Consider the differential equation

\[(2xy^2 + 2y) + (2x^2y + 2x)y' = 0\]

Is this equation linear? No! (integrating factors doesn't work)
Is it separable? No!
But we can notice something very interesting. Consider the function
\[\psi(x,y) = x^2y^2 + 2xy\]
\[\frac{d\psi}{dx} = \psi_x = 2xy^2 + 2y \quad \frac{d\psi}{dy} = \psi_y = 2x^2y + 2x\]

Knowing this, we can rewrite the above as \(\frac{d\psi}{dx} + \frac{d\psi}{dy} \cdot \frac{dy}{dx} = 0\)

Since \(\psi(x,y)\) is a function of \(x\) and \(y\), the multivariate chain rule tells us that
\[\frac{d\psi}{dx} = \frac{d\psi}{dx} \cdot \frac{dx}{dx} + \frac{d\psi}{dy} \cdot \frac{dy}{dx}\]

So really our differential equation is of the form \(\frac{d\psi}{dx} = 0\).
So we get \(\psi(x,y) = C\), and thus \(x^2y^2 + 2xy = C\) implicitly is a solution.

A differential equation of the form \(M(x,y) + N(x,y) dy/dx = 0\) is called exact if there exists a function \(\psi(x,y)\) with \(\psi_x = M(x,y)\) and \(\psi_y = N(x,y)\).

The solutions of an exact equation can be given implicitly by \(\psi(x,y) = C\) for \(C\) an arbitrary constant.

Thm 2.6.1: If \(M, N, M_y, N_x\) are continuous in the rectangular region \(R\):
\(a < x < b, \gamma < y < \delta\), then \(M(x,y) + N(x,y) \frac{dy}{dx} = 0\) is exact on \(R\) (i.e. there exists a function \(\psi(x,y)\) with \(\psi_x = M\) and \(\psi_y = N\)) if and only if \(M_y = N_x\).

Ex 1: Determine whether the following differential equations are exact:

(a) \((e^x \sin y + 2xy) + (e^x \cos y + x^2) \frac{dy}{dx} = 0\)

\[M(x,y) = e^x \sin y + 2xy \quad N(x,y) = e^x \cos y + x^2\]

\(M_y = e^x \cos y + 2x \quad N_x = e^x \cos y + 2x\)

\(M = N_x, \text{ so by Thm 2.6.1 the equation is exact.}\)

(b) \((3x^2 + y) - (2y + x) y' = 0\)

Be careful here! \(M(x,y) = 3x^2 + y, N(x,y) = -2y - x\).

\(M_y = 1 \quad N_x = -1 \Rightarrow M_y \neq N_x, \text{ so not exact.}\)

(c) \(y' = \frac{(\omega y + 2x)}{3y^2 - \omega x} \Rightarrow (3y^2 - \omega x) y' = (\omega y + 2x)\)

\(-\omega y - 2x) + (3y^2 - \omega x) y' = 0\)

\(M = -\omega \quad N_x = -\omega \Rightarrow \text{equation is exact.}\)
So if we have an exact equation, how can we figure out what \(\psi(x,y) \) is?

We know \(\psi_x(x,y) = M(x,y) \) and \(\psi_y(x,y) = N(x,y) \). If we integrate \(M(x,y) \) with respect to \(x \) we should get \(\psi(x,y) \) (up to a function of \(y \)).

We can then differentiate our result with respect to \(y \) and that should equal \(N(x,y) \). By using another integration, we can find \(\psi(x,y) \) exactly.

EX2: Solve \((e^x \sin y + 2xy) + (e^x \cos y + x^2) \frac{dy}{dx} \)

In **Ex1**, we checked that this is exact. Thus there exists a function \(\psi(x,y) \)

s.t. \(\psi_x(x,y) = M(x,y) = e^x \sin y + 2xy \) and \(\psi_y(x,y) = N(x,y) = e^x \cos y + x^2 \)

\[
\psi(x,y) = \int \psi_x(x,y) \, dx = \int e^x \sin y + 2xy \, dx = e^x \sin y + x^2 y + h(y)
\]

where \(h(y) \) is some function of \(y \):

\[
\psi_y(x,y) = \frac{\partial}{\partial y} [e^x \sin y + x^2 y + h(y)] = e^x \cos y + x^2 + h'(y)
\]

But \(\psi_y(x,y) = N(x,y) = e^x \cos y + x^2 \Rightarrow h'(y) = 0 \)

\(h(y) = \int h'(y) \, dy = \int 0 \, dy = 0 + C_1 \)

Thus \(\psi(x,y) = e^x \sin y + x^2 y + C_1 = e^x \sin y + x^2 y + C_1 \)

Hence, \(e^x \sin y + x^2 y + C_1 = C_2 \)

\(\Rightarrow e^x \sin y + x^2 y = C_2 - C_1 = C \) (another arbitrary constant)

And \(e^x \sin y + x^2 y = C \) is a solution.

EX3: Solve \(y' = \frac{e^y + 2x}{3y^2 - 6x} \)

We showed this was exact in **Ex1**, thus there exists a function \(\psi(x,y) \)

s.t. \(\psi_x = -e^y - 2x \) and \(\psi_y = 3y^2 - 6x \)

\[
\psi(x,y) = \int \psi_x \, dx = \int -e^y - 2x \, dx = -e^y x - x^2 + h(y)
\]

\[
\frac{d}{dy} \psi = -e^y x + h'(y) = \psi_y = 3y^2 - 6x \Rightarrow h'(y) = 3y^2
\]

\(h(y) = \int 3y^2 \, dy = y^3 + C \) (but the constant doesn't matter)

\[
\psi(x,y) = -e^y x^2 + y^3 \quad \text{and} \quad -e^y x^2 + y^3 = C \text{ is a solution.}
\]

EX4: Solve the IVP and determine where the solution is valid.

\[
(2x - y) + (2y - x) \frac{dy}{dx} = 0 \quad y(1) = 3
\]

\(M_y = -1 \quad N_x = -1 \Rightarrow \text{exact!} \)

\[
\psi(x,y) = \int 2x - y \, dx = x^2 - xy + h(y)
\]

\[
\frac{d}{dy} \psi = -x + h'(y) = 2y - x \Rightarrow h'(y) = 2y \Rightarrow h = y^2
\]
So \(x^2 - yx + y^2 = c \) is a solution. \(y(1) = 3 \Rightarrow 1^2 - 3(1) + 3^2 = c \Rightarrow c = 7 \)

\[
x^2 - yx + y^2 = 7 \Rightarrow x^2 - yx + y^2 - 7 = 0 \quad \text{or} \quad y^2 - xy + x^2 - 7 = 0
\]

Quadratic Formula:

\[
y = \frac{x \pm \sqrt{x^2 - 4(y^2 - 7)}}{2} = \frac{x \pm \sqrt{x^2 - 4x^2 + 28}}{2}
\]

\[
y = \frac{x \pm \sqrt{28 - 3x^2}}{2}
\]

In order to satisfy the initial condition

\[
3 = \frac{1 \pm \sqrt{28 - 3}}{2} = \frac{1 \pm 5}{2}
\]

so \(y = \frac{1}{2} \left(x + \sqrt{28 - 3x^2} \right) \). This is valid when \(28 - 3x^2 \geq 0 \)

\[
28 \geq 3x^2
\]

\[
\frac{28}{3} \geq x^2
\]

\[
\sqrt{\frac{28}{3}} \geq 1 \times 1
\]

\[
-\sqrt{\frac{28}{3}} \leq x \leq \sqrt{\frac{28}{3}}
\]

If \(x = \frac{-1}{2} \sqrt{\frac{28}{3}} \), \(y = \frac{1}{2} \left(\pm \sqrt{\frac{28}{3}} \right) \)

Looking back at the original differential equation:

\[
\left(2 \left(\pm \sqrt{\frac{28}{3}} \right) + \frac{1}{2} \sqrt{\frac{28}{3}} \right) + \left(2 \left(\frac{-1}{2} \sqrt{\frac{28}{3}} \right) + \sqrt{\frac{28}{3}} \right) y' = 0
\]

\[
= 0
\]

So the differential equation is not satisfied. Thus the solution is valid when \(|x| < \sqrt{\frac{28}{3}} \) or equivalently when \(-\sqrt{\frac{28}{3}} < x < \sqrt{\frac{28}{3}} \).