When solving equations by factoring, we showed that an equation such as \(x^2 - 25 = 0 \) could be solved by factoring the binomial on the left hand side of the equation, and using Zero Factor Theorem.

\[
x^2 - 25 = 0
\]

\[
(x - 5)(x + 5) = 0
\]

\[
x - 5 = 0 \; ; \; x + 5 = 0
\]

\[
x = 5 \; ; \; x = -5
\]

There is another way to solve this type of equation for \(x \) that does not involve factoring; instead we could isolate the perfect square \(x^2 \), then take the square root of both sides of the equation to solve for \(x \). This is known as \textbf{Extracting Square Roots}.

\[
x^2 - 25 = 0
\]
Solving Quadratic Equations by Extracting Square Roots:

- a quadratic equation of the form \(x^2 - c = 0 \) can be solved by isolating the perfect square containing the variable \(x \), and taking the square root of both sides of the equation

 a. if \(x^2 - c = 0 \), then \(x^2 = c \) and \(x = \pm \sqrt{c} \)

- as shown on the previous page, extracting square roots produces the same answer as if we had solved by factoring

 a. \(49 - (2x)^2 = 0 \)

 \[
 49 = (2x)^2 \\
 \pm \sqrt{49} = \sqrt{(2x)^2} \\
 \pm 7 = 2x \\
 \pm \frac{7}{2} = x
 \]

 b. \(49 - (2x)^2 = 0 \)

 \[
 (7 - 2x)(7 + 2x) = 0 \\
 7 - 2x = 0 \quad ; \quad 7 + 2x = 0 \\
 7 = 2x \quad ; \quad 7 = -2x \\
 \frac{7}{2} = x \quad ; \quad -\frac{7}{2} = x
 \]

Example 1: Solve the following equations for \(x \) and enter exact answers only (no decimal approximations). If there is more than one solution, separate your answers with commas. If there are no real solutions, enter NO SOLUTION.

a. \(6(5 + x)^2 - 42 = 0 \)

b. \(\frac{(2x + 3)^2}{3} - 13 = 0 \)
In each of the previous problems, the perfect squares containing the variable x ($x^2, (2x)^2, (5 + x)^2, (2x + 3)^2$) were isolated first **BEFORE** taking the square root of both sides. Keep in this mind when solving similar problems.

Also, keep in mind that whatever you take the square root of must be nonnegative (zero or positive). You cannot take the square root of a negative number and get a real number back, because a real number times itself is never negative. So an equation such as $x^2 = -25$ would have no real solutions, because there is no real number that can be squared to produce -25.

Example 2: Solve the equation $x^2 + 4 = 0$ for x and enter exact answers only (no decimal approximations). If there is more than one solution, separate your answers with commas. If there are no real solutions, enter **NO SOLUTION**.

\[
x^2 + 4 = 0
\]
\[
x^2 = -4
\]
\[
x = \pm\sqrt{-4}
\]

Since the square root of a negative number does not exist with real numbers, there are no real solutions. So there is **NO SOLUTION**.
Example 3: Solve the following equations for x and enter exact answers only (no decimal approximations). If there is more than one solution, separate your answers with commas. If there are no real solutions, enter NO SOLUTION.

a. $-4x^2 + 9 = 0$
b. $(x - 3)^2 = 16$
c. $51 - 3(2x - 3)^2 = 0$

d. $9(x - 1)^2 + 7 = 0$

e. $\left(\frac{1}{x}\right)^2 - \frac{1}{9} = 0$

f. $\frac{x + 2}{x - 2} + \frac{1}{x^2 - 4} = 0$
Keep in mind the difference between equations such as $x = \sqrt{25}$ and $x^2 = 25$. The equation $x = \sqrt{25}$ has only one solution ($x = 5$), while the quadratic equation $x^2 = 25$ has two solutions ($x = -5$ and $x = 5$). If you are unsure why the quadratic equation $x^2 = 25$ has two real solutions instead of just one, try solving it by factoring.

Answers to Examples:

1a. $x = -5 + \sqrt{7}, -5 - \sqrt{7}$; 1b. $x = \frac{-3-\sqrt{39}}{2}, \frac{-3+\sqrt{39}}{2}$;

2. **NO SOLUTION**; 3a. $x = -\frac{3}{2}, \frac{3}{2}$; 3b. $x = -1, 7$;

3c. $x = \frac{3}{2} \pm \frac{\sqrt{17}}{2}$; 3d. **NO SOLUTION**; 3e. $x = -3, 3$;

3f. **NO SOLUTION**;