An **angle** is defined as the set of points determined by two rays, or half-lines, l_1 and l_2 having the same end point O. An angle can also be considered as two finite line segments with a common point.

We call l_1 the **initial side**, l_2 the **terminal side**, and O the **vertex** of angle $\angle AOB$. The direction and number of rotations of l_1 makes before stopping at l_2 is not restricted.

The **standard position** of an angle is obtained by placing the vertex at the origin and letting the initial side l_1 coincide with the positive x-axis.

If l_1 is rotated in a counterclockwise direction to the terminal position l_2, then the angle is considered **positive**.

If l_1 is rotated in a clockwise direction, the angle is **negative**.
A **straight angle** is an angle whose sides lie on the same straight line but extend in opposite directions from its vertex.

A **right angle** is half of a straight angle and has measure 90°.

An **acute angle** θ; $0^\circ < \theta < 90^\circ$

An **obtuse angle** θ; $90^\circ < \theta < 180^\circ$

Complementary angles α, β; $\alpha + \beta = 90^\circ$

Supplementary angles α, β; $\alpha + \beta = 180^\circ$

An angle is called a **quadrantal angle** if its terminal side lies on a coordinate axis.
Two units for measuring angles:

Degrees: A circle can be divided into 360 equal pieces. One complete revolution has measure 360 degrees, 360°

Radians: One complete revolution has measure 2π radians, 2π.

One radian is the measure of the central angle of a circle **subtended** by an arc equal in length to the radius of the circle.

\[360^\circ = 2\pi \text{ radians and } 180^\circ = \pi \text{ radians}.\]

Radian measure do not use units.

When $\theta = 5$, it means $\theta = 5$ radians

When $\theta = 5^\circ$, it means $\theta = 5$ degrees.
Convert the following angles from degrees into radians.

\[\theta = 70^\circ \quad \theta = 210^\circ \]

Convert the following angles from radians to degrees. Give the exact answer.

\[\theta = \frac{2\pi}{3} \quad \theta = 1.58\pi \]
If two angles have the same initial and terminal sides, they are **coterminal angles**.

List some coterminal angles for…

\[\theta = 55^\circ \quad \theta = -70^\circ \quad \theta = \frac{\pi}{8} \]
For smaller units than degrees we have two choices:

For an angle that is between 150° and 151°…

Degrees Decimal, DD: example: 150.1234°

Degrees, Minutes, Seconds, DMS: example: $150^\circ 7' 24''$

- Divide one **degree** into 60 equal parts, **minutes** (')
- Divide one **minute** into 60 equal parts, **seconds** (")

$1^\circ = 60'$

$1' = 60''$

$1^\circ = ________''$
Convert the following angle to degrees, minutes, and seconds. Round to the nearest second.

$\theta = 102.1459^\circ$

Convert the following angles from degrees-minutes-seconds to decimals. Round your answer to four decimal places.

$\theta = 15^\circ 46' 32''$
MA 15800
Angles

Convert the following angles from radians to degrees. For the decimal answers, round to four decimal places. For the DMS answers, round to the nearest second.

\[\theta = \frac{-14\pi}{13} \]

Decimal: \(\theta = \)
DMS: \(\theta = \)

\(\theta = 5^\circ \)

Decimal: \(\theta = \)
DMS: \(\theta = \)
Complementary angles $\alpha, \beta; \alpha + \beta = 90^\circ$

Supplementary angles $\alpha, \beta; \alpha + \beta = 180^\circ$

Find an angle that is **Complement** and find the angle that is the **Supplement** to the given angles.

$\theta = 15.25^\circ$ \hspace{1cm} $\theta = 28^\circ 41' 29''$
Definition of Reference Angle: Let \(\theta \) be a nonquadrantal angle in standard position. The reference angle of \(\theta \) is the acute angle \(\theta_R \) that the terminal side of \(\theta \) makes with the \(x \)-axis.

If \(\theta \) is in QI, \(\theta_R = \theta \)
If \(\theta \) is in QII, \(\theta_R = 180^\circ - \theta \) or \(\pi - \theta \)
If \(\theta \) is in QIII, \(\theta_R = \theta - 180^\circ \) or \(\theta - \pi \)
If \(\theta \) is in QIV, \(\theta_R = 360^\circ - \theta \) or \(2\pi - \theta \)

Find the reference angle \(\theta_R \).

\[
\begin{align*}
\theta &= 132^\circ & \theta &= 311^\circ \\
\theta &= 236^\circ & \theta &= -120^\circ
\end{align*}
\]
Find the reference angle θ_R.

$$\theta = \frac{13\pi}{4}$$

$$\theta = \frac{43\pi}{6}$$

$$\theta = \frac{7\pi}{3}$$

$$\theta = -\frac{5\pi}{6}$$
Match the following angles to the quadrant or axis on which the terminal side of the angle lies.

\[\theta = 360^\circ \]

\[\theta = \frac{\pi}{3} \]

\[\theta = 750^\circ \]

\[\theta = \frac{17\pi}{6} \]

\[\theta = 215^\circ \]

\[\theta = -2\pi \]

\[\theta = -85^\circ \]

\[\theta = \frac{-3\pi}{2} \]