
TRC1000 RecoNode v1.1
Xilinx ISE 14.7 Tutorial

Sangjun Eom

Date: 7.10.2018

1. Hardware Setup

2. Copy an Existing Project

A. Test the Project

a. Open the Project on Xilinx Platform Studio

b. Import the Project to Xilinx SDK

c. Program the Hardware

B. Modify the Project

a. Add a New Software Module

b. Add a New IP Core (Add / Change Wedges)

c. Create a New IP Core

3. Create a New Project

4. Troubleshooting

Table of Contents

HARDWARE SETUP

1. CPU and I/O

The RecoNode is a reconfigurable computational node
for creating heterogeneous wireless control networks.

Each node includes a hard-core PowerPC CPU
(reconfigurable software), an FPGA (reconfigurable
computational hardware), and two MorphingBus
peripheral I/O buses (reconfigurable I/O hardware).

From 1 to n nodes can be configured to create an
integrated control network using PBO/RT software.

You can either use…
• New RecoNode TRC1000 v1.1 (S/N 200 – 215)
• Old RecoNode TRC1000 v1.0 (S/N 000 – 199)

Both RecoNode versions 1.1 and 1.0 are based on the Xilinx
Virtex4 FPGA with onboard PROM and DRAM.

The MorphingBus depends on the configuration of the FPGA
for proper operation, so we have a few “standard I/O stacks”
to make start-up easy.

See the RecoNode Morphing Bus manual for I/O options.

1. Hardware Setup

TRC1000 v1.1

SN # 200 - 215

The RecoNode PCB includes some
routing errors that must be fixed with
“blue wires” for proper operation for
either v1.0 or v1.1. If your RecoNode
has a serial number (Fig. 1), it should be
ready to go.

Some indicators of fixes include:

• JTAG plug has been relocated to
bottom side (Fig. 2)

• Power wire added to DRAM (Fig. 3)

1. Identifying a Good RecoNode v1.1

1

2

3

1. Hardware Setup

Connect Xilinx
Programmer to JTAG Pin
Headers on RecoNode

Connect UART to UART Pin
Headers (J5) located on
bottom side of RecoNode

JTAG Pin
Headers

Xilinx Programmer

1. Hardware Setup

Supply 3.7 Volts to the power board. TRC 1000 should be connected to
JTAG, serial communication cable, and power board

If (The board is not programmed) then
If the current is around 0.2 – 0.3 A then

Pass, it is good
If the current is > 0.3 A, then

Turn off the power supply. Something might be shorted.

If (The chip is programmed) then
If The current rises from 0.2 – 0.3 A to 0.5 – 0.6 A. then

Pass, it is good
If the current is > ~0.65 A - after programmed then

Turn off the power supply. Something might be shorted.

Standard I/O Stack
RecoNode has two MorphingBus
connectors where you can stack I/O
wedges in a double-helix.

The CRL Standard Stack is composed of

Morphing Bus 1 (left in Fig)

• TRC1140 – IMU Wedge (1st level)

• TRC1120 – Motor Wedge (2nd level)

• TRC1121 – Servo Wedge (3rd level)

Morphing Bus 2 (right in Fig)

• TRC1150 – Zigbee Wedge (1st level)

However, you can customize your stack
and change the number & order of the
I/O wedges. Different projects use
different I/O configurations and the
FPGA configuration in the XPS must
reflect the physical stack.

1. Hardware Setup – MorphingBus

Standard Stack

1. Hardware Setup – Standard I/O Stack

TRC1140

IMU Wedge

TRC1120

Motor Wedge

(Double)

TRC1121

Servo Wedge

TRC1150

Zigbee Wedge

1st Level

2nd Level

1st Level

3rd Level

2. Copy an Existing Project

First, let’s install ISE 14.7 software from Xilinx.

2. Installation of Software

Download Xilinx design tools from here:
https://www.xilinx.com/support/downlo
ad/index.html/content/xilinx/en/downlo
adNav/design-tools.html

If they ask for licenses, input this to ”path to license”: 2100@marina.ecn.purdue.edu
(purchased by Dr. Richard M. Voyles for CRL), (Last update 12/12/2016)

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html
mailto:2100@marina.ecn.purdue.edu

2. A. Test the Project
a. Open on Xilinx Platform Studio

b. Import the Project to Xilinx SDK

c. Program the Hardware

We will program the hardware with an existing
project and test it.

OPEN EXISTING PROJECT WITH XPS

a. Xilinx Platform Studio (XPS) Provides Hardware
Configuration Tools

 The XPS allows the configuration of the
FPGA hardware

 VHDL and Verilog code can be written for
custom logic

 IP cores can be embedded from the
Xilinx library

 Signals can be routed to different pins

2. A. a. Xilinx Platform Studio

We are starting
with an existing
project, so all logic
has been already
defined.

Open the existing
*.xmp file so we
can export the
hardware definition
to the software
environment.

2. A. a. Xilinx Platform Studio

2. A. a. Xilinx Platform Studio

We want to export the existing
design and launch the SDK.

b. Import the Project to Xilinx SDK

2. A. b. Xilinx SDK

Open Xilinx Software Development Kit (SDK)
and select the same workspace that contains
your .xmp file

2. A. b. Xilinx SDK

Click “Import…” to include the existing

project folders to the program

Imported projects will appear here. Please

import PBORT_menu_tutorial folder

2. A. b. Xilinx SDK

Continue with

“Existing Projects into Workspace”

Click “Browse…”

Browse to…

C:\Users\admin\Desktop\RecoNode\TRC1000

_StandardStack\software\SDK\SDK_Export

2. A. b. Xilinx SDK

C:\Users\admin\Desktop\RecoNode\TRC1000

_StandardStack\software\SDK\SDK_Export

Contains all existing tested project folders.

2. A. b. Xilinx SDK

Select the project folders that

you want to import.

For this tutorial, we want

PBORT_menu_tutorial folder.

2. A. b. Xilinx SDK

Open an existing project and

you will see all c files in src

folder.

c. Program the Hardware

2. A. c. Program the Hardware

Save the changes you made

on the code, xilinx will

automatically compile and

generate elf file.

2. A. c. Program the Hardware

Go to

Xilinx Tools / Program FPGA

2. A. c. Program the Hardware

Make sure these are from

same directory

Browse for elf file created for your project.

2. A. c. Program the Hardware

Locate elf file in your directory under

{your_project_name} / Debug

Open elf file for programming your hardware.

2. B. Modify the Project

a. Add a New Software Module

b. Add a New IP Core (Add / Change Wedges)

c. Create a New IP Core

a. Add a New Software Module

b. Add a New IP Core (Add / Change Wedges)

By adding IP core, you can add more wedges
and customize your stack.

2. B. b. Add a New IP Core - Update this

rvoyles
Highlight

2. B. b. Add a New IP Core - Update this

rvoyles
Highlight

Morphing Bus 1 on TRC1000

GND GND

GND GND

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

37 38

39 40

41 42

43 44

45 46

47 48

49 50

3.3V

5V

3.3V

5V

B7

A7

C8

A8

B9

A9

B10

A10

B11

F8

F7

G9

G7

H7

H6

J9

J5

K8

K7

L10

L9

B6

C3

C4

D3

D4

E3

E5

F3

F4

G4

G5

H3

H4

J3

J4

K3

K6

L5

L7

M5

M6

GND

GND

3.3V

5V

C23

D23

E23

F23

D24

F24

G24

C22

D21

B17

D18

E17

M24

GND

GND

3.3V

5V

C21

E21

E22

C19

D19

F19

L23

L24

G22

A17

C18

F17

M22

Morphing Bus 2 on TRC1000

1 2

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

c. Create a New IP Core

Next >

First, go to Xilinx Platform Studio,
Select Create and import peripheral wizard

2. B. c. Create a New IP Core

2. B. c. Create a New IP Core

Select Create template for a new
peripheral

Select Export to XPS Project

2. B. c. Create a New IP Core

Name your IP Core
Select Processor Local Bus
* Unless you use AXI in your XPS ProjectIn this example, we are creating a

PWM step counter as a new IP core.

2. B. c. Create a New IP Core

Proceed to next step

2. B. c. Create a New IP Core

Select 4 registers

2. B. c. Create a New IP Core

Check “Generate ISE and XST project files”
And “Generate template driver files”

2. B. c. Create a New IP Core

2. B. c. Create a New IP Core

Open Project Navigator

Go to Files / Open Project

Go to your XPS project folder,
Then pcore/your_IP_core_name/devl/projnav
Select the ISE project file located inside the directory

For this example…
Add these line to the user defined port in entity block in pwm_step_counter.vhd

STEP : in std_logic;

DIR : in std_logic;

Double click on pwm_step_counter.vhd

2. B. c. Create a New IP Core

Open Project Navigator

Write a VHDL code for
your new IP Core

Add these line to the port map block, inside USER_LOGIC_I block

STEP => STEP,

DIR => DIR,

2. B. c. Create a New IP Core

Double click user_logic.vhd

Add user defined port in entity block in user_logic.vhd

STEP : in std_logic;

DIR : in std_logic;

2. B. c. Create a New IP Core

Go to architecture section, add
signal count_step : std_logic_vector(0 to C_SLV_DWIDTH-1);

signal count_step_inv : std_logic_vector(0 to C_SLV_DWIDTH-1);

These are the “signals,” or variables, in our coding logic

2. B. c. Create a New IP Core

Go to implement “slave model software accessible register(s)” subsection,
comment out the line shown above

This makes slave register 2 and 3 (slv_reg2, slv_reg3) read only.

2. B. c. Create a New IP Core

-- process (@var) == if the system detect the change in @var, this section of code will activate

process (STEP) begin

-- if the change is rising edge (low reading to high reading) and the reader (slv_reg0) is

-- x"00000001"

if rising_edge(STEP) and slv_reg0 = x"00000001" then

-- if the direction is 1, we count up, else we count down

if DIR = '1' then

count_step <= count_step + 1;

count_step_inv <= count_step_inv - 1;

else

count_step <= count_step - 1;

count_step_inv <= count_step_inv + 1;

end if;

end if;

-- if we receive reset signal (slv_reg1 = x"00000000"), then count_step and count_step_inv

-- will be set to 0

if slv_reg1 = x"00000000" then

count_step <= x"00000000";

count_step_inv <= x"00000000";

end if;

-- send the counter value to the output registers (slv_reg2 and slv_reg3)

slv_reg2 <= count_step;

slv_reg3 <= count_step_inv;

end process;

Now we are creating a logic, which can count the step pulses (from STEP), with regard to the
current state of direction pin (defined as DIR).

Add these line right before end IMP;

2. B. c. Create a New IP Core

Now, compile the vhd by right click the pwm_step_counter.vhd
and select “Implement Top Module”

2. B. c. Create a New IP Core

3. Creating a New Project

3. Xilinx Platform Studio

Open Xilinx Platform Studio, and create a new
project (go to File > New BSB Project)

3. Xilinx Platform Studio

• Browse to the location for
your project

• Enter the directory name

• Save the .xmp file there

* Your directory name can’t be
too long or contains special
characters. Make it simple (ex.
locate in desktop)

• Choose PLB

*Our RecoNode uses Xilinx
Virtex-4, which is supported by
PLB system.

3. Xilinx Platform Studio

Choose Xilinx for Vendor, and Virtex 4 ML 405 for Board Name

* The Virtex-4 FPGA XC4VFX20-FF672-10 is on the RecoNode.

3. Xilinx Platform Studio

Choose Processor system
based on your Chip.

For RecoNode V1.1, we uses

Virtex-4: XC4VFX20 – This has
a PowerPC processor, thus
choose Single-Processor
System.

For RecoNode V1.1, we uses

Virtex-4: XC4VFX20 – choose
PowerPC processor.

RecoNode has 100MHz clock
frequency.

3. Xilinx Platform Studio

3. Xilinx Platform Studio

Export Design

To SDK!

3. Xilinx Platform Studio

3. Xilinx SDK

In Xilinx SDK, Select the workspace
that contain your .xmp file

Right click in Project Explorer, Select New > Project .
Then Xilinx > Application Project

3. Xilinx SDK

Create a code project in Xilinx SDK

3. Xilinx SDK

Put your project name

3. Xilinx SDK

Right click from Project Explorer,
go to New / Source File

Put your main source file name.
By default, it is main.c, but you
should put a unique name that
you would know that it is a main
file.

#include <stdio.h>

int main()

{

xil_printf("Hello From the Other Side! \n\r");

return 0;

}

3. Xilinx SDK

Add your code in your main source file.
This differs to what you want to achieve from your SDK.

Sample code of printing on serial
communication (UART).

Troubleshooting

4. Troubleshooting

Troubleshooting

Error: Cannot find boot.o

If your error message says that

boot.o is not found,

Go to Project / Properties

Troubleshooting

Error: Cannot find boot.o

Go to Settings / Software Platform

Make sure that there is boot.o file
under this directory.

If you need information on PBO/RT or looking for module library
for RecoNode, they are posted on Dr. Voyles’ website. The links
are below.

Port-Based Objects / Real-Time (PBO/RT)

http://web.ics.purdue.edu/~rvoyles/Help/PBORT/pbort.help.html

PD Controller (Refer to RecoNode/TRC1120)

http://web.ics.purdue.edu/~rvoyles/Help/PBORT/PDcontrol.modu
le.html

Troubleshooting

http://web.ics.purdue.edu/~rvoyles/Help/PBORT/pbort.help.html
http://web.ics.purdue.edu/~rvoyles/Help/PBORT/PDcontrol.module.html

	MorphingBus1_Pin_Assignment_TRC1000.pdf
	Drawing1.vsdx
	Page-1

	MorphingBus2_Pin_Assignment_TRC1000.pdf
	New Microsoft Visio Drawing.vsdx
	Page-1

