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Abstract 

 

In this report, the research completed about reconfigurable computing 

is presented.  A description for a morphing bus to help implement 

reconfigurable computing is given.  An example application for 

reconfigurable computing, the TerminatorBot, is also provided.  

Considerations for both design and layout for the TerminatorBot PCB’s are 

given.
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1 Introduction 

The idea for reconfigurable computing has been around since the 1960s, when 

Gerald Estrin published a paper that proposed a method of implementing it.  The method 

proposed by Estrin was to have a computer that consisted of a standard processor and an 

array of reconfigurable hardware.  The processor would control the function of the 

reconfigurable hardware.  The reconfigurable hardware would be setup to perform a 

specific task, like image sensing, as fast as it would be performed by a dedicated piece of 

hardware.  Once the task was completed, the hardware could be adjusted to perform a 

new function.  This would allow a computer structure that had better flexibility with the 

same hardware speed.  Estrin’s idea was ahead of the technology of the 1960s, but his 

idea has become popular again as the technology is now becoming available [1]. 

Xilinx was one of the first major companies to research and start development on 

reconfigurable computing.  In the mid-1990s Xilinx started developing a new FPGA 

family specifically designed for reconfigurable computing.  The part had “deep 

configuration memory, the ability to partially reconfigure the chip on the fly and 

numerous other features” [2].  This new FPGA family was deemed too difficult to 

implement for production by Xilinx, but some of the features are available in other Xilinx 

families now, like the Virtex-II family [2]. 

Reconfigurable computing could be used for many different applications, such as 

robotics or in an assembly line of a factory; there are countless potential uses.  The reason 

for so many uses is because of the benefits of reconfigurable computing.  Less hardware 

is needed because the same hardware can be reconfigured to perform different tasks.  
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Because there is less hardware, it takes up less space and products can be smaller.  The 

hardware can be easily upgraded and reused for different projects because it only needs to 

be reprogrammed.  These benefits are something that a team of researchers from the 

University of Minnesota are looking to implement in their robot called the 

TerminatorBot. 

The TerminatorBot has been around since 2000 with many modifications 

throughout its life.  It was 

created to be a search-and-

rescue robot funded by the 

DARPA Distributed Robotics 

contract.  It is capable of 

manipulating objects and 

locomotion through the use 

of two arms.  Because of the 

small size of the robot, reconfigurable computing would allow the TerminatorBot to have 

more functionality through the use of less hardware, which takes up less space in its small 

body.  This would allow the TerminatorBot to adapt more to its environment. 

2 Work Performed 

 To implement reconfigurable computing on the TerminatorBot there are three 

main things that are needed: the CPU/reconfigurable hardware interface, the morphing 

bus, and the add-on cards that perform specialized functions. 

Figure 1: The TerminatorBot [3] 
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The CPU/reconfigurable hardware interface for the TerminatorBot will be the 

Xilinx Virtex II family of processors.  The Virtex II has an embedded CPU core, which 

results in a System-On-Chip design [4].  This will allow for better integration between 

the CPU/FPGA interface and the rest of the system. 

The add-on cards are used to perform specialized functions like camera operation, 

motion sensors, smell sensors, etc.  They plug into the main circuit board of the 

TerminatorBot and they are able to be added or removed when desired.  Only the camera 

interface has been implemented for this project, but the use and interface to the cards and 

the morphing bus are designed to accommodate a wide range of expansion cards. 

The morphing bus connects the CPU/reconfigurable hardware interface to the 

add-on cards.  The bus needs to be able to handle all the different types of I/O cards that 

can be attached to the system.  One of the goals when designing this morphing bus was to 

allow it to work for any kind of system.  This bus will work regardless of the 

CPU/reconfigurable hardware interface or the I/O card(s) attached. 

2.1 Morphing Bus 

The morphing bus is different from other bus architectures because there is no 

extra conversion logic when communicating with the I/O cards.  For standard buses, there 

is a protocol that needs to be followed by each device on the bus.  The expansion card 

then needs to have logic onboard to convert from this standard to its interface format.  

This is shown in Figure 2 below. 
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The way the morphing bus works is to send the signals directly to the sensor.  The 

conversion logic is incorporated into the bus interface when it is statically reconfigured 

for the sensor.  This is because the data sent on the bus to the device is already tailored to 

that particular device.  This setup can be seen in Figure 3 below. 

 

Note, however, that at the present time there will still need to be logic to do analog 

conversion on expansion boards.  The current FPGAs are not capable of both digital and 

analog signaling.  Xilinx’s product roadmap includes FPGAs capable of both analog and 

digital programmability in the next year or so. 

The work performed in researching configurations of the morphing bus was 

concentrated on configurations that would allow for the best expansion in the future.  The 

morphing bus will have 50 signal lines available.  The possibility of having 60 signals 

was investigated, but 50 signal lines was selected due to size constraints of the boards 

(see Section 2.2).  Four of the signal lines will be dedicated to power and ground (two 

Figure 2: Standard bus (static) 

Figure 3: Morphing bus (dynamic) 



 - 7 - 

ground, one 5V, and one 3.3V), leaving 46 lines available for other connections.  The 

signals that are not used on the individual wedges are passed through to the next wedge.  

They are passed in a way such that the next wedge will use the first signals on the 

morphing bus as if they were connected to the first pins on the baseboard connection.  

This configuration can be seen in Figure 4 below.  By passing the unused signals in this 

way, each wedge does not need to know/care what other wedges may be connected 

before it.  However, the CPU does need to know in what order the wedges are connected 

so that it can be configured to interface with the wedges as they are connected.  In this 

way the design is statically reconfigurable.  When a new wedge is added to the current 

system, the CPU just needs to know what wedge was added, and the signals associated 

with the wedge can be configured into the FPGA pinout.  Similarly, if a new wedge is 

swapped with a wedge that is currently in the system, the CPU needs to know which 

wedge was taken out and what it was replaced with, then it can reconfigure the FPGA 

pinout for the new wedge that has been added. 

 

Figure 4: Morphing bus signal routing [5] 
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The connectors chosen for the morphing bus (discussed in Section 2.2) have a 

0.3A per pin current rating.  This is another important factor that needs to be considered 

when creating the individual wedges.  They need to be designed such that the current 

draw is not enough that it will exceed the limit of the connectors.  For typical wedges, 

this current limit should not be an issue as the current draw for each wedge should not 

exceed about 50mA.  Assuming each wedge takes about 7 or 8 signals, there would be 

enough room to add 6 wedges onto the morphing bus.  At 50mA each, that would just 

reach the current limit of the connector, but typically it is not expected that the wedges 

will require 50mA each (the camera, for instance, uses a significant amount of power, but 

the maximum current under “normal” operation is 30mA).  If more current is needed for 

an individual wedge, the wedge will need to have its own power supplies; the control 

circuitry for the motors are one such wedge where part of it will need to be driven by an 

external power source due to the current requirements. 

Applications using one or more camera interfaces were the target of much of the 

research of the bus standards.  The camera interface was the main focus because it is one 

of the most likely to be used add-on cards and it has the potential to use many of the 

signals on the morphing bus.  Different bus connection types were looked at for the 

camera, including serial connection using USB or I2C and parallel connection using 

either an 8-bit or a 16-bit data line.   

Using a camera interface that has a parallel 16-bit data line in addition to the 

control signals would allow for only two cameras to be connected at once with little or no 

room for additional add-on cards.  For this reason, the parallel 16-bit data line was 

changed to a parallel 8-bit data line (plus the control signals) to save on signals.  Using a 
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parallel 8-bit data line would allow for two cameras to be connected with some signals 

left for other functions, but the camera interface would still take up well over half of the 

available signals on the morphing bus.  Because of the high pin count of parallel camera 

interfaces, serial interfaces were looked at. 

One serial interface that was considered was USB.  This would cut the number of 

signals needed for the camera down to only two per camera (plus power and ground).  If 

USB is implemented in a generic way, other USB devices could be used with the same 

add-on card.  Using USB for the camera interface was decided against, however, due to 

routing concerns of the signals (need to be differential pairs) and because a suitable USB 

camera was not found.  USB is still a potential add-on card, but it needs to be researched 

further.   

Serial communication using the I2C protocol was then considered.  A camera 

interface based on the I2C protocol would allow the camera to operate using only 8 or 9 

signals on the morphing bus.  This would allow for more add-on cards to be connected to 

the system at once.  Since this interface used less signals than a parallel inte rface and a 

suitable I2C camera module was found, this was the design that was chosen to use for the 

camera interface. 

 

 2.2 Circuit Board Design 

As mentioned above, the morphing bus will only have 50 signal lines available 

due to size constraints.  One size constraint was due to the fact that the diameter of the 

TerminatorBot is only 69mm.  The circuit board design (Figure 2) for the wedges 
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required a hole in the middle of the TerminatorBot for wires to pass through, so part of 

the “tip” of the wedge needed to be cut off to allow for this space.  It was also required to 

leave a small gap between the circuit boards and the exterior wall of the TerminatorBot 

for extra airflow.  So the rounded part of the wedge needed to be cut off.  This was also 

done to allow easier manufacturing of the wedges.  It is much easier to cut a straight edge 

than rounded edges of a PCB.  This only left enough space for a 50 pin connector for 

connection between the wedges.  Hirose’s DF12, DF17, and FX8C series were the 

connectors that were considered.  The DF12 series was selected due to its smaller 

footprint and the available stacking heights.  Each connector is about 17mm x 6mm.  The 

DF12 series provides stacking heights between 3.0mm to 5.0mm.  Having multiple 

stacking heights allows for different wedge sizes (double-wedge, triple-wedge) because 

the stacking height can be increased to account for the extra width the multi-slice wedge 

takes up.  The width is important because of the height constraints.  The components on 

the wedges can only be a certain height or the wedge pieces will not fit together properly 

when connected together in the spiral design.  The DF12 series connectors have a 0.5mm 

terminal pitch.  This size is small enough so a large number of pins can be used, but still 

large enough to allow for routing of all the signals on a 4-layer board.   
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(a) Spiral structure without wrapping around   (b) Spiral structure with wrapping around 

    
(c) front view                                           (d) basic cheese wedge 

 
(e) double cheese wedge                       (f) FPGA mainboard 

 

The size of the individual wedges was considered carefully before making a 

decision on how many pieces to divide the circle into.  Four, six, and eight piece wedge 

slice designs were considered before deciding to use a six piece wedge design.  A six 

piece wedge design was chosen because it offered the best trade-off between wasted 

space and usable space per wedge slice.  Table 1 and Figure 6 shown below were used to 

make the decision.  As the table shows, the four, six, and eight wedge designs offered 

583mm^2, 505mm^2, and 412mm^2 of single-sided surface area, respectively.  While 

each design “wasted” 340mm^2, 108mm^2, and 47mm^2, respectively, in the area that 

would be cut-off of the cone shaped wedge to make a triangular shaped wedge.  Dividing 

the wedge surface area by the surface area of the circle cut-out gave the percent of area of 

Figure 5: New Circuit Board design for the TerminatorBot [5] 
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the circle that was actually used on the wedge; this came out to be 62.33% for the 4 

wedge design, 80.96% for the 6 wedge design, and 88.14% for the 8 wedge design.  From 

these figures, it is easy to see that a four wedge design would lose too much surface area 

due to the amount of PCB that would be cut off in making the triangular wedge shape.  

Therefore, the four wedge design was thrown out.  The amount of wasted space was less 

for the eight wedge design than the six slice design, but the amount of surface area per 

wedge that was lost going from a six wedge design to an eight wedge design , about 

100mm^2, was decided to be too much.  There needed to be enough surface area per 

wedge to allow for an adequate number of components to be placed on the wedges.  

Therefore, the six wedge design was decided upon. 
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Radius of Circle 34.5 Full Circle Area 3739.3

Number of wedges in a full 

circle 4 6 8

Central Angle 90 60 45

Segment Height ED 10.105 4.6221 2.6262

Apothem OE 24.395 29.878 31.874

Cord AB 48.79 34.5 26.405

Segment Area (cut-off part) 339.7 107.82 46.593

Triangle Area 595.13 515.39 420.82

Sector Area 934.82 623.21 467.41

Wedge Area compared to

Sector Area 63.66% 82.70% 90.03%

Radius of Circle 5

Full Cut-out 

Circle Area 78.57

Number of wedges in a full 

circle 4 6 8

Central Angle 90 60 45

Segment Height ED 1.4645 0.66987 0.3806

Apothem OE 3.5355 4.3301 4.6194

Cord AB 7.0711 5 3.8268

Segment Area 7.135 2.2647 0.97864

Triangle Area 12.5 10.825 8.8388

Sector Area 19.635 13.09 9.8175

Wedge Area compared to

Sector Area 63.66% 82.70% 90.03%

Single Wedge area 582.63 504.565 411.9812

Wedge with hole Area 

compared to Sector Area 62.33% 80.96% 88.14%

Single Hole area 12.5 10.825 8.8388

Full Circle Hole area 50 64.95 70.7104

*all units are in mm and mm^2

Whole Circle Measurements

Center Cut-out Circle Measurements

Final Circle Measurements
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The final wedge shape and dimensions were then created based on having the two 

connectors centered about a six wedge design.  That meant that the actual PCB wedge 

size would be larger than the dimensions listed in the Table 1.  The corners also needed to 

be cut-off to allow for the wider wedge.  The final design can be seen in the figure below.  

The area for this design is 717.75mm^2 per surface of the wedge.  Each wedge has the 

two standard pass-through connectors which take up about 102mm^2 each, so the total 

area for routing on each surface of the wedge is about 616mm^2. 

 

Table 1: Wedge size comparison 

Figure 6: Figure used to calculate wedge size 

Figure 7: Final wedge design (J1 and J2 pin numbering is 

incorrect.) 
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 The schematic (Figure 8) for the camera interface was created and the signals 

were imported into layout for routing onto the wedge.  The camera wedge was then 

routed on a four-layer PCB.  The routed camera wedge can be seen in the Figure 9 below.  

The routing for the camera wedge had to be done by hand due to the small size 

constraints and repetitive pattern for routing the signals.  The layout program was not 

able to auto route the signals because it could not identify the pattern to follow due to the 

signal pinout.  This pattern was relatively easy to follow (by hand) once it was 

discovered, and should be relatively easy to recreate for other wedge designs.  Each 

wedge that uses a different number of signals will need to be re-routed because the 

signals that are passed straight through will be shifted by the difference between the 

number of signals used on the wedges. 
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Figure 8: Camera interface schematic 

Figure 9: Camera interface wedge (J1 and J2 pin numbering is 

incorrect.) 
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3 Dynamic Reconfigurable Computing 

Research was done for applications of dynamic reconfigurable computing.  The 

research was concentrated on robotics applications.  One idea was to use reconfiguration 

for video sensing.  For example, there are many different techniques that can be used for 

robots to keep track of their environment and where they are in that environment.  One of 

these methods is to use an object of known size, another robot for instance, to determine 

the size of everything else in the environment.  This type of environment recognition 

could require less data processing because there is a known data set for sizing.  The data 

can also be stored in the hardware for faster access and can be optimized better than if it 

were stored in software.  On the other hand, if a known reference point is not in the 

viewing area, the robot will need to do a different type of sizing technique, possibly 

relative sizing.  This technique could require more data processing because every object 

needs to be compared to all the other objects in the viewing area.  In this case, more 

hardware could be dedicated to the processing of the objects in the viewing area by 

“borrowing” hard ware from regular tasks like motion.  Once the robot has the basics of 

its environment down, the hardware could be reconfigured back to “normal” operation by 

restoring the hardware to how it was and resume activities.  This would allow the robot to 

learn about its environment faster than it could if it had limited hardware resources. 

Another application for dynamic reconfigurable computing is to conserve power 

in battery operated devices.  Power can be conserved by reconfiguring the hardware when 

power hungry applications/algorithms are not needed [6].  For example, this idea could 

be applied to video capture.  When conditions are bad (poor lighting, weather conditions, 

etc.), higher quality video can be collected to allow for better image processing.  
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Retrieving high quality video uses a lot of power, and for battery operated devices power 

is a big factor.  If the conditions are good for capturing video data, the capturing process 

can be scaled down to collect lower quality video.  This will require less power and 

conserve precious battery life. 

 

4 Future work 

 Design and layout of the main CPU/FPGA baseboard still needs to be completed.  

Once it is completed, the whole system can be tested.  Until then, the wedges are not able 

to be tested. 

 Right now, the morphing bus is only statically reconfigurable.  Because it was 

designed so that each wedge uses the least amount of signals as possible, no identification 

signals were built into the bus interface.  Standard bus protocols typically assign device 

IDs or use some other type of identification so that the master device knows what and 

how many devices are attached to it.  Research can be done for a method to do this using 

the morphing bus idea.  As it is, the CPU needs to know the order in which the wedges 

are connected.  If the CPU was able to auto-detect the devices as they are connected, it 

would be able to dynamically reconfigure as the wedges are changed. 
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6 Appendix A: Components and Connector Height 

The volume for components above and below the wedges is limited due to the 

spiral nature of the morphing bus (wedges can spiral back over themselves) and the 

allowance of multiple spirals from the same baseboard. The Hirose DF12 connectors 

allow for different connectors heights (section 2.2) and the Morphing Bus specification 

allows for different wedge sizes (Figure 5). All wedges are nominally made of 0.062” 

thick FR-4 PCB material. 

The hexagonal design dictates the fundamental unit of measure for the morphing 

bus is the 60-degree single wedge shown in Figure 10. The double wedge covers 120 

degrees. A triple wedge was considered, but is not feasible with the available connector 

stacking heights of the Hirose DF12. The board edge is 4.5 mm from the connector 

centerline. 

Positioning of the connectors is as specified in Figure 10. The preferred reference 

for locating the connector on a wedge is the mounting hole (9.45 mm from the center 

point).  The distance to pin 1 is also reliable for placement. The distance to the center of 

the mechanical solder pad is unreliable as it varies according to the width of the pad. (For 

reference, this dimension is approximately 8.65 mm.) 
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Nominally, the bottom connector (to the baseboard) is designated J1 and is a 

DF12 female header with 3.5 mm stacking height for single wedges (P/N DF12 (3.5)-

50DP-0.5V(86)) and 5.0 mm stacking height for double wedges (P/N DF12 (5.0)-50DP-

0.5V(86)). These connector configurations allow component heights on the bottom of the 

board that do not exceed 2 mm (Figure 11). In extreme cases, the single wedge can 

employ the 5.0 mm female header (shown in Figure 12) normally reserved for the double 

wedge, to allow up to 3.5 mm component heights on the bottom of the single wedge. The 

5.0 mm stacking height connector allows the low-profile Molex PicoBlade 1.25mm right 

angle connector series (P/N 53261 series) to be installed on the bottom of the wedge with 

a current rating of 1 amp per pin (shown in Figure 13).  

Figure 10: Positioning of connectors and mounting holes. 

60 degrees 
10.5 

31.00 

9.45 

pin 2 

pin 2 

J1 J2 
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Figure 11: Allowable component heights for single and double wedges. 

 

On double wedges, since the stacking height of the DF12 series is not a ratio of 

2:1, it is preferable to place tall components on the bottom side of the wedge near the J1 

connector. This will minimize potential interference with a second morphing bus spiral. 

The top side of all wedges provides more room for components. Regardless of size 

(single or double) the top side components can extend up to 5 mm above the top side of 

the wedge printed circuit board (PCB), as shown in Figure 11. 

 

 

 

 

Nominally, the top connector is labeled J2. This connector daisy-chains the 

Morphing Bus, allowing additional wedges to be stacked in a spiral (Figure 5a). The 

Figure 12: Hirose DF12 Female Header for use as J1. 

J1 connector 

J2 connector 

2mm 
3.5mm 

5mm 

PCB 
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Hirose DF12-50DS-0.5V(86) connector is used for J2, which is the same as the 

baseboard connectors. 

The mechanical integrity of the Morphing Bus stack is assured by the connectors 

and mounting holes that allow for rigid standoffs to be inserted. These holes are #4 

through holes (0.1285” or 3.26 mm) and are positioned as shown in Figure 10 at every 

point of the hexagon. Sufficient space should be left around every mounting hole for the 

shoulder of a nylon standoff. 

Pin numbering on the Morphing Bus connectors alternates like a double-row 

header. In other words, all odd pins are on one side and all even pins are on the other. For 

the 50-pin connectors used for the Morphing Bus, the four corner pins are numbered 1, 2, 

49, and 50. Pins 1, 2, 3, and 4 are always ground, while pins 5 and 6 are 3.3 V, and pins 7 

and 8 are 5.0 V. Each contact is rated at 300 mA, so the maximum current draw of the 

entire Morphing Bus stack for both 3.3 V and 5.0 V supplies is 600 mA each. 

 

 

Figure 13: Molex PicoBlade connector 


