Given the following information, approximate the **degree** measure of the **acute** angle θ to the nearest **minute**.

\[
\sin(\theta) = 0.3579 \quad \quad \quad \cos(\theta) = 0.3579
\]

\[
\tan(\theta) = 1.3579 \quad \quad \quad \csc(\theta) = 5.3579
\]

\[
\sec(\theta) = 1.3579 \quad \quad \quad \cot(\theta) = 0.3579
\]
Given the following information, approximate the **radian** measure of the **acute** angle θ to four decimal places.

\[
\sin(\theta) = 0.3579 \quad \cos(\theta) = 0.3579
\]

\[
\tan(\theta) = 1.3579 \quad \csc(\theta) = 5.3579
\]

\[
\sec(\theta) = 1.3579 \quad \cot(\theta) = 0.3579
\]
Approximate, to the nearest 0.1°, all angles θ in the interval $[0^\circ, 360^\circ)$ that satisfy the equations. If there are no solutions, enter DNE.

\[
\sin(\theta) = -0.5487 \quad \cos(\theta) = 0.2587
\]

\[
\tan(\theta) = 0.2468 \quad \csc(\theta) = 3.2154
\]

\[
\sec(\theta) = -2.9514 \quad \cot(\theta) = -2.9632
\]
Find the general solution to the following equations. Give your answers as a number in $[0,2\pi)$ plus a multiple of π (do not approximate). Enter the smaller number first and the larger number second. If the answer can be expressed using only one answer box, enter DNE in the empty answer boxes. Choose the smallest correct number in $[0,2\pi)$ for the first box.

\[
\cos(\theta) = \frac{\sqrt{2}}{2} \quad \sin(\theta) = \frac{-1}{2}
\]

\[
\tan(\theta) = -\sqrt{3} \quad \sec(\theta) = -\sqrt{2}
\]
Find the general solution to the following equations.

\[\csc(\theta) = \frac{2}{\sqrt{3}} \quad \cot(\theta) = 1 \]

\[\sin(\theta) = -1 \quad \cos(\theta) = 1 \]

\[\cos(\theta) = 0 \quad \sin(\theta) = 0 \]