Radical Notation:

\[\sqrt[n]{y} \]

- the expression above is read “the \(n^{th}\) root of \(y\)” where \(y\) is the radicand, \(\sqrt{}\) is the radical sign, and \(n\) is the index or root
- if no index is denoted, it is understood to be an index of 2 (a square root)
 \[\sqrt{y} = \sqrt[2]{y} \]
- the definition of \(\sqrt[n]{y}\) is the value that must be taken to the power of \(n\) to produce \(y\)
 - the expression \(\sqrt{25}\) represents the value that is taken to the power of 2 to produce 25
 - since 5 taken to the power of 2 is 25, the square root of 25 is 5
 - \(\sqrt{25} = 5\) because \(5^2 = 25\)
 - the expression \(\sqrt[3]{-64}\) represents the value that is taken to the power of 3 to produce \(-64\)
 - since \(-4\) taken to the power of 3 is \(-64\), the cubed root of \(-64\) is \(-4\)
 - \(\sqrt[3]{-64} = -4\) because \((-4)^3 = -64\)

Example 1: Evaluate each expression.

a. \(\sqrt{16}\)

Why?

b. \(\sqrt[4]{16}\)

Why?

c. \(\sqrt{64}\)

Why?

d. \(\sqrt[3]{64}\)

Why?

e. \(\sqrt[3]{27}\)

Why?

f. \(\sqrt{81}\)
Even Roots:
- a radical with an index of 2, 4, 6, ...
- the radicand of a radical with an even root must be positive or zero (no negative values)
 o the even root of a positive number is a positive number
 ▪ \(\sqrt[4]{16} = 2 \) because \(2^4 = 16 \)
 o the even root of zero is zero
 ▪ \(\sqrt{0} = 0 \) because \(0^2 = 0 \)
 o the even root of a negative number does not exist with real numbers because no real number (negative, positive, or zero) can be taken to an even power and produce a negative value
 ▪ \((-4)^2 = (-4) \cdot (-4)\)
 \[= 16 \]
 ▪ \((-3)^4 = (-3) \cdot (-3) \cdot (-3) \cdot (-3)\)
 \[= 81 \]
 ▪ \((-2)^6 = (-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2)\)
 \[= 64 \]
 ▪ a negative base taken to an **even** exponent will **ALWAYS** result in a positive value, so that is why the **even** root of a negative number does not exist with real numbers

Odd Roots:
- a radical with an index of 3, 5, 7, ...
- the radicand of a radical with an odd root can be any real number (negative, positive, or zero)
 o the odd root of a positive number is a positive number
 ▪ \(\sqrt[5]{32} = 2 \) because \(2^5 = 32 \)
 o the odd root of zero is zero
 ▪ \(\sqrt[3]{0} = 0 \) because \(0^3 = 0 \)
 o the odd root of a negative number is a negative number
 ▪ \(\sqrt[3]{-64} = -4 \) because \((-4)^3 = -64 \)
 o a negative base taken to an **odd** exponent will **ALWAYS** result in a negative value, so that is why the **odd** root of a negative number does exist with real numbers, and is negative
Example 2: Evaluate each expression; if a solution does not exist in real numbers, write DNE.

a. \(\sqrt{36} \)
b. \(\sqrt{-81} \)
c. \(-\sqrt{25} \)

Why?
Why?
Why?

d. \(3\sqrt{8} \)
e. \(3\sqrt{-8} \)
f. \(-3\sqrt{125} \)

Why?
Why?
Why?

g. \(4\sqrt{81} \)
h. \(6\sqrt{-\pi} \)
i. \(-8\sqrt{1} \)

Why?
Why?
Why?

j. \(5\sqrt{0} \)
k. \(3\sqrt{-1} \)
l. \(-9\sqrt{1} \)

Why?
Why?
Why?
Answers to Examples:
1a. 4; 1b. 2; 1c. 8; 1d. 4; 1e. 3; 1f. 9; 2a. 6;
2b. DNE; 2c. −5; 2d. 2; 2e. −2;
2f. −5; 2g. 3; 2h. DNE; 2i. −1; 2j. 0; 2k. −1; 2l. −1;