
139

Abstract: The timing of sensor-based control systems is crucial.
Critical servo-level periodic tasks that fail to meet their deadlines
result in losing data or missing control cycles. This can lead to a
loss in performance in the best case, and can cause serious dam-
age to equipment or human injury in the worst case. It is therefore
critical that the timing of these systems is predictable and control-
lable. A dynamically reconfigurable system can change in time
without the need to halt the system. Such systems may have many
sensors or actuators, only a subset of which are used at any time.
Alternately the same hardware is used in a different configuration.
In this paper we propose the maximum-urgency-first algorithm,
which can be used to predictably schedule dynamically changing
systems. We show that it is a significant improvement over the rate
monotonic algorithm, which can only be used to schedule static
systems. The maximum-urgency-first scheduler has been imple-
mented as the default scheduler of CHIMERA II, a real-time oper-
ating system being used to control sensor-based control systems
both at Carnegie Mellon University and elsewhere.

Keywords: real-time dynamic scheduling, reconfigurable sensor-
based control systems, maximum-urgency-first algorithm, rate
monotonic, CHIMERA II Real-Time Operating System.

1 Introduction

The timing of sensor-based control systems is crucial. Critical ser-
vo-level periodic tasks that fail to meet their deadlines result in los-
ing data or missing control cycles. This can lead to a loss in
performance in the best case, and can cause serious damage to
equipment or human injury in the worst case. It is therefore critical
that the timing of these systems is predictable and controllable. For
static systems, therate monotonic algorithm (RM) can be used to
guarantee that critical tasks always meet their deadlines, even dur-
ing a transient overload within the system [6].

Unfortunately RM can only be used with statically defined sys-
tems, because it does not support tasks with dynamically changing
periods. For example consider the case of a tactile sensor, on the
end of a robotic manipulator, that is used to explore an object. As-
sume the tactile sensor has a resolution of 2n by 2m taxels, wheren
andm can vary dynamically between 1 and 4. When exploring un-
interesting parts of an object, such as the straightedge of a table, it
is desirable to use the lowest resolution, so that computation time
is minimized and sample frequency is fastest, and the robot can fol-
low the edge quickly. As the object becomes more interesting, such
as the rounded corner of the table, it is desirable to increase the res-
olution of the tactile sensor. In doing so, the computational time re-
quired to process the data increases, and the frequency of data
samples must be decreased (and not necessarily linearly).

The RM algorithm cannot be used to schedule tasks in such a sys-
tem because of its static priority assignment. RM also has another
disadvantage in that itsschedulable bound is less than 100%.The
schedulable bound of a task set is defined as the maximum CPU
utilization for which a set of tasks can be guaranteed to meet all
their deadlines.

A dynamically reconfigurable system can change in time without
the need to halt the system. Such systems may have many sensors
or actuators, only a subset of which are used at any time. Alternate-
ly the same hardware is used in a different configuration, as in the
example above with a tactile sensor. In such a system it is crucial
that critical tasks do not fail, even if the tasks in the system or the
frequency of the tasks change. For such a system, a dynamic sched-
uler is required.

The most popular dynamic scheduling algorithms areearliest-
deadline-first (EDF) andminimum-laxity-first (MLF) [3]. These
schedulers have a schedulable bound of 100%; however a transient
overload in the system may cause a critical task to fail, which is un-
desirable for a predictable sensor-based control system.

This paper proposes a new real-time scheduling algorithm, called
maximum-urgency-first (MUF). It combines the advantages of the
RM, EDF, and MLF algorithms. Like EDF and MLF, MUF has a
schedulable bound of 100% for the critical set. And like RM, a crit-
ical set can be defined that is guaranteed to meet all its deadlines.
The MUF algorithm also allows the scheduler to detect three types
of timing failures, and call failure handler routines for tasks which
fail to meet their deadlines.

This paper is organized as follows: Section 2 briefly describes the
RM, MLF, and EDF algorithms, and Section 3 describes our new
MUF scheduling algorithm. Section 4 describes our implementa-
tion of the MUF scheduler as the default scheduler of the
CHIMERA II Real Time Operating System[7]. It is being used to
control several sensor-based robotic systems at Carnegie Mellon
University and elsewhere. The flexibility of the MUF algorithm
provides many new possibilities in real-time scheduling of dynam-
ically reconfigurable sensor-based control systems. Section 5 pro-
vides a discussion on using MUF for scheduling dynamically
reconfigurable and modular systems.

2 Related Work
Liu and Layland presented the rate monotonic algorithm as an op-
timal fixed priority scheduling algorithm, and the earliest-dead-
line-first and minimum-laxity-first algorithms as optimal dynamic
priority scheduling algorithms[3]. Two disjoint scheduling philos-
ophies emerged: static priority scheduling and dynamic priority
scheduling. The former consists of using RM, while the latter uses
either EDF or MLF as the baseline scheduling algorithm.

2.1 Rate Monotonic Algorithm (RM)

The rate monotonic algorithm is a fixed priority scheduling algo-
rithm which consists of assigning the highest priority to the highest
frequency tasks in the system, and lowest priority to the lowest fre-
quency tasks. At any time, the scheduler chooses to execute the
task with the highest priority. By specifying the period and compu-
tational time required by the task, the behavior of the system can
be categorizedapriori.

One problem with the rate monotonic algorithm is that the schedu-
lable bound is less than 100%. The CPU utilization of task Pi is

Real-Time Scheduling of Dynamically Reconfigurable Systems

David B. Stewart and Pradeep K. Khosla

Department of Electrical and Computer Engineering and
 The Robotics Institute,

Carnegie Mellon University,
Pittsburgh, PA 15213

In Proceedings of the IEEE International Conference on
Systems Engineering, Dayton Ohio, pp. 139-142, August 1991.

140

computed as the ratio of worst-case computing timeCi to the peri-
odTi. The total utilizationUn for n tasks is calculated as follows[3]:

(1)

For the RM algorithm, the worst-case schedulable boundWn for n
tasks is

(2)

From (2),W1 = 100%,W2 = 83%,W3 = 78%, and in the limit,W∞
= 69% (ln 2). Thus a set of tasks for which total CPU utilization is
less than 69% will always meet all deadlines. All tasks will be
guaranteed to meet their deadlines ifUn ≤ Wn. If Un > Wn, then the
subset of highest-priority tasksS such thatUs ≤ Ws will be guaran-
teed to meet all deadlines, and will thus form the critical set. Note
that the worst case values are pessimistic, and it has been shown
that for the average caseW∞ = 88%[2].

Another problem with RM is that it does not support dynamically
changing periods, a feature required by dynamically reconfig-
urable systems. For example, a task set with three tasks P1, P2, and
P3, of periods T1 = 30ms, T2 = 50ms, and T3 = 100ms would have
the following fixed priority assignment (from highest to lowest):
P1, P2, P3. If the period of P1 changes to T1 = 75ms. Under the RM
algorithm, we would require that the priorities of each task be re-
assigned to the ordering P2, P1, P3, which violates the condition
that priorities are static.

The problems with RM have encouraged the use of dynamic prior-
ity algorithms. Although many such algorithms exist, we restrict
our attention in this paper to EDF and MLF.

2.2 Earliest-Deadline-First Algorithm (EDF)
As the name implies, theearliest-deadline-first algorithm uses the
deadline of a task as its priority. The task with the earliest deadline
has the highest priority, while the task with the latest deadline has
the lowest priority. One major advantage of this algorithm is the a
schedulable bound of 100% for any task set. Also because priori-
ties are dynamic, the periods of tasks can be changed at any time.

A major problem with the EDF algorithm is that there is no way to
guarantee which tasks will fail during atransient overload. In
many systems, although the average case CPU utilization is less
than 100%, it is possible that the worst-case utilization is above
100%, leaving the possibility of one or more tasks failing. In such
cases, it is desirable to control which tasks fail and which succeed
during a transient overload. In the RM algorithm, low priority tasks
will always be the first to fail. However, no such fixed priority as-
signment exists with EDF, and thus there is no control of which
tasks fail during a transient overload. Consequently, a very critical
task may fail at the expense of a lesser important task.

2.3 Minimum-Laxity-First Algorithm (MLF)
Our purpose in describing theminimum-laxity-first algorithm in
this section is not to compare it to RM or EDF, but rather to intro-
duce it as a basis for themaximum-urgency-first algorithm pro-
posed in this paper. The minimum-laxity-first algorithm assigns a
laxity to each task in a system, then selects the task with the mini-
mum laxity to execute next. Laxity is defined as follows:

(3)

Laxity is a measure of the flexibility available for scheduling a
task. A laxity oftl means that even if the task is delayed bytl time
units, it will still meet its deadline. A laxity of zero means that the
task must begin to executenow or it will risk failing to meet its
deadline.

Un

Ci

Tii 1=

n

∑=

Wn n 21 n⁄ 1−()=

laxity deadline_time current_time− CPU_time_needed−=

The main difference between MLF and EDF is that MLF takes into
consideration the execution time of a task, which EDF does not do.
Like EDF, MLF has a 100% schedulable bound and there is no way
to control which tasks are guaranteed to execute during a transient
overload. In the next section, we present the MUF algorithm,
which allows the control of task failures during transient overload,
while maintaining the flexibility of a dynamic scheduler, and 100%
schedulable bound for the critical set.

3 Maximum-Urgency-First Algorithm (MUF)
Themaximum-urgency-first scheduling algorithm which we have
developed is a combination of fixed and dynamic priority schedul-
ing, also calledmixed priority scheduling. With this algorithm,
each task is given anurgency. The urgency of a task is defined as a
combination of two fixed priorities, and a dynamic priority. One of
the fixed priorities, called thecriticality, has precedence over the
dynamic priority. Meanwhile, the dynamic priority has precen-
dence over the other fixed priority, which we calluser priority. The
dynamic priority is inversely proportional to the laxity of a task.

The MUF algorithm consists of two parts. The first part is the as-
signment of the criticality and user priority, which is doneapriori.
The second part involves the actions of theMUF scheduler during
run-time

The steps in assigning the criticality and user priority are the fol-
lowing:

1. As with RM, order the tasks from shortest period to long-
est period.

2. Define the critical set as the firstN tasks such that the to-
tal worst-case CPU utilization does not exceed 100%.
These will be the tasks that do not fail, even during a
transient overload of the system. If a critical task does
not fall within the critical set, then period transforma-
tion, as used with RM [5], can be used.

3. Assignhigh criticality to all tasks in the critical set, and
low criticality to all other tasks.

4. Optionally assign a unique user priority to every task in
the system.

The static priorities are defined once, and do not change during ex-
ecution. The dynamic priority of each task is assigned at run-time,
inversely proportional to the laxity of the task. Before its cycle,
each task must specify its desired start time, deadline time, and
worst-case execution time.

Whenever a task becomes ready to run, a reschedule operation is
performed. The MUF scheduler is used to determine which task is
to be selected for execution, using the following algorithm:

1. Select the task with the highest criticalness.

2. If two or more tasks share highest criticalness, then se-
lect the task with the highest dynamic priority (i.e. min-
imum laxity). Only tasks with pending deadlines have a
non-zero dynamic priority. Tasks with no deadlines have
a dynamic priority of zero.

3. If two or more tasks share highest criticalness, and have
equal dynamic priority, then the task among them with
the highest user priority is selected.

4. If there are still two or more tasks that share highest crit-
icalness, dynamic priority, and user priority, then they
are serviced in afirst-come-first-serve manner.

The optional assignment of unique user priorities for each task en-
sures that the scheduler never reaches step 4., thus providing a de-

141

terministic scheduling algorithm. We have yet to investigate the
best method for assigning the user priorities.

To demonstrate the advantage of MUF over RM and EDF, consider
the task set shown in Figure 1. We assume that the deadline of each
task is the beginning of the next cycle. Four tasks are defined, with
a total worst-case CPU utilization of over 100%, thus in the worst-
case, missed deadlines are inevitable. Figure 1(a) shows the sched-
ule produced by a static priority scheduler when priorities are as-
signed using the RM algorithm. In this case, only P1 and P2 are in
the critical set, and are guaranteed not to miss deadlines. Expect-
ably, both P3 and P4 miss their deadlines. When using the EDF al-
gorithm, as in Figure 1(b), task P2 fails. However, any task may
have failed, since with EDF there is no way to predict the failure of
tasks during a transient overload of the system.

With the MUF algorithm, all tasks in the critical set are guaranteed
not to miss deadlines. In our example, the combined worst-case
utilization of P1, P2, and P3 is less than 100%, and thus they form
the critical set. Only task P4 can miss deadlines, because it is not in
the critical set. Figure 1(c) shows the schedule produced by the
MUF scheduler. Note the improvement over RM: because of a
higher schedulable bound for the critical set, task P3 is also in the
critical set and thus does not miss any deadlines. Also, unlike EDF,
we are able to control that the only task that may fail is P4.

The choice of using MLF to calculate the dynamic priority instead
of EDF enables the scheduler to detect missed deadlines. There are
three failures which the MUF scheduler can detect:

Task RM priority MUF criticality Ti Ci Ui Legend
P1 High High 6 2 33%
P2 Med High High 10 4 40%
P3 Med Low High 12 3 25%
P4 Low Low 15 4 27%

CPU time requested by each task (deadline is beginning of next cycle):

1 2 3 4

1 2 3

1 2

1 2

0 6 18

(a) Schedule generated when using rate monotonic algorithm:*

1 1 1 1 1 1 2 2 1 1 2 2 3 3 2 2 1 1 4 4 3

P3 misses
first deadline

P4 misses
first deadline

(b) Schedule generated when using earliest-deadline-first algorithm:*

1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 3 3 2 2 2 2

P2 misses
first deadline

(c) Schedule generated when using maximum-urgency-first algorithm:*

1 1 1 1 1 1 1 1 1 2 2 2 3 3 2 2 2 2 4 4 2

P4 misses
first deadline

* number inside squares represent which cycle task is executing

Figure 1: Example comparing RM, EDF, and MUF algorithms

4 8 14 16 202 10

0 6 12 184 8 14 162 10

0 6 12 184 8 14 16 202 10

1. A task has not completed its cycle when the deadline
time has been reached;

2. A task was given as much CPU time as was requested in
the worst-case, yet it still did not meet its deadline;

3. The task will not meet its deadline because the minimum
CPU time requested cannot be granted. This case also re-
quires that the minimum amount of CPU time required
by a task is specified.

The first case is the standard notion of a missed deadline. The sec-
ond case will detect bad worst-case estimates of execution time.
The third case allows the MUF scheduler to make the most of its
CPU time, and it will not start executing a task if that task has no
possibility to finish before its deadline, thus providing the early de-
tection of missed deadlines. Instead, the CPU time can be re-
claimed for ensuring that other tasks do not miss deadlines, or to
call alternate, shorter threads of execution.

4 Implementation
One concern of the MUF scheduler is the overhead required during
each reschedule operation. The overhead of the MUF scheduler
can be kept low by encoding the algorithm into a singleurgency
value, hence the name of the algorithm. Figure 2 shows ann-bit ur-

gency value, which was encoded usingc bits for criticality,d bits
for the dynamic priority, andu bits for the user priority. With such
an encoding, the range of criticalities, dynamic priorities, and user
priorities are 0 to 2c–1, 0 to 2d–1, and 0 to 2u–1 respectively. The
MUF scheduler must then only calculate a single dynamic priority
for each task, then select the task with the maximum urgency. This
efficient encoding scheme can be used to implement the MUF al-
gorithm as long asc, d, andu are all greater than or equal tolog2(-
max number of tasks in system).

We have implemented the MUF scheduler as the default scheduler
of the CHIMERA II Real-Time Operating System [7]. CHIM-
ERA II is being used both at Carnegie Mellon University and else-
where, on a variety of sensor-based control systems, including the
CMU Direct Drive Arm II [1] and the CMU Reconfigurable Mod-
ular Manipulator System [4].

On an Ironics IV3220 Single Board Computer, with a 20 MHz
M68020 processor, a reschedule operation with four ready tasks
(excluding context switch time) takes 28 microseconds. The con-
text switch takes another 66 microseconds for a total of
94 microseconds. With a 1 millisecond clock, we maintain over
90% CPU utilization, while with a 10 millisecond clock we main-
tain over 98% utilization. This performance allows the scheduler to
be used with sensor-based control applications that have tasks with
frequencies as high as 1000 Hz.

Our implementation also offers deadline failure handling. When-
ever a task fails to meet its deadline, an optional failure handler is
called on behalf of the failing task. The failure handler can be pro-
grammed to execute either at the same or different criticality and
user priority than the failing task. Such functionality is essential in
predictable and fault-tolerant systems. Much emphasis in hard
real-time systems has gone into ensuring that critical tasks always
meet their deadlines. However, very little has been said about what

�������������������

criticality dynamic priority user priority

Bit (n-1) Bit 0

c bits d bits u bits

������������������� �������������������

Figure 2: Encodedn-bit urgency value

1

142

to do about those tasks which fail to meet their deadlines during a
transient overload. Possible actions include the following: aborting
the task and preparing to restart it the next period; sending a mes-
sage to some other part of the system to handle the error; modifying
the priority of the task and continuing its execution; performing
emergency handling, such as a graceful shutdown of part of the
system or sounding an alarm; maintaining statistics on failure fre-
quency to aid in analyzing the system; and in the case of iterative
algorithms, returning the current approximate value regardless of
precision. Any of these actions and other user-defined actions can
be implemented using the deadline failure handling available with
our implementation of the MUF scheduler.

Estimating the worst-case execution time of tasks is often difficult.
For example, most commercially-available hardware is geared to-
wards increasing average performance via the use of caches and
pipelines. Such hardware is often used to implement real-time sys-
tems. As a result, the execution time cannot necessarily be predict-
ed accurately. Under-estimating worst-case execution times can
create serious problems, as it is possible that a task in the critical
set also fails. The use of deadline failure handlers is thus recom-
mended for all tasks in a system, and not only those tasks which are
not guaranteed. Our MUF scheduler provides this ability.

5 Dynamically Reconfigurable Systems

Our main purpose in developing the MUF algorithm is to use it for
scheduling dynamically reconfigurable sensor-based control sys-
tems. This section briefly describes some of the benefits of MUF
over other real-time scheduling algorithms for such systems.

5.1 Varying Time Constraints

In the introduction of this paper we gave an example of dynamical-
ly changing timing constraints that may be encountered in sensor-
base control systems. The MUF algorithm supports such tasks. Be-
cause the MLF algorithm is used to schedule tasks within the crit-
ical set, frequencies and worst-case execution times of the tasks
can change dynamically. In order to guarantee tasks in the critical
set in a dynamically changing environment, the worst-case utiliza-
tion UP for every taskP is defined as ,
which is the maximum utilization of taskP during any one cycle.
Any combination of period and CPU execution time can then be
used, as long as for every cyclePc. This is a sig-
nificant improvement over RM, where a change in period and CPU
execution time may cause the critical set to change, even though
utilization remains constant. When defining the MUF algorithm in
Section 3, we first ordered tasks from shortest to longest period.
This step can be relaxed, and MUF will still perform properly, but
at the cost of non-critical tasks possibly failing unnecessarily.

5.2 Modular Design

In order to support dynamic reconfiguration, a system must be
modular. In developing modular systems, it may be desirable to
specify timing constraints on a per-module instead of per-task ba-
sis. For example, a module may consist of two dependent tasks,
such that the combined worst-case CPU utilization is less than the
sum of the utilization of the two tasks. In assigning priorities using
RM, the frequency of the tasks plays an important role. However,
with the MUF algorithm, only the utilization plays a role. By tak-
ing advantage of combined utilizations, it is possible to have a crit-
ical set in which the sum of the utilizations of all tasks within the
set isover 100%, but the worst-case utilization for any one time
slice is still less than 100%.

UP max CPc TPc⁄()=

CPc TPc⁄ UP≤

5.3 Using MUF with Static Systems

Without any modification, the MUF scheduler can also be used to
schedule task sets using the rate monotonic algorithm, and thus can
also be used for scheduling systems which are not dynamically
changing. Instead of assigning criticalities according to the MUF
algorithm, assign criticalities to tasks in the same way as priorities
are assigned using the RM algorithm. Every task thus has a differ-
ent criticality, and MUF behaves as a static highest priority sched-
uler. MUF’s advantage over a typical fixed-priority-first is that
deadline and execution times can still be specified to the scheduler,
even though they will not be used in the selection of which task to
execute. This allows the MUF scheduler to still detect deadline
failures, even though static priority assignments are used. Most
fixed priority schedulers do not have such capabilities.

6 Acknowledgments

The research reported in this paper is supported, in part, by U.S.
Army AMCOM and DARPA under contract DAAA-2189-C-0001,
by the Department of Electrical and Computer Engineering, and by
The Robotics Institute at Carnegie Mellon University. Partial sup-
port for David B. Stewart is provided by the Natural Sciences and
Engineering Research Council of Canada (NSERC) through a
Graduate Scholarship. Special thanks also goes to Donald E.
Schmitz, with whom numerous discussions eventually led to the
development of some of the ideas presented in this paper.

7 References

[1] Kanade, T., P.K Khosla, and N. Tanaka, “Real-Time Control of
the CMU Direct Drive Arm II Using Customized Inverse
Dynamics,” inProceedings of the 23rd IEEE Conference on
Decision and Control, Las Vegas, NV, December 1984, pp.
1345-1352.

[2] Lehoczky, J., L. Sha, and Y. Ding, “The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior,” inProceedings 10th IEEE Real-Time Systems
Symposium, Santa Monica, CA, December 1989, pp. 166-171.

[3] Liu, C. L., and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real Time Environment,”Jour-
nal of the Association for Computing Machinery, v.20, n.1,
January 1973, pp. 44-61.

[4] Schmitz, D. E., P. K. Khosla, and T. Kanade, “The CMU
Reconfigurable Modular Manipulator System,” inProceed-
ings of the International Symposium and Exposition on Robots
(designated 19th ISIR), Sydney, Australia, Nov. 1988,
pp. 473-488.

[5] Sha, L., J. P. Lehoczky, and R. Rajkumar, “Solutions for Some
Practical Problems in Prioritized Preemtive Scheduling,” in
Proceedings 10th IEEE Real-Time Systems Symposium, Santa
Monica, CA, December 1989, pp. 181-191.

[6] Sha, L., and J. B. Goodenough, “Real-Time Scheduling
Theory and Ada”,Computer, v.23, n.4, April 1990, pp. 53-62.

[7] Stewart, D. B., D. E. Schmitz, and P. K. Khosla, “Implement-
ing Real-Time Robotic Systems using CHIMERA II,” inPro-
ceedings of 1990 IEEE International Conference on Robotics
and Automation, Cincinnatti, OH, May 1990, pp. 598-603.

[8] Zhao, W., K. Ramamritham, and J. A. Stankovic, “Scheduling
Tasks with Resource Requirements in Hard Real-Time Sys-
tems”, IEEE Transactions on Software Engineering, v.SE-13,
n.5, May 1987, pp. 564-577.

