Radical Notation:

\[\sqrt[n]{y} \]

- the expression above is read “the \(n^{th} \) root of \(y \)”, where \(y \) is the radicand, \(\sqrt{} \) is the radical sign, and \(n \) is the index or root
- if no index is denoted, it is understood to be an index of 2 (a square root)
 \[\sqrt{y} = \sqrt[n]{y} \]
- the definition of \(\sqrt[n]{y} \) is the value that must be taken to the power of \(n \) to produce \(y \)
 \[\sqrt[n]{y} \] represents the value that is taken to the power of \(n \) to produce \(y \)
 \[\sqrt{25} = 5 \text{ because } 5^2 = 25 \]
 \[\sqrt[3]{-64} = -4 \text{ because } (-4)^3 = -64 \]

Example 1: Evaluate each expression.

a. \(\sqrt{16} \)
 Why?

b. \(\sqrt[4]{16} \)
 Why?

c. \(\sqrt{64} \)
 Why?

d. \(\sqrt[3]{64} \)
 Why?

e. \(\sqrt[3]{27} \)
 Why?

f. \(\sqrt{81} \)
 Why?

Because \(4^3 = 64 \)
Because \(3^3 = 27 \)
Because \(9^2 = 81 \)
Even Roots:
- a radical with an index of 2, 4, 6, ...
- the radicand of a radical with an even root must be positive or zero (no negative values)
 - the even root of a positive number is a positive number
 - $\sqrt[4]{16} = 2$ because $2^4 = 16$
 - the even root of zero is zero
 - $\sqrt{0} = 0$ because $0^2 = 0$
 - the even root of a negative number does not exist with real numbers because no real number (negative, positive, or zero) can be taken to an even power and produce a negative value
 - $(-4)^2 = (-4) \cdot (-4) = 16$
 - $(-3)^4 = (-3) \cdot (-3) \cdot (-3) \cdot (-3) = 81$
 - $(-2)^6 = (-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2) = 64$
 - a negative base taken to an even exponent will **ALWAYS** result in a positive value, so that is why the even root of a negative number does not exist with real numbers

Odd Roots:
- a radical with an index of 3, 5, 7, ...
- the radicand of a radical with an odd root can be any real number (negative, positive, or zero)
 - the odd root of a positive number is a positive number
 - $\sqrt[5]{32} = 2$ because $2^5 = 32$
 - the odd root of zero is zero
 - $\sqrt[3]{0} = 0$ because $0^3 = 0$
 - the odd root of a negative number is a negative number
 - $\sqrt[3]{-64} = -4$ because $(-4)^3 = -64$
 - a negative base taken to an odd exponent will **ALWAYS** result in a negative value, so that is why the odd root of a negative number does exist with real numbers, and is negative
Example 2: Evaluate each expression; if a solution does not exist in real numbers, write DNE.

a. \(\sqrt{36} \)

b. \(\sqrt{-81} \)

c. \(-\sqrt{25} \)

Why?
Why?
Why?

d. \(3\sqrt{8} \)

e. \(3\sqrt{-8} \)

f. \(-3\sqrt{125} \)

Why?
Why?
Why?

g. \(4\sqrt{81} \)

h. \(6\sqrt{-\pi} \)

i. \(-8\sqrt{1} \)

3

DNE

-1

Why?
Why?
Why?

Because \(3^4 = 81 \)

Because no real number to the power of 6 will be negative

Because **1^8 = 1** and then it’s negated

j. \(5\sqrt{0} \)

k. \(7\sqrt{-1} \)

l. \(-9\sqrt{1} \)

0

-1

-1

Why?
Why?
Why?

Because \(0^5 = 0 \)

Because \((-1)^7 = -1 \)

Because **1^9 = 1** and then it’s negated
Answers to Examples:
1a. 4; 1b. 2; 1c. 8; 1d. 4; 1e. 3; 1f. 9; 2a. 6;
2b. DNE; 2c. −5; 2d. 2; 2e. −2;
2f. −5; 2g. 3; 2h. DNE; 2i. −1; 2j. 0; 2k. −1; 2l. −1;