling to generate a comb from a single
pump line, and that nonuniform ”seeding” similar to modulation instability onset is required.
In theory, spontaneous emergence of the modes with the uniform source can be achieved by
properly setting the noise floor, but we anticipate that in that case obtained spectrum would be
even more difficult to predict. This assumption will have to be verified in future work.

Overall, in all cases, the simulation times can be dramatically reduced by going from FDTD
to CMT simulations. It took approximately 5 hours with 48 cores to run the FDTD simulation
in MEEP on the Purdue University Rosen Center for Advanced Computing’s Carter Commu-
nity Cluster [32]. Note that the simulation was performed on 2D system with the infinite third
dimension. For the full 3D system, the simulation time would be further multiplied. In the 2D
case, MEEP scales well for this problem up to 48 cores and beyond – i.e., the number of core-
hours consumed is not strongly dependent on the number of cores used. However, the CMT
simulation with our current MATLAB implementation only took 20 minutes as a serial process
(single-core) on an Asus desktop machine. This represents a decrease in CPU core-hours by
a factor of 720, or equivalently, 2.86 orders of magnitude. These results thus demonstrate a
clear advantage in using the CMT method versus a fully vectorial approach. In future work, it
would be desirable to achieve an even greater degree of improvement through fine-tuning of
the ODE solution technique embedded in MATLAB. Subsequent topics for investigation may
then include detailed exploration and optimization of microresonator comb design as a function
of experimental parameter values, assuming modest nonlinear coefficients. A search technique
such as this could enable a broad range of customized applications for these combs, which



Fig. 7. (a) Dispersion parameter data for order 0 modes (dotted blue) having normal dis-
persion and order 1 modes (solid red) with anomalous dispersion; (b) Field profile of the
traveling pulses corresponding to order 0 modes and order 1 modes. All simulations were
performed in the ”cold” cavity.

may include but would not be limited to: signal and idler pair generation at arbitrary, targeted
frequencies; enhanced third-harmonic generation; efficient terahertz generation; and arbitrary
waveform generation.

5. Nonlinear phenomena in microring resonators

So far our discussion has been mainly focused on nonlinear interaction of the modes under nar-
rowband excitation conditions. We can now consider nonlinear phenomena enabled by modes
having broadband excitation and further expand on the theory of nontrivial selection rule dy-
namics during frequency comb formation.

One particularly intriguing nonlinear phenomenon is the bright temporal soliton, which can
be excited in the waveguide system by appropriately balancing anomalous dispersion and non-
linearity by adjusting the amplitude and time duration of the traveling pulse [33, 34]. Consid-
ering a microring as a perturbed waveguide system and applying the same discussion we were
able to predict existence of the soliton-like propagation for selected modes of the system. In or-
der to confirm this, we used FDTD and CMT to analyze pulse propagation for the set of modes
of radial order 1. Figure 7(a) displays in solid red the dispersion parameter plot for this family
of modes. Figures 7(b) and 8 illustrate field profiles of the pulses and point field data corre-
sponding to both families of modes simultaneously propagating in the ”cold” cavity microring.
Note from these plots that the pulses of different mode families have distinctly different group
velocities allowing their temporal and spacial separation in the analysis. Figure 9(a) shows the
results for FDTD mode 1 pulse evolution as it propagates in the microring generated using
broadband source excitation. Both ”cold” cavity case and the case of cavity with appropriate
amount of Kerr nonlinearity were considered. Similarly, we performed CMT simulations using
59 coupled modes with the same set of parameters to emulate pulse propagation, as shown in
Fig. 9(b). In order to further reduce CMT computational time, we implemented slow varying
envelope approximation for these simulations. Results show a good match of pulse propagation
dynamics in both linear and nonlinear case. In both FDTD and CMT cases, the spreading of the
pulse due to dispersion is reduced when nonlinearity is added, confirming soliton-like behav-
ior. For these simulations parameters were calculated according to [33] for fundamental soliton
mode; nonlinear susceptibility was set to X (3) = 0.004 (a2/W ), τ = 12.02(a/c), group velocity
dispersion parameter B2 =−0.019 (a/c2) and |As|= 0.135 (V/a).



Fig. 8. (a) Time domain traveling pulses in the ”cold” microring cavity with an order 1
source profile. (b) Corresponding frequency domain data, showing that the broadband ex-
citation spectrum excites both order 0 and order 1 modes.

Fig. 9. Evolution of the propagating pulse in the cases of zero and X (3) = 0.004 Kerr
nonlinearity: (a) FDTD calculation (b) corresponding CMT simulation. A good match is
observed. In both cases, pulse spreading is dramatically suppressed with appropriate level
of nonlinearity, much like in a soliton.

Another phenomenon where pulse propagation in microring cavity plays an important role
is the frequency comb dynamics, in particular formation of the Type II frequency combs. Type
II is considered an undesirable path of frequency comb formation that appear along the lines of
conventional Type I and it has been a subject of number of studies in the recent literature [10,
16]. In this research it has been confirmed that the Type II frequency comb is associated with
formation of subcombs at multiple FSR (∆) from the pump line. Frequencies of the lines in
Type II combs can be described by the formula [16]:

ω
i
n = ωp +ξi +nσ , n = 0,±1,±2... (21)

where i is a subcomb index σ is a cavity FSR, ωp is a pump frequency and ξi is a frequency
offset which arises due to k-conservation rules in the dispersive medium. We note that while
the lines within a subcombs are separated by a single FSR, the spacing of different subcombs
is governed by dispersion.

We would like to suggest a novel step-by-step mechanism of Type II comb formation and



offer methods for mitigating and eliminating Type II comb excitation. It is instructive to con-
sider single modes and pulses in the ”cold” microring cavity. On one hand, single modes that
are uniform in space, similar to the one shown in Fig. 2, are constrained by azimuthal boundary
conditions and therefore k-conservation rules. On the other hand, it can be seen from the field
point data in Figs. 7(b) and 8(a) that traveling pulses remain localized in time and space, and
hence are not subject to azimuthal boundary conditions. When the first four-wave mixing event
occurs during Type II comb formation, energy from the uniform bound pump mode transfers
to a signal and idler pair, following k-conservation rules. This event transforms single mode
field distribution in the cavity into a modulated field with period 1/∆. At the same time, a
dispersion-induced frequency offset ξi will create a low frequency modulation and thus a pulse-
like periodic train. As this pulse-like waveform propagates, it will compress due to nonlinear
interaction similar to soliton formation described above resulting in a localized pulse. For this
pulse, azimuthal k-conservation rules are lifted, and the corresponding spectrum will be single
FSR spaced. This produces frequency comb line spacings described by Eq. (21). The presented
mechanism may explain why there are no consecutive multi-FSR combs in the spectrum (that
is why a comb spectrum can have only single value of ∆), as the modes are constrained by the
azimuthal k-matching only once, in the beginning of the comb formation. Therefore, based on
the proposed comb formation dynamics, the most straightforward way to obtain a reproducible
type I comb is a short-pulse pumping (e.g., with an ultra-fast laser) that will not be governed
by azimuthal k-matching. Such pumping can occur with a period that is an integer multiple
of the round trip of the resonator, which would allow for practical low frequency excitation
approaches. Alternatively, one could design a ring structure that would no longer enforce the
initial k-conservation condition (e.g., with significant sidewall scattering).

6. Conclusion

In this work, we studied the emerging class of on-chip microresonator-based nonlinear optical
phenomena. We began our analysis with frequency comb formation, to which we applied pow-
erful framework of coupled-mode theory derived rigorously from basic quantum mechanical
principles in the presence of a finite number of weakly-coupled modes. In principle, it enabled
us to quickly analyze millions of interactions by reducing them to the smallest reasonable num-
ber of degrees of freedom, which can be individually adjusted for each problem. At the same
time, we demonstrated that we can implement this theory via direct simulation of experimental
designs, to avoid ad hoc selection of parameter values in the coupled mode theory analysis. It
was shown that the results of the hybrid CMT/FDTD and FDTD simulations match each other
fairly closely. The exceptions to perfect matching are due to cross-coupling of FDTD excitation
and imperfect initial condition matching. The approach can be used to examine the generation
of optical combs in the presence of dispersion (both normal and anomalous), and our studies
showed that comb generation from the single pump line is still permitted in both cases. Further-
more, the number of CPU core-hours required for the CMT simulation is reduced by a factor
of 720 compared to the FDTD simulation, and may be amenable to further reduction. This sig-
nificant speed-up should enable comprehensive automated design and optimization studies to
achieve microresonator combs with tailored properties. Analyzing nonlinear pulse propagation
phenomena in the same system, we demonstrated formation of the soliton-like pulses in higher
order radial modes using both FDTD and CMT approaches, and presented a new mechanism
for Type II frequency comb formation. This new computational framework can be leveraged
for analyzing important optical applications of nonlinear phenomena in photonic crystals, plas-
monics and metamaterials. Our approach can also be transferred to the analysis of weakly cou-
pled system with nontrivial mode distribution and coupling, such as random lasers, nonlinear
plasmonics, higher harmonic generation, ultrafast pulse shaping, and quantum photonics.
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