A logarithm is the inverse of an exponential.

\[a^x = y \iff \log_a y = x \]

\(a\), the base and must be positive.
\(y\), the argument and must be positive.
\(x\), the exponent and can be positive or negative.

\[3^x = 81 \iff \log_3 81 = x \]

The Natural Logarithm:

A special logarithm occurs when the base of the logarithm is the natural number \(e\). When the base of a logarithm is \(e\), then it is called a natural logarithm, and is denoted \(\ln x\). \[\log_e x = \ln x \]

\[y = e^x \quad \text{and} \quad \ln x = y \]

…are inverse functions, and have all the properties of inverse functions.
General Properties of Logarithms:

\[\ln(1) = ? \quad \ln(e) = ? \quad \ln(e^x) = ? \quad e^{\ln(x)} = ? \]

\[\ln(x^m) = \quad \ln(xy) = \quad \ln\left(\frac{x}{y}\right) = \]
The Domain of $y = \ln x$ is $(0, \infty)$ since x has to be positive. For the domain of $y = \ln(ax+b)$ simply solve $(ax+b) > 0$.

Find the Domain:

a) $\ln(5x)$

b) $\ln(-8x)$

c) $\ln(5x+3)$

d) $\ln(15x^2-135)$

e) $\ln(-2x^2-6x+36)$
Simplify the following expressions:

a) \(\ln(e) \)

b) \(\ln(e^{6x}) \)

c) \(\ln(1) \)

d) \(e^{\ln(15x)} \)

e) \(e^{3+\ln(4x)} \)

f) \(e^{3\ln(4x)} \)

g) \(e^{3-\ln(4x)} \)
Use a calculator to evaluate the following expressions to four decimal places, if it exist.

a) \(\ln(7) \)

b) \(\ln(0.67) \)

c) \(\ln(359.2) \)

d) \(\ln(-3.27) \)

e) \(\ln(485,165,195) \)

Use a calculator to find the value of \(x \) to four decimal places. If it exist.

a) \(\ln(x) = 7.5 \)

b) \(\ln(x) = 0.025 \)

c) \(\ln(5x) = 3.1 \)

d) \(\ln(x-0.9) = -4 \)

e) \(\ln(3x) = -0.6547 \)
Solve the following equation for the **exact** value of x.

a) \(\ln(12x-4) = \ln(x+3) \)
b) \(\ln(3x-4) = \ln(6x-6) \)

c) \(\ln(4x+5) = 17 \)
d) \(\ln(x^2+4) = \ln(3x+8) \)

e) \(\ln(x^2) = 18 \)
f) \(\ln(3x^2+1) = \ln(12x+14) \)