Remember that when working with equations that whatever you do to one side, you must do to the other side.

Also, when working with unknown quantities, use variables.

When solving applied problems, it might be helpful to ask yourself questions to help set-up equations that you can solve. Examples of questions you could ask yourself are given in red below. Keep in mind that the questions below in red will not appear in the homework, or on quizzes and exams; these are simply questions that you should be asking yourself when you see problems like these in order to help get equations that you can solve.

Examples:

1. A couple has budgeted $4,000 for their rehearsal dinner. If sales tax is 5% and they tip 20%, how much can they spend on dinner, before tax and tip, if they tip on the total bill (dinner + tax)? Round your answer to the nearest penny.

 What is cost of dinner only? (if you don’t know, assign a variable to represent this value)

 How much sales tax will the couple pay? (cost of dinner only times 0.05)

 How much will the couple pay for the tip? (cost of dinner only times 0.2)

 How much will the couple pay in total? (write an equation; $ for dinner only + $ for tax + $ for tip = total $)

 a. How much more can the couple spend on food and drinks if they tip on the meal only, without including the tax?
2. An employee makes $14 an hour. The employee gets paid double for any hours (or fraction of an hour) worked over 40 hours in a week. One week the employee made $840 before taxes; how many total hours did the employee work?

How much does the employee make for working 40 hours? (hourly wage times 40 hours)

How many hours over 40 did the employee work? (if you don’t know, assign a variable to represent this value)

How much did the employee make for the hours over 40? (overtime hourly wage times overtime hours)

How much did the employee make total? (write an equation; $ for 40 hours + $ for overtime = total $)
3. An electrician and his apprentice both work 10 hours on a particular job. If they bill a customer $735 for labor on a job, and the apprentice pay rate is $\frac{1}{4}$ that of the electrician, how much does each make per hour?

\textit{How much does the electrician make per hour?}

\textit{How many hours did the electrician work?}

\textit{How much does the apprentice make per hour?}

\textit{How many hours did the apprentice work?}

\textit{How much did the pair make together? (write an equation; $ for \text{electrician} + $ for \text{apprentice} = \text{total $})}
4. When a popular band played at Elliott Hall, the box-office receipts totaled $120,000. Non-student tickets cost 3 times more than student tickets. If 4,000 students attended the concert, as well as 2,000 non-students, what was the ticket charge for each?

How much did student tickets cost?

\[x \text{ dollars} \]

How many students attended the concert?

4,000 students

How much did non-student tickets cost?

\[3x \text{ dollars} \]

How many non-students attended the concert?

2,000 students

How much total box-office revenue was generated? (write an equation; $ from student tickets + $ from non-student tickets = total $)

\[
\left(x \frac{\text{dollars}}{\text{student}} \right) \cdot (4000 \text{ students}) + \left(3x \frac{\text{dollars}}{\text{non-\text{-}student}} \right) (2000 \text{ non-\text{-}students}) = $120000
\]

\[
4000x \text{ dollars} + 6000x \text{ dollars} = $120000
\]

\[
$10000x = $120000
\]

\[
x = 12
\]

So student tickets cost $12 each while non-student tickets cost $36 each.
5. A salesperson purchased a car that is advertised as getting half as many miles per gallon of gasoline in the city than it does on the highway. On a recent sales trip that covered 1200 miles in total, the car used up 25 gallons on the highway and 10 gallons in the city. Assuming that the advertised mileage estimates were correct, what is the mileage of the car in the city and on the highway?

How many miles per gallon does the car get on the highway?

\[x \text{ miles} \quad \text{per gallon} \]

How many gallons of gas were used on the highway?

25 gallons

How many miles per gallon does the car get in the city?

\[\frac{1}{2}x \text{ miles per gallon} \]

How many gallons of gas were used in the city?

10 gallons

How many total miles were driven? (write an equation; miles driven on the highway + miles driven in the city = total miles)

Highway miles + City miles = Total miles

\[
\left(x \text{ miles per gallon} \right) \cdot (25 \text{ gallons}) + \left(\frac{1}{2}x \text{ miles per gallon} \right) (10 \text{ gallons}) = 1200 \text{ miles}
\]

\[
25x \text{ miles} + 5x \text{ miles} = 1200 \text{ miles}
\]

\[
30x \text{ miles} = 1200 \text{ miles}
\]

\[
x = 40
\]

So the car gets 40 \(\frac{\text{miles}}{\text{gallon}} \) on the highway and 20 \(\frac{\text{miles}}{\text{gallon}} \) in the city.
Answers to Examples:
1. $1,600 ; 2. 50 hours ;
3. Electrician makes $58.80 per hour; Apprentice makes $14.70 per hour;
4. Student tickets cost $12 ; Non – student tickets cost $36 ;
5. 40 mpg on the Highway ; 20 mpg in the City ;