1. Solve the following formula for the specified variable. If there is more than one solution, separate your answers with commas. If there are no real solutions, enter NO SOLUTION.

\[F = g \frac{mM}{d^2} \] ; solve for \(d \)

(Newton’s law of gravitation; \(F \) is the force between two masses, \(g \) is the gravitational constant, \(m \) is the first mass, \(M \) is the second mass, and \(d \) is the distance between the masses)

\[
F = g \frac{mM}{d^2} \\
F = \frac{gmM}{d^2} \\
d^2 \cdot F = \frac{gmM}{d^2} \cdot d^2 \\
d^2 F = gmM \\
d^2 = \frac{gmM}{F} \\
\]

\[
d = \pm \sqrt{\frac{gmM}{F}}
\]

Since the variable \(d \) represents the distance between the two masses, \(d \) must be a non-negative value. Therefore we will disregard the negative root, and keep only the positive root.

\[
d = \sqrt{\frac{gmM}{F}}
\]