in Proc. of 1992 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS ‘92),
Raleigh, NC, pp. 325-332, July 7-10, 1992

Integration of Real-Time Software Modules for
Reconfigurable Sensor-Based Control Systems

David B. Stewark, Richard A. Volpé, Pradeep K. Khosla

*Department of Electrical and Computer Engineering and The Robotics Institute
Carnegie Mellon University, Pittsburgh, PA 15213

*The Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, California 91109.

Abstract—In this paper we develop a framework for integrat- allocating modules to processors, communicating between various
ing real-time software modules that comprise a reconfigurable modules, synchronizing modules running on separate processors, and
multi-sensor based system. Our framework is based on the pro- determining correctness of a configuration, arise in this context.
posed concept of a global database of state information through))))
which real-time software modules exchange information. This In this paper we develop a framework for integrating real-time soft-
methodology allows the development and integration of reusable Ware modules that comprise a reconfigurable multi-sensor based sys-
software in a complex multiprocessing environment. A reconfig- tem. Our framework is based on the proposed concept of a global da-
urable sensor-based control system consists of many software tabase of state information through which real-time software modules
modules, each of which can be modelled using a simplified version €xchange information. This methodology allows the development and
of a port automaton. Our new state variable table mechanism can integration of reusable software in a complex multiprocessing envi-
be used in both statically and dynamically reconfigurable systems, ronment.
and it is completely processor independent. Individual modules
may also be combined into larger modules to aid in building large
systems, and to reduce bus and CPU utilization. An efficient im-
plementation of the state variable table mechanism, which has
been integrated into the Chimerall Real-Time Operating Sys-
tem, is also described.

We define aontrol moduleas a reusable software module within a
real-time sensor-based control subsystem. A reconfigurable system
consists of many control modules, each of which can be modelled us-
ing a simplified version of a port automaton [22], as shown in Fig. 1.
Each module has zero or mongut ports and zero or moreutput
ports Each port corresponds to a data item required or generated by

Keywords—reconfigurable sensor-based control systems, reus- the control module. A module which obtains data from sensors may
able software, real-time operating systems, interprocessor com- not have any input ports, while a module which sends new data to ac-

munication, spin-locks, real-time software modelling. tuators may not have any output ports. We assume that each control
module is a separatask. A control module can also interface with
. INTRODUCTION other subsystems, such as vision systems, path-planners, or expert
systems.

Real-time sensor based control systems are complex. In ordel

develop such systems, control strategies are needed to interpret A Jink between two modules is created by connecting an output
process sensing information for generating control signals. There lyort of one module to an appropriate input of another modukegya

been considerable effort devoted to addressing this aspect of real-tconfigurationis obtained if for every input port in the system, there is
control systems. However, even with robust control algorithms, a sone, and only one, output port connected to it. An extension of the port
phisticated software environment is necessary for efficientimplemegtomata theory is presented in [12], whesgld connectoallows a
tation into a robust system. The level of sophistication is even greasjngle output to be fanned into multiple output ports, ajoihacon-

if this system is to be generalized so that fesonfigurableand can nectorallows multiple input ports to be merged into a single input
perform more than a single task or application. Obviously, a real-tinyort, The split connector replicates the output multiple times. For the

operating system (RTOS) is part of this software environment. Ho\oin connector, a combining algorithm, such as a weighted average, is
ever, it is also necessary to have a layer of abstraction betweenyequired to merge the data.

RTOS and control algorithms that makes the implementation efficiel
allows for easily expanding and/or changing the control strategie
and reduces development costs by incorporating the concept of re
able software. The development of this layer of abstraction is furtr input ports X1 control : 1 output ports
motivated by the realization that real-time control systems are typic. Xn module ——>»Ym

ly implemented in open-architecture multiprocessor environmeni

Several issues, such as configuring reusable modules to perform a

The research reported in this paper is supported, in part by, U.S. Army AMCOM and communication with
DARPA under contract DAAA-2189-C-0001, the National Aeronautics and Space Ad- sensors, actuators,
ministration (NASA), the Department of Electrical and Computer Engineering, and by and other subsystems
The Robotics Institute at Carnegie Mellon University. Partial support for David B. Stewart
is provided by the Natural Sciences and Engineering Research Council of Canada

(NSERC) through a Graduate Scholarship. Fig. 1: Port automaton model of a control module

The research reported in this paper was also performed, in part, for the Jet Propulsion
Laboratory (JPL), California Institute of Technology, for the Remote Surface Inspection
system development and accompanying projects [26] under a contract with NASA. Ref-
erence herein to any specific commercial product, process, or service by trade name, '[Ia
mark, manufacturer, or otherwise, does not constitute or imply its endorsement by
United States Government or JPL.

We define daskas a separate thread of control within a multitasking operating sys-
_The definition is consistent with that of the Chimera Il Real-Time Operating System
, and is also known aglreadin Mach and POSIX, andightweight process some

other operating systems.

325

Other environments developed for robot control ([1][2][3][5][14])
lack the flexibility required for the design and implementation c Global State Variable Table
reconfigurable systems. The design of these programming envir
ments is generally based on heuristics rather than on software ar
tecture models, and lends itself only to single-configuration systen
The environments also do not make clear distinctions between mod
interfaces and module content, thus lacking a concrete framewt
which would allow development of modules independent of the targ
application and target hardware.

In this paper, we propose a method of using state variables for s

. ! . N A A A A A
tematically integrating reusable control modules in a real-time mul task task 000 task task
processor environment. Our design can be used with both statici module Jss* | module module Je¢ | module
and dynamically reconfigurable systems. Section Il describes the L ! L !

A A A A

local state local state local state local state
variable table| |variable table variable table| |variable table
A A A A

sign issues to be considered, and some of the assumptions we | Processor A Processor K
made about the target environment. Section Il gives the architectu o])
details of our control module integration. Section IV describes an € Fig. 2: Structure of state variable table mechanism

ficient implementation of the state variable table mechanism, whi for control module integration

has been integrated into the Chimera Il Real-Time Operating Syst:
[23]. Finally, SectionV summarizes the use of state variables f
module integration in a reconfigurable system.

I11. D ESIGN OFSTATE VARIABLE 1ABLE MIECHANISM

The structure of our state variable table mechanism is shown in
Fig. 2. It is based on using global shared memory for the exchange of
data between modules, thus providing communication with minimal

In order to design a general mechanism which can be used to iroverhead. Aglobal state variable tables stored in the shared memo-
grate control modules in a multiprocessor environment, some arcry- The variables in the global state variable table are a union of all the
tectural knowledge of the target hardware is required. We assumeinput port and output port variables of the modules that may be con-
open-architecture multiprocessor system, which contains multigfigured into the system. Tasks corresponding to each control module
general purpose processors (such as MC68030, Intel 80386, SPACannot access this table directly. Rather, every task has its own local
etc.), which we calReal-Time Processing Units (RTPUsh a com- copy of the table, called thecal state variable table

mon bus (such as VMEbus, Multibus, Futurebus, etc.). Each proc oy the variables used by the task are kept up-to-date in the local
sor has its own local memory, and some memory in the systeMpie No synchronization is needed to access this table, since only a
shared by all processors. single task has access to it. At the beginning of every cycle of a task,
Given an open-architecture target environment, the following ithe variables which are input ports are transferred into the local table
sues must be considered: from the global table. At the end of the task’s cycle, variables which

Processor transparencyn order for a software module to be re- are output ports are copied from the local table into the global table.
usable, it must be designed and written independent of theThis design ensures that data is always transferred as a complete set.

RTPU on which it will finally execute, since neither the hard- \yhen using the global state variable table for inter-module com-

ware nor software configuration is knowpriori. munication, the number of transfers per seéd@g for moduleM,
Task synchronizatiorSensors and actuators may be operating atcan be calculated as follows:

different rates, thereby requiring different tasks to have differ-

Il. DESIGNISSUES ANDASSUMPTIONS

ent frequencies. In addition, system clocks on multiple proces- 0 g ™ 0
sors may not be operating at the exact same rate, causing tw 02 SO + 5 Sy +45
tasks with the same frequency to have skewing problems. The _ i=1 i=1
; . ; Z = 1)
module integration must not depend on task frequencies ol i T

system clocks for synchronization. !

Data integrity: When two modules communicate with each oth- ~ Wheren; is the number of input ports fdd;, my is the number of
er, a complete set of data must be transferred. It is not accepOutput ports fOM#']- X; is input variable; for Mj_i_yij is output variable

able for part of a data set to be from the current cycle, whileYi for M;, S(x)is the transfer size of variabteT; is the period oM;, _
the rest of the data set is from a previous cycle. andA is the overhead required for locking and releasing the state vari-

Predictability: In real-time systems, it is essential that the com- able table during each cycle.

munication between modules is predictable, so that worst-cas: We assume that the entire global state variable has a single lock. It

execution and blocking times can be bounded. These times aris possible for each variable to have its own lock, in which case the

required for analysis by most real-time scheduling algorithms.locking overhead increases(tn+n)A. The advantage of using a sin-
Bus bandwidthtn an open-architecture system, a common bus isgle lock is described in Section .A..

shared by all RTPUs. The communication between modules the pys utilizatior for k modules in a particular configuration, in
must be designed to minimize the bus traffic. transfers per second, is then

implementation efficiencyfthe design must lead to an efficient
implementation. Communication mechanisms which incur
large amounts of overhead are not suitable for the high fre- B= Z Z.)
quency tasks, and therefore cannot be used. i=1

. To adqress these 'SS‘.‘eS' We_propOSe a Stat_e varl_able table me 2-We use “transfers per second” instead of CPU execution time or bus utilization time
nism Wh'F:h a||0W$ the integration and. reconfiguration of reusabas a base measure for the resource requirements of the communication mechanism, since
modules in a multiprocessor, open-architecture system. it is a hardware independent measurement.

326

Thus using our state variable table design, we can accurately detimes it is fixed, other times it may be set depending on the application
mine the CPU and bus utilization required for the inter-module correquirements.

munication within a configuration. The sensor modules are similar to the robot interface modules, in
A configuration is legal if the following holds true: that they communicate with device hardware, such as force sensors,
K m K n K tactile sensors, and vision subsystems. In the case of a force/torque
’ A B s N -) i i
U _gtg=] 090 3) sensor, ®-DOF force/torque sensenodule inputs raw strain gauge
Ny ij ij (3) . .
I]j: li=1 o DDj =1i=1 0 Dj: 1i=1 " values and converts them into an array of force and torque values, in

' . . ., NewtonsandNewton-metersespectively. For a visual servoing ap-
The first term represents the intersection of all output Va“ab_"plication [18], much of the reading and preprocessing of images is
from all modules. If two modules have the same outputs, then a Jperformed by specialized vision subsystems. These systems may gen-

connector is required. Modules with conflicting outputs can modilg ate some data, from which a new desired Cartesian position is de-
their output port variables, such that they are two separate, intermeyaq as illustrated by thesual servoing interfacerodule.

ate variables. A join connector is a separate module which perfor o
some kind of combining operation, such as a weighted average. Its The teleoperation input modules are also sensor modules. They
put ports are the intermediate variables, while its single output por1have been classified separately in order to distinguish user input from

the output variable that was originally in conflict. The bandwidth reother sensory input. In our control module library the teleoperation
quired can then be calculated by treating the join connector as a remodules read from a 6 DOF trackball, thus both modules are similar.

lar module. Split connectors are not required in our design, since m! € difference is the type of preprocessing performed by each mod-

tiple tasks can specify the same input port, in which case datagule, allowing the trackball to be used either for generating velocities

obtained from the same location within the global state variable tan(Which can be integrated to obtain positions), or force, for when the

The second term in (3) states that for every input port, there must £FOPOt i in contact with the environment.

module with a corresponding output port. Trajectory generators are another way of getting desired forces or
Using state variables for module integration is processor indepeposmons into the control loop. The input may come from outside _the

dent. Whether multiple modules run on the same RTPU, or each mc0ntrol 1oop, such as from the user (e.g. keyboard), from a predefined

ule runs on a separate RTPU, the maximum bus bandwidth requitrajectory file, or from a path-planning subsystem.

for a particular configuration remains constant, as computed in (2). Differentiator and integrator modules perform time differential and

the next section we give more details on typical modules withinintegrals respectively. For example, joint velocities may be obtained

reconfigurable sensor-based control system. by differentiating joint positions. Only the value of the current cycle
) is supplied as input. Previous values are not required, as the modules
A. Control Module Library are designed with memory, and keep track of the positions and veloc-

The state variable table mechanism is a means of integrating cities of previous cycles. The current time is assumed to be known by
trol modules, which have been developed with a reusable and recall modules.
figurable interface. Once a module is developed, it can be placed i pigjtal controller modules are generally the heart of any configura-
a library, and incorporated into a user’s application as needed. A Sjon, In our sample library, we have trajectory interpolators, a PID
ple control module library is shown in Fig. 3. The classification of difipint position controller, a resolved acceleration controller [11], an im-
ferent module types is for convenience only. There is no differencepedance controller [6], and other supporting modules such as forward
the interfaces of say, a robot interface module and a digital controlang inverse kinematics, Jacobian operations [19], inverse dynamics
module. We expect that existing robot control libraries (e.g. [2][10][g], and a damped least squares algorithm [29]. Given the proper input
can be repackaged into reusable modules in order to use thengng output port matching, various controller modules can be integrat-

reconfigurable systems. ed to perform different types of control. Sometimes a particular con-
The following variable notation is used: trol configuration will not need all of its inputs. Those inputs are often
9: joint position X : Cartesian position set to zero. The_ero mod_ule provides a constant val‘!)mo an input _
9: joint velocity X : Cartesian velocity stream. Theoretlpally this would be a single te_lsk which always copies
9: joint acceleration % - Cartesian acceleration the constant variable to the global state variable table. However, in
1: joint torque f: Cartesian force/torque practice, the_ global state variable table only has to be updated_ once,
u: control signal J: Jacobian after which time the module no longer has to execute, thus saving on

both RTPU and bus bandwidth. This practice is equivalent to setting
the frequency of taskeroto infinity.

. . . Many of the modules require initialization information. For exam-
d: desired (as input by user or path planner) ple, thePID controller module requires gains, and theward kine-
r: reference (computed value, commanded on each cycle) matics and Jacobiamodule requires the robot configuration. These
m: measured (obtained from sensors on each cycle) values can also be passed via the global state variable table, and are
y: wild-card: match any subscript read only once from the table. However, for simplicity in our dia-
Robot interface modules communicate directly with robotic hargrams, we have not shown these initialization inputs.
ware. In g_eneral arobot is controlled by sending jointtorquesto an: gjyen a library of modules, several legal configurations may be
propriate input/output port, as represented bytdhgue-mode robot 4sgible. Fig. 4 shows one possible configuration for a teleoperated
interfacemodule. The current joint position and joint velocity of the;gpot with a torque-mode interface. Each module is a separate task
robot can also be retrieved from the hardware interface. With some 5,4 can execute on its own RTPU, or multiple modules may share the
bots, direct communication with the robot actuator is not possiblsame RTPU, without any code modification. The state variable table
The robot provides its own controller, to which reference joint poSmechanism allows the frequency of each task to be different. The se-

tions must be sent. Thsition-mode robot interfads a module for ection of frequencies will often be constrained by the available hard-
this type of robot interface. Other actuators or computer controlls

machinery may also have similar interface modules. The frequency 3. For consistency among modules, all input and output variables have units defined
these modules is generally dependent on the robot hardware; soby thesysteme internationalsl).

z: wild-card: match any variable
The following subscript notation is used:

327

/" Robot Interface Modules)\ (Digital Controllers N Teleoperation Input Modules N
- 6-DOF 6-DOF
torque-mode B Xm Cartesmn > x, o lforwar.d —>x, trackball ;d trackball fy
T ' robot R Xg trajectory . m kmematlc-s x-velocity force
interface Om interpolator X, and Jacobian J—»J
6, joint pos/vel >0, inverse from trackball: from trackball:
from robot: N — o trajectory . Xy kinematics By raw reference data raw reference data Y,
raw joint raw torque d interpolator S 6r
osition data command .
P o a / Trajectory Generators \
d inverse
—] — [; —» Tr i j
position-mode Bim 64 PID joint 5 dynamics trajectory trajectory
o0 0
6, robot . 8y position | u m gener.z;tor Xg gener.(?tor g
i X-position -position
interface m Om controller 3) P P
[4 Jacobian .
Om 8 multiply [Xm .]
from robot: to robot: w from user, file, from user, file,
raw joint joint move Xd or path-planning or path-planning
.
_ pos/vel data command AR resolved A subsystem subsystem /
o) Jacobian
Xd acceleration u
.) transpose Ve ~
Differentiators and Integrators Xm controller
o Sensor Modules
Xm
time . 6-DOF visual Xg
X .
Zy differentiator | ™ 2y W force/torque i servoing .
Xd) least squares sensor interface Xd
f impedance u
. m controller T ¢
2 time _» z Xm from f/t sensor
) integrator Y ;(m -~ zero © T SiE from vision
_ Y, _ JAN gauge data subsystem)

ware. For example, the robot interface may require that a new tor(B.
be supplied every 2 msec cycle time (500 Hz frequency), while tl
trackball may only supply data every 33.3 msec (30 Hz frequenc
Digital control modules do not directly communicate with hardware
and can execute at any frequency. Generally the frequency for the ¢
trol modules will be a multiple of the robot interface frequency. Whe
using the state variable table for communication between the mc

Fig. 3: Sample Control Module Library

ules, any combination of frequencies among tasks will work. This &

lows frequencies to be set as required by the application, as oppc
to being constrained by the communications protocol.

Jacobian
multiply

resolved
acceleration
controller

and Jacobian

forward
kinematics

ent.

Bm

time Om
integrator 4
9 Xd

>

6-DOF
trackball
x-velocity m

‘

from trackball:
raw reference
data

Fig. 4: Example of module integration: Cartesian teleoperation

Om
) t ([torque-mode
inverse r
dynamics robot
Y interface N
e

to robot:
raw torque
command

from robot:
raw joint
position data

328

Reusable Modules and Reconfigurable Systems

The primary goal of the global state variable table mechanism is to
integrate reusable control modules in a reconfigurable, multiprocessor
system. The previous section gave examples of control modules, and
a sample configuration. In this section, we will give an example of
reconfiguring a system to use a different controller, without changing
the sensor and robot interface modules.

Fig. 5 shows two different visual servoing configurations demon-
strating the concept of reusable modules. Both configurations obtain
a new desired Cartesian position from a visual servoing subsystem,
and supply the robot with new reference joint positions. The configu-
ration in (a) uses standard inverse kinematics, while the configuration
in (b) uses a damped least squares algorithm to prevent the robot from
going through a singularity [29]. Thasual servoing, forward kine-

Bm matics and Jacobiagndposition-mode robot interfac@odules are
the same in both configurations. Only the controller module is differ-

The change in configurations can occur either statically or dynam-
ically. In the static case, only the task modules required for a particular
configuration are created. In the dynamic case, the union of all task
modules required are created during initialization of the system. As-
suming we are starting up using configuration (a), theimtlegse ki-
nematicgask is turneen immediately after initialization, causing it
to run periodically, while thdamped least squaresmdtime integra-
tor tasks remain blocked, off. At the instant that we want the dy-

" namic change in controllers, we block theerse kinematicgsk and

turn on thedamped least squaresdtime integratortasks. On the
next cycle, the new tasks will automatically update their own local
state variable table, and execute a cycle of their loop, instead of the in-
verse kinematics task doing so. Assumingdhendoff operations

are fairly low overhead (which they are in our implementations) the

dynamic reconfiguration can be performed without any loss of cycle By —

Note that for a configuration to properly execute, the set of modul , \

must be schedulable on the available RTPUs, as described in [24] ?.d] PID joint = > iverse T
Note that open-ended outputs are fine fergvard kinematics and % C‘;ﬁ',ﬂ‘,’lzr 6m \ dynamics r

Jacobianmodule output por in (a)) as the module simply generates Om __ﬁ /

a value that is not used. These open-ended outputs generally re 6, Om

when a module must perform intermediate calculations. The interr \ computed torque controller

diate values can sometimes be used by other modules, and hence

are made available as outputs. The outputs are normally saved in ?d

local state variable table, and copied to the global table at the enc 94 computed

the cycle. To save on bus bandwidth, these unused outputs do not 9 torque T

to be updated in the global state variable table, since they are neve ‘?m controller

quired as input by the other modules. Y

C. Combining Modules Fig. 6: Example of combining modules:

The model of our control modules allows multiple modules to b a computed torque controller

combined into a single module. This has two major benefits: ,)
g I is not needed by any other module, the global state variable table does

1. complex modules can be built out of smaller, simpler mod- not have to be updated. Since the modules are combined into a single
ules, some or all of which may already exist, and hence be task, they have a single local state variable table. Communication be-

reused; and tween those tasks remains local, and thus reduces the bus bandwidth
2. the bus and processor utilization for a particular configura- fequired by the overall application.
tion can be improved. The computed torque controllgi3] is an example of a combined

For maximum flexibility, every component is a separate modulModule. It combines thelD joint position computatiomodule with
hence a separate task. This structure allows any component to exetheinverse dynamicsiodule, as shown in Fig. 6. The resulting mod-
on any processor, and allows the maximum number of different mule has the inputs of the PID joint position computation, and the out-
tiprocessor configurations. However, the operating system overhePut Of the inverse dynamic module. The intermediate variadtees
of switching between these tasks can be eliminated if each module NOt have to be updated in the global state variable table. In addition,
ecutes at the same frequency on the same processor. Multiple modthe measured joint position and velocity is only copied into the local

then make up a single larger module, which can be defined to be a State variable once, since by combining the two modules, both mod-
gle task. ules use the same local table. Note that combining modules is only de-

sirable if they can execute at the same frequency on the same RTPU

The bus utilization and execution times for updating and readilat || times, as a single module cannot be distributed among multiple
the global state variable table may also be reduced. If data from rTpys.

interconnecting ports of the modules forming the combined modul
IV. IMPLEMENTATION

X f d) . . .
s |« We have implemented a state variable table mechanism (which we

J 4 and Jacobian) ©m call svan and integrated it with the Chimera Il Real-Time Operating
System [23]. Our target hardware architecture is a VMEbus-based
[17] single-board computers, with multiple MC68030 processor

- 0
: tion-mode) Sm . . . K
inverse | g, [Position moj: boards. Functional and syntactic details ofsver mechanism can be

Cartesian
trajectory

visual
servoing

kinematics robot

interface g interpolator X interface Bm found in [25].

t om robT)t' tjmbm_ First, the global state variable table is created in shared memory. A
from vision rawjoint joint move configuration file which contains the union of all possible state vari-
subsystem pos/vel data command ables within the system is then read. Once the global state variable ta-

)) o) ble is created, any task can attach to it, at which time a block of local
(a) visual servoing using inverse dynamics control module memory is allocated and initialized for the task. Data for a specific

forward
| kinematics
and Jacobian

variable can then be transferred between the global and local tables.

In our implementation, we give the ability to transfer multiple vari-
ables by preprogramming the list of variables that should be trans-
ferred from the global table at the beginning of a task’s cycle, and to
the global table at the end of its cycle. A typical module task would
then have the following format:

Xm

visual Cartesian position-mode

. damped i i i i i
servoing trajectory least sc?uares robot . call nodul e i ni tial i zation .
interface , interpolator interface Bm preprogramlist of input and output variables
t d t 3 begi n | oop
- from robot: to robot: copy input variables fromglobal table to
from vision raw joint joint move | ocal table
subsystem pos/vel data command

execute one cycle of nodule

copy output variables fromlocal table to
gl obal table
Fig. 5: Example of system reconfiguration: pause until beginning of next cycle

visual servoing using position-mode robot interface end | oop

(b) visual servoing using damped least squares control module

329

The preprogramandcopystatements are provided by @warim- task holding the lock to transfer the data. A small delay, which we call
plementation. The pausing and looping are handled by the operatthe polling time should be placed between each retry. The polling
system. Therefore, modules can be defined as subroutine compontime can be arbitrarily set, and usually some form of compromise is
with a standard interface, which are called at the appropriate timechosen. A polling time too short results in too much bus bandwidth

the above generic framework. being used for retry operations, while a polling time too large results
_ _ in waiting much longer for a lock than necessary, hence wasting valu-
A. Locking Mechanism able CPU cycles. In our system, the polling time ig@&c, which has

So far we have assumed that tasks can transfer data as neeSO far been satisfactory for all of our experiments.

However, since the global state variable table must be accessec ynfortunately using a simple locking mechanism like the spin-lock
tasks on multiple RTPUs, appropriate synchronization is required goes not guarantee a bounded execution time while waiting for or
ensure data integrity. A task which is updating the table must first long|ding the lock. In [15], several schemes are described which do of-
it, to ensure that no other task reads the data while it is changing. Ter bounded execution time. However, each of these require some
locking possibilities exist: form of hardware support that is not available. In particular, all meth-

1. keep a single lock for the entire table ods require a round-robin bus arbitration policy. The VMEDbus offers
round-robin bus arbitration for a maximum of 4 bus masters (every
RTPU is a bus master, and some special purpose processors and di-

The main advantage of the single lock is that locking overheadrect-memory-access (DMA) devices may also be bus masters). More
minimized. A module with multiple input or output ports only has tthan 4 bus masters causes some of the bus masters to be daisy-chained
lock the table once before transferring all of its data. There appeaipriority driven. In some installations, the system controller only has
be two main advantages of locking each variable separately: 1) musingle-level arbitration, and no round-robin arbitration is possible.
ple tasks can read or write different parts of the table simultaneou:Consequently, the bounded locking mechanisms break down. To
and 2) transfers of data for multiple variables by a low priority tasbound the waiting time for a spin-lock, we have implemented the
can be preempted by a higher priority task. Closer analysis, howevmechanism described below.

shows that I_ocklng each variable _separately does not have _these’ First, to ensure that a task is not swapped out while it holds a lock,
vantages. First, because the bus is shared, only one of multiple te

holding a per-variable lock can access the table at any one time. E|t will disable all interrupts on its own RTPU, thus allowing it to per-
ond, we will show later that the overhead of locking the table Whi(form the transfer uninterrupted. Considering that the resolution of the
in effect is the cost of preemption, is often greater than the time fo>YSteM clock is generally on the order of milliseconds, and with the
task to complete its transfer. A single lock for the entire table is thassu_mptlon that transfer_s are relatlv_ely shc_th (ie. less tha_ln a few tens
recommended. of microseconds), disabling preemption while the transfer is occurring
will have negligeable effect on most real-time scheduling algorithms.
Next, an appropriate locking mechanism must be selected. Siminterruptions in using the bus may come from other RTPUS trying to
mechanisms like local semaphores and only locking the CPU cangain the lock. In the worst case, each other RTPU will perform one
be used, because they are only valid for single-processor applicaticTAS instruction during every polling cycle. The maximum number of
Multiprocessor mechanisms available include spin-locks [15], meinterruptions is thus controllable by setting an appropriate polling
sage passing, remote semaphores [23], and the multiprocessor pritime.
ceiling protocol [20].

2. lock each variable separately

Without a bounded waiting time locking mechanism, it is not pos-
The message passing, remote semaphores, and multiprocessoisible to guarantee that tasks will get the data they require on time, ev-
ority ceiling protocol all require significant overhead, which is typiery time. As an alternative, a time-out mechanism is used, so that if
cally an order of magnitude greater than the data transfer itself. fthe lock is not gained within a pre-specified time or number of retries,
example, the remote semaphores in Chimerall take a minimumthen the transfer is not performed. The maximum waiting time for the
44 psec for the locking and unlocking operations, and as much |ock is then the time-out period, which is also equalditing_time *
200psec if the lock is not obtained on the first try and forces the tamax_number_of_retrie§or most tasks in a control system, missing
to block [23]. A typical transfer, on the other hand, may consist ofan occasional cycle is not be critical. In such a case, the value from the
joint positions and 6 joint velocities, for a total of 12 transfers. Onprevious cycle still remains in the local table, and will be used during
typical VMEbus system, the raw data transfer (i.e. exclualingver- the next cycle. When using the time-out mechanism, error handlers
head) takes approximately i8ec. The message passing and the mushould be installed to detect tasks that suffer successive time-out er-
tiprocessor priority ceiling protocol would require significantly mor¢rors. Discussion on handling these errors is beyond the scope of this
overhead than the remote semaphores. It is thus not reasonable tepaper.
the higher level synchronization primitives for locking the state var
able table. B. Performance

The simplest multiprocessor synchronization method isjpire A summary of the performance of osvar implementation is
lock, which uses an atomiest-and-sefTAS) operation. The TAS in- shown in Tables | and Il, Measurements were taken from an Ironics
struction reads the current lock value from memory, then wrrite® 13230 single board computers [7], with a 25MHz MC68030 proces-
that location. If the original value @& then the task acquires the lock,sor, on a VMEbus, using a VMETRO 25 MHz VBT-321 VMEbus an-
otherwise the lock is not obtained, and the task must try again. Talyzer [27]. The bus arbitration scheme of the Ironics V3230 is set to
read and write portions of the instruction are guaranteed to be atonrelease-on-requesThe global state variable table is stored within the
even among multiple processors. To release the ®iskyritten to dual-ported memory of a second 1V3230 RTPU.
the memory location. The number of bus transfers required t0 acqL - og geen from the Table I, a significant overhead is incurred in
af‘d release the Sp'n.'IOCkASZ 2r+1 , wheie the number of re- VMEDbus transfers, even when using the simplest of synchronization
tries needed to obtain the lock. mechanisms. The time to obtain the global state variable table lock us-

If a task does not get the lock on the first try, it must continually ring TAS involves a subroutine call to an assembly language routine
try (orspin hence the name spin-lock). If it retries as fast as possibwhich performs the MC68030 TAS instruction [16], and checking the
then the task may use up bus cycles which can instead be used byeturn value for a 1 or 0. Releasing the lock involves resetting it to 0.

330

TABLE |: BREAKDOWN OFVMEBUS TRANSFERTIMES able and multivariable transfers. When using the single-variable trans-

AND COMMUNICATION OVERHEAD fer, a subroutine call and variable locking is required for each variable.
Therefore for the cage* float[32], the routine is called six times, and
Operation Execution Timaugec the transfer size each time is 32 floats. For the multivariable transfer,
the subroutine call and locking overhead is only incurred once for all
obtaining global state variable table lock using TAS the variables. In the case®f float[32], 192 floats are sent consecu-
releasing global state variable table lock tively. Note that the multivariable transfer requires a preprogram op-
locking CPU 8 eration, which is performed during initialization. It can take anywhere
releasing CPU lock 8 from 25psec to a few milliseconds, depending on the number of vari-

initial subroutine call overhead

Icopy()subroutine call overhead

total overhead for single variable read/write 34
additional overhead, per variable, for multivariable copy

ables being programmed, and the size of the state variable table. The
overhead savings of using the multivariable transfer is greatest when
modules have a large nhumber of variables with short transfer sizes.

In our experiments using this implementation, all modules use the

raw data transfer over VMEbus, 6 floats multivariable transfer. The small loss in performance for transferring
raw data transfer over VMEbus, 32 floats a single variable is negligeable compared to the gains of the multivari-
raw data transfer over VMEbus, 256 floats . able transfer if more than one variable is transferred, and for the con-

sistency that all modules use the same transfer mode.
Locking and unlocking the CPU is performed by trapping into kern

mode, modifying the processor priority level, then returning to us V. SUMMARY
mode. The subroutine call overhead involves passing one pointer . i o
gument on the stack. In this paper we first presented a simplified port automaton model

o) for the definition of reusable and reconfigurable control tasks. Using
Thelcopy()routine is used to perform a block transfer. It is an ofihis model we developed a state variable table mechanism, based on

timized form of the standard C routibeopy() It can only transfer g|oha| shared memory, to integrate control modules in a multiproces-
multiples of 4 bytes (the width of the VMEbus data paths). Blocks asor open-architecture environment. Using the mechanism, control

16 bytes (4 transfers) each. The time in Table | is the subroutine ¢podules can be reconfigured, both statically and dynamically. The

overhead, which includes passing three arguments on the stack. Ifmaximum bus bandwidth required for the interprocessor communica-
transfer is not a multiple of the block size, then an additionsl8 {ion can be calculated exactly, based on the module definitions. The
overhead results for the incomplete block, but that time is incorporimechanism allows control tasks of arbitrary frequencies to communi-
ed into the raw data transfer time. The raw data transfer time is ‘cate with each other without the need for any special provision. The

time for sending the specified amount of data. Note that each floamechanism is also robust when clocks on multiprocessors suffer
exactly one transfer. They@ec transfer time for 6 floats includes thegyewing problems.

3 psec overhead because the transfer is not a multiple of 16 bytes

Our svarmechanism gives the ability to preprogram a set of var c ox\tlrils Pnoc;léi(ljeeé(c?nr:‘]ig[i;?g na g(r)]r&trgl r;nc(z)?:;ilgul;gﬁéyég Sﬁ(lz:t)izira{'lﬁg
ables to transfer on every cycle. Multiple variables are then trar . .‘ - .
ferred together as a single block, hence the lock is only acquired o%ﬁ.te Va”ﬁ‘??le t?l%l_e mgchanltsm gastbeenslmplerp_enttlad as tpe;_rt of the
per cycle. Theadditional overhead per variabis time to update the imera Il Real-Time Liperating system. Several iImpiementation is-
pointers between transfers of each individual variable. Sues were also considered, the most prominent being the I_ockmg

mechanism used to ensure proper control module synchronization and

Table Il gives a summary of the times for various transfer betwedata integrity. We chose to lock the entire state variable table with a

the global and local state variable tables, using both the single-visingle lock, using a high-performance spin-lock with CPU locking.

TABLE II: SAMPLE TIMES FORTRANSFERSBETWEEN GLOBAL AND LOCAL STATE VARIABLE TABLES

Single-Variable Transfers (L Multi-Variable (M-V) Transfers M-V Savings

Transfer Size time raw data overhea time raw data overhead

(usec) (%) (%) lisec) (%) (%) lisec) (%)
1 * float[6] 43 37 63 48 33 67 -5 -12
1 * float[32] 65 68 42 72 56 44 -7 -11
1 * float[256] 264 90 10 273 87 12 -9 -3
2 * float[6] 86 37 63 64 42 58 22 26
2 * float[32] 130 68 42 100 63 37 30 23
2 * float[256] 528 90 10 505 93 7 23 4
6 * float[6] 258 37 63 120 52 44 138 53
6 * float[32] 390 68 42 250 77 23 140 36
6 * float[256] 1584 90 10 1480 96 4 104 9

Single-variable transfers are usisnprRead(rndsvarWrite() Multi-variable transfers use a program operation to predefine which variables to copy on each
cycle. The table lock is only obtained once for all variables. The multi-variable savings show the relative performance of using multi-variable transfers over single-

variable transferfaw datas the percentage of time spent copying data, voiéeheads the communications overhead for subroutine calls, argument passing,
and locking the table.

331

Detailed performance measurements are given, highlightirayére puter-controlled manipulator,” Technical Memorandum 33-601,
headversusaw data transfeexecution times. The Jet Propulsion Laboratory, California Institute of Technolo-

The multiprocessor control module integration using state var ~ 9Y» Pasadena, California, March 1973.

ables has proven to be an extremely valuable method for buildif14]p. Mmiller and R.C. Lennox, “An object-oriented environment for
reconfigurable systems. This method is being used at Carnegie Mel" ~qpot system architectures,” Rroc. of IEEE Intl. Conf. on Ro-
University with the Direct Drive Arm Il [8][28], the Reconfigurable botics and AutomatignCincinnati, Ohio, pp. 352-361, May
Modular Manipulator System Il [21], the Troikabot System for Rapit 199

Assembly [9], and the Self-Mobile Space-Manipulator [4], and at tt
Jet Propulsion Laboratory, California Institute of Technology, on [15]L.D. Molesky, C. Shen, G. Zlokapa, “Predictable synchronization
Robotics Research 7-DOF redundant manipulator [26]. These s mechanisms for multiprocessor real-time systedwjt. of Real-
tems all share the same software framework. In many cases, the: Time Systemsol. 2, no. 3, September 1990.

tems also share the same software modules. The sensors and co
algorithms used for any particular experiment on any of these syste
can be reconfigured in a matter of seconds, and in some cases dyr
ically.

[16] Motorola, Inc,MC68030 enhanced 32-bit microprocessor user’s
manual Third Ed., (Prentice Hall: Englewood Cliffs, New
Jersey) 1990.

[17]Motorola MicrosystemsThe VMEbus SpecificatipiRev. C.1,
REFERENCES 1085.

[1] J.S. Albus, H.G. McCain, and R. Lumia, “NASA/NBS standar(18]N. Papanikolopoulos, P.K. Khosla, and T. Kanade, “Vision and
reference model for telerobot control system architectui control techniques for robotic visual tracking”,Rmoc. of 1991
(NASREM),” NIST Technical Note 1235, 1989 Edition, National IEEE Intl. Conf. on Robotics and Automatipp. 857-864, May
Institute of Standards and Technology, Gaithersburg, MD 2089 1991.

April 1989.
19]R.P. PaulRobot Manipulators(MIT Press: Cambridge Massa-
[2] P. Backes, S. Hayati, V. Hayward and K. Tso, “The Kali multi‘[]chusetts) T981. P s(9

arm robot programming and control environmedf®89 NASA
Conf. on Space TelerobotjcEroy, New York, January 1989. [20]R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-time synchroniza-
tion protocols for multiprocessors,” iroc. of 9th IEEE Real-

[3] J. Bares et al., “Ambler: an autonomous rover for planetary e Time Systems Sympecember 1988,

ploration,” Computervol. 22, no. 6, June 1989.
[4] H.B. Brown, M.B. Friedman, T. Kanade, “Development of a 5[21]D.E. Schmitz, P.K. Khosla, and T. Kanade, “The CMU reconfig-

DOF walking robot for space station application: overview,” ir ~ urable modular manipulator system,”Rnoc. of Intl. Symp. and
Proc. of IEEE Intl. Conf. on Systems EngineeriRijtsburgh, Exposition on Robot@lesignated 19th ISIR), Sydney, Australia,

Pennsylvania, pp. 194-197, August 1990. pp. 473-488, November 1988.

[5] D. Clark, “Hierarchical Control System,” Technical Report No[22] M. Steenstrup, M.A. Arbib, and E.G. Manes, “Port automata and
396, Robotics Report No. 167, New York University, New York the algebra of concurrent processedgur. of Computer and

10012, February 1989. System Sciencegol. 27, no. 1, pp. 29-50, August 1983.

[6] N. Hogan, “Impedance control: An approach to manipulation[23]D.B. Stewart, D.E. Schmitz, and P.K. Khosla, “Implementing
Jour. of Dynamic Systems, Measurement, and Comobl 107, real-time robotic systems using Chimera Il,”Pnoc. of IEEE
pp. 1-24, March 1985. Intl. Conf. on Robotics and Automatjd®incinnati, OH, pp. 598-

[7] Ironics Inc.,IV3230 VMEbus Single Board Computer and Multi- 603, May 1990.
Eroces§:rgSEng|ne LrJ]sers ManuibckhnlgggSupportGroup, 798 [24]D.B. Stewart and P.K. Khosla, “Real-time scheduling of dynam-
ascadilla Street, Ithaca, New York; 1990. ically reconfigurable systems,” Proc. of Intl. Conf. on Systems
[8] T. Kanade, P.K Khosla, and N. Tanaka, “Real-time control of tk Engineering Dayton, Ohio, pp.139-142, August 1991.

B e Comms [251D.B. Stewart, D.E. Shi,and PK. Khostiimera 1 e
Vegas, NV, pp. 1345-1352, December 1984. ’ Time Programming Environmerferogram Documentation, Ver.
Y ' 1.11, Dept. of Elec. and Comp. Engr., Carnegie Mellon Universi-
[9] PK.Khosla, R.S. Mattikalli, B. Nelson, and Y. Xu, “CMU Rapid ty, Pittsburgh, Pennsylvania 15213; 1990.
Assembly System,” ivideo Proc. of IEEE Intl. Conf. on Robot-])
ics and Automatioriylice, France, May 1992. [26]S.T. Venkataraman. S. G?Jlatl, J. Barr:jen, andI_N. Toomarlaln, “Ex-
S . periments in parameter learning and compliance control using
[10]J. Lloyd, M. Parker, and R. McClain, “Extending the RCCL pro :
gramming environment to multiple robots and processors,” i neural networks," ifProc. of American Control Confluly 1992

Proc. of IEEE Intl. Conf. on Robotics and AutomatiBhiladel- [27]VMETRO Inc., VBT-321 Advanced VMEbus Tracer User’s

phia, Pennsylvania, May 1988. Manual 2500 Wilcrest, Suite 530, Houston, Texas; 1988.

[11]J. Luh, M. Walker, and R. Paul, “Resolved-acceleration control (28] R. A. \olpe,Real and Attificial Forces in the Control of Manip-
mechanical manipulators|EEE Trans. on Automatic Contyol ulators: Theory and Experimentatioh.D. Thesis, Dept. of
vol. 25, no. 3, pp. 468-474, June 1980. Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania,

[12]D.M. Lyons and M.A. Arbib, “A formal model of computation ~ September 1990.

for s_ensory-based roboticSEEE Trans. on Robotics and Auto- [29] C. Wampler and L. Leifer, “Applications of damped least-squares
mation vol. 5, no. 3, pp. 280-293, June 1989 methods to resolved-rate and resolved-acceleration control of

[13] B. Markiewicz, “Analysis of the computed-torque drive methoc manipulators,”ASME Jour. of Dynamic Systems, Measurement,
and comparison with the conventional position servo for a cor and Contro) vol. 110, pp. 31-38, 1988.

332

