Variation:
- how one quantity changes (varies) in relation to another quantity

Direct Variation:
- a dependent variable moves in the same direction as an independent variable
- described by formulas of the form \(y = kx^n \), where \(n > 0 \)
 - when \(x \) increases, \(y \) increases
 - when \(x \) decreases, \(y \) decreases

Joint Variation:
- when a quantity varies directly as the product of two or more variables
- described by formulas such as \(y = kxz \), \(y = kx^2z \), \(y = kxz^2 \), \(\ldots \),
where the variable \(y \) is dependent on the product of more than one independent variable (such as \(x \) and \(z \)) as well as a constant of variation \(k \)
 - when the independent variables increase, the dependent variable \(y \) also increases
 - when the independent variables decrease, the dependent variable \(y \) also decreases

- Examples:
 - the area of a triangle varies jointly as the base and the height
 - \(A = k \cdot b \cdot h \); the constant of proportionality \(k = \frac{1}{2} \)
 - the volume of a cone varies jointly as the square of the radius and the height
 - \(V = k \cdot r^2 \cdot h \); the constant of variation \(k = \frac{\pi}{3} \)
Example 1: Express the following statement as a formula that involves the given variables and a constant of proportionality k, and then determine the value of k from the given conditions.

y varies jointly with the square of x and the cube root of z. If $x = 5$ and $z = 8$, then $y = 25$.

Example 2: Express the following statement as a formula that involves the given variables and a constant of proportionality k, and then determine the value of k from the given conditions.

r is directly proportional to the product of s and v. If $s = 2$ and $v = 3$, then $r = 40$.
Example 3: The area of a trapezoid \((A)\) is jointly proportional to its height and the sum of the lengths of the parallel sides.

a. Express the previous statement as a formula, using the trapezoid below on the left and a constant of variation \(k\).

b. Find the constant of variation \(k\), if the area of the trapezoid on the right is 49 \(in^2\).
Answers to Examples:
1. \(y = kx^2 \cdot 3\sqrt{z} \); \(k = \frac{1}{2} \); 2. \(r = ksv \); \(k = \frac{20}{3} \);
3a. \(A = k \cdot h(a + b) \); 3b. \(k = \frac{1}{2} \);