To find \(\lim_{x \to c} f(x) \) analytically for a non-piecewise function \(f(x) \), we simply plug \(x = c \) into \(f(x) \) and see what happens.

There are three possible scenarios.

Case 1: \(f(c) \) returns a number.

It means that \(f(x) \) is continuous at \(x = c \).

In this case, \(\lim_{x \to c} f(x) = f(c) \), and we are done.

Example 1: Evaluate \(\lim_{x \to 4} (2x - 3) \) analytically.
Case 2: $f(c)$ returns $\frac{\text{nonzero number}}{0}$.

This means we have a vertical asymptote at $x = c$. The limit of $f(x)$ as x approaches c could be ∞, $-\infty$ or does not exist. We will need to analyze the left and the right-sided limits.

Example 2: Evaluate $\lim_{{x \to 1}} \frac{5}{(x-1)^2}$ analytically.

Example 3: Evaluate $\lim_{{x \to 1}} \frac{-5}{(x-1)^2}$ analytically.
Example 4: Evaluate \(\lim_{x \to 1} \frac{5}{x-1} \) analytically.

Case 3: \(f(c) \) returns \(\frac{0}{0} \).

This means \(f(x) \) has a hole or a vertical asymptote at \(x = c \) and so the limit of \(f(x) \) as \(x \) approaches \(c \) may or may not exist. What we need to do is to manipulate \(f(x) \) so that \(f(c) \) returns a number or \(\frac{\text{nonzero number}}{0} \) so that we can find the limits as in Case 1 or Case 2. To do this we factor the top and bottom and cancel.
Example 5: Evaluate $\lim_{x \to 3} \frac{x^3 - 3x^2}{x - 3}$ analytically.

Example 6: Evaluate $\lim_{x \to 2} \frac{x^2 - 2x}{(x - 2)^2}$ analytically.
Now we will talk about finding limits analytically for piecewise functions.

Example 7: Given: \(f(x) = \begin{cases} \frac{1}{x} & \text{if } x \leq 2 \\ -x & \text{if } x > 2 \end{cases} \)

a) Find \(\lim_{x \to 0} f(x) \)

b) Find \(\lim_{x \to 2} f(x) \)

c) Find \(\lim_{x \to 5} f(x) \)
Finding Limits Analytically

<table>
<thead>
<tr>
<th>$f(x)$</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + 3$</td>
<td>$2x - 1$</td>
</tr>
</tbody>
</table>

- **$f(x)$**
 - $f(x) = x + 3$
 - $\lim_{x \to 7} f(x) = 10$

- **$g(x)$**
 - $g(x) = 2x - 1$
 - $\lim_{x \to 7} g(x) = 13$

<table>
<thead>
<tr>
<th>$f(x) \cdot g(x)$</th>
<th>$(x + 3)(2x - 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lim_{x \to 7} f(x) \cdot g(x)$</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$f(x) + g(x)$</th>
<th>$(x + 3) + (2x - 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lim_{x \to 7} f(x) + g(x)$</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$f(x) - g(x)$</th>
<th>$(x + 3) - (2x - 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lim_{x \to 7} f(x) - g(x)$</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$[f(x)]^2$</th>
<th>$(x + 3)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lim_{x \to 7} [f(x)]^2$</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$f(x) / g(x)$</th>
<th>$\lim_{x \to 7} \left(\frac{f(x)}{g(x)} \right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{7}{3}$</td>
</tr>
</tbody>
</table>
Properties of Limits:

Let c, k, L, and K be real numbers and n a positive integer.

If \(\lim_\limits{x \to c} f(x) = L \) and \(\lim_\limits{x \to c} g(x) = K \)

On the previous page:

$c = 7$, $f(x) = x + 3$, and $g(x) = 2x - 1$

\(\lim_\limits{x \to 7} f(x) = 7 + 3 = 10 \quad \lim_\limits{x \to 7} g(x) = 14 - 1 = 13 \)

\[
\begin{align*}
\lim_\limits{x \to c} [kf(x)] &= kL \\
\lim_\limits{x \to c} [f(x) \pm g(x)] &= L \pm K \\
\lim_\limits{x \to c} [f(x)g(x)] &= LK \\
\lim_\limits{x \to c} \left[f(x) \right]^n &= L^n \\
\lim_\limits{x \to c} \left[\frac{f(x)}{g(x)} \right] &= \frac{L}{K} \text{ assuming } K \neq 0
\end{align*}
\]

Example 8: Given:

\(\lim_\limits{x \to 2} f(x) = 5 \) and \(\lim_\limits{x \to 2} g(x) = 4 \)

Find: \(\lim_\limits{x \to 2} \left[f^2(x) - 6g(x) - 3 \right] \)