Rationalizing a denominator:
- re-writing a fraction so that the denominator contains no radicals
 (we’ll only be working with square roots in this lesson)

 o a fraction such as $\frac{2}{\sqrt{5}}$ can be re-written as $\frac{2\sqrt{5}}{5}$ by simply multiply
 the original fraction by the denominator over itself $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$.
 $\frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$
 o the reason we multiply by the denominator over itself is because
 we want to eliminate the square root from the denominator, and
 also because multiplication by 1 (anything over itself) is always
 acceptable
 o keep in mind that $\frac{2}{\sqrt{5}}$ and $\frac{2\sqrt{5}}{5}$ are equivalent

Steps for Rationalizing Denominators:
1. use the Quotient Rule for Radicals (if possible) to write the
 numerator and denominator as two separate square roots
2. multiply by 1

 • a square root over itself $\left(\frac{\sqrt{\square}}{\sqrt{\square}}\right)$
3. simplify the square root in the numerator (if possible)

 • Product Rule may be necessary
4. simplify the fraction (if possible)

 • cancel common factors
Example 1: Simplify the following expressions completely.

Write the numerator and denominator as two separate square roots using the Quotient Rule for Radicals.

To rationalize the denominator of a fraction containing a square root, simply multiply both the numerator and denominator by the denominator over itself.

Be sure to simplify the radical in the numerator completely by removing any factors that are perfect squares.

Be sure to also simplify the fraction by canceling any common factors between the numerator and denominator.

The final answer should not contain any radicals in the denominator. Also, any radicals in the numerator should be simplified completely. And the fraction should be simplified as well.

Keep in mind that you must always simplify your radicals and your fractions completely. However also keep in mind that in this problem, \(\frac{\sqrt{14}}{6} \) cannot be simplified any further because while 14 and 6 both have a common factor of 2, \(\sqrt{14} \) and 6 do not.
Example 2: Simplify the following expressions completely. (Assume that all variables are positive.)

a. \(\frac{1}{\sqrt{3x^5y}} \)

b. \(\sqrt{\frac{3x}{2y^7}} \)
c. \(\frac{\sqrt{x^9y}}{8x^3y^4} \)
\[\frac{\sqrt{x^9y}}{8x^3y^4} \cdot \frac{\sqrt{8x^3y^4}}{\sqrt{8x^3y^4}} = \frac{x^7\sqrt{3x^2y^8}}{3x^2y} \]
\[\frac{\sqrt{8x^{12}y^5}}{8x^3y^4} = \frac{\sqrt{3}x^2\sqrt{y^8}}{3x^2y} \]
\[\frac{\sqrt{8\sqrt{x^{12}}y^5}}{8x^3y^4} = \frac{x^7\sqrt{3xy^4}}{3x^2y} \]
\[\frac{\sqrt{6\sqrt{x^6}y^4y^4}}{8x^3y^4} = \frac{x^8y^4\sqrt{3}}{3x^2y} \]
\[\frac{2\sqrt{2x^6y^2\sqrt{y}}}{8x^3y^4} = \frac{x^6y^3\sqrt{3}}{3} \]
\[\frac{2x^6y^2\sqrt{2y}}{8x^3y^4} \]
\[\frac{x^3\sqrt{2y}}{4y^2} \]

Answers to Examples:

1. \(\frac{\sqrt{14}}{6} \); 2a. \(\frac{\sqrt{3xy}}{3x^3y} \); 2b. \(\frac{\sqrt{6xy}}{2y^4} \); 2c. \(\frac{x^3\sqrt{2y}}{4y^2} \); 2d. \(\frac{x^6y^3\sqrt{3}}{3} \)