
FPGA Implementation of Closed-Loop Control

System for Small-Scale Robot

Wei Zhao∗, Byung Hwa Kim†, Amy C. Larson‡, and Richard M. Voyles‡

∗Seagate Technology, Shakopee, MN

E-mail: wei.w.zhao@seagate.com
†Department of Electrical Engineering, University of Minnesota, Minneapolis, MN

E-mail: bhkim@ece.umn.edu
‡Department of Computer Science, University of Minnesota, Minneapolis, MN

E-mail: larson@, voyles@cs.umn.edu

Abstract— Small robots can be beneficial to important applica-
tions such as civilian search and rescue and military surveillance,
but their limited resources constrain their functionality and
performance. To address this, a reconfigurable technique based
on field-programmable gate arrays (FPGAs) may be applied,
which has the potential for greater functionality and higher
performance, but with smaller volume and lower power dis-
sipation. This project investigates an FPGA-based PID motion
control system for small, self-adaptive systems. For one channel
control, parallel and serial architectures for the PID control
algorithm are designed and implemented. Based on these one-
channel designs, four architectures for multiple-channel control
are proposed and two channel-level serial (CLS) architectures
are designed and implemented. Functional correctness of all the
designs was verified in motor control experiments, and area,
speed, and power consumption were analyzed. The tradeoffs
between the different designs are discussed in terms of area,
power consumption, and execution time with respect to number
of channels, sampling rate, and control clock frequency. The
data gathered in this paper will be leveraged in future work to
dynamically adapt the robot at run time.

I. INTRODUCTION

Because small robots have greater access to confined areas

and are cheaper to deploy in large numbers, they are bene-

ficial for many tasks such as urban search and rescue, mil-

itary surveillance, and planetary exploration. But their small

size constrains resources such as volume, payload capacity,

and power. Consequently, computational capacity, mechanical

abilities such as locomotion and manipulation, and sensor

modalities are also constrained. For a small robot to be used

in a variety of applications, versatile functionality is required.

Not all functions are required for all applications and not all

functions are required at all times. Thus, if limited resources

can be reconfigured to tailor the robot to a specific application,

it may need fewer resources for equal or more functionality.

Research has been conducted in the area of robot reconfig-

urability in mechanism, in software, but to a much lesser extent

in hardware, specifically using the relatively new technology

of field-programmable gate arrays (FPGAs). In this study, we

researched the design of a digital control system implemented

in reconfigurable hardware. Specifically, we looked at closed-

loop proportional-integral-derivative (PID) control for a robot

with high degrees-of-freedom, which when implemented in

software, requires a lot of CPU time and a real-time operating

system. By moving control to hardware, the robot can dedicate

the CPU to other tasks. However, we want both options

available, as a software implementation is more appealing

when the robot is not engaged in highly articulated movement,

thus the need to implement in reconfigurable hardware.

AI

computation

MotorSensor

Interface

Motor

Closed
-
loop

Control

Power

Amplifier

Motors

Encoders

Force Sensor

Interface

Vision

Interface

Force

Processing

Wireless

Com.

CCD

Camera

Force/Torque

Sensor

Host Computer

Wireless

Com.

Digital

Controller

Tilt

Sensor

Image

Processing

Vib
Signal

Processing

AI

computation

MotorSensor

Interface

Motor

Closed
-
loop

Control

Power

Amplifier

Motors

Encoders

Force Sensor

Interface

Vision

Interface

Force

Processing

Wireless

Com.

CCD

Camera

CCD

Camera

Host Computer

Wireless

Com.

Digital

Controller

Tilt

Sensor

Tilt

Sensor

Image

Processing

Vib
Signal

Processing

Adaptation

Processing

Fig. 1. CRAWLER functional architecture. The FPGA-based system will
be an on-board, power efficient implementation of all functionality within the
dashed line. Currently, it is implemented on 2 tethered PCs.

This research is a comparative study of FPGA-based PID

control designs, relative to speed, area, and power consump-

tion. It is important to understand the trade-offs of the various

implementations to best utilize resources during reconfigura-

bility. We expect that the study methodologies used in this

project can be extended to study other functions.

Research was conducted on CRAWLER (a.k.a. Termina-

torBot) [1], which has dual-use arms for both manipulation

and locomotion. The robot requires both a digital and analog

system to implement functions such as closed-loop motion

control, computer vision, sensing, and artificial intelligence, as

shown in Figure 1. In the current prototype, these functions

are implemented on two desktop computers tethered to the

robot. The FPGA-based digital control system will be a power-

efficient implementation of all components (within the dashed

line of Figure 1) and embedded in the robot body.

II. RELATED WORK

The benefit of software-based computation over hardware-

based computation is the ability to reconfigure on-the-fly. This

Run Time Reconfiguration (RTR) of computation is the basis

for the flexibility and rapid growth of software-based solutions.

But software requires a hardware target on which to run.

FPGA chips can be reconfigured, too, but most only permit

Compile Time Reconfiguration (CTR). However, a new breed

of FPGA chips, such as XC6000 and Virtex-II Pro, allow Run

Time Reconfiguration (RTR) of logic [2]. Furthermore, some

of these new FPGA chips, such as the Virtex-II Pro, have

embedded microprocessor units (MPU), making it possible

to build power-efficient and highly reconfigurable system-on-

chip designs. These systems combine reconfigurable software,

a power-efficient hardware target on which the software can

run, and reconfigurable hardware all on a single chip.

“HW/SW co-design” usually refers to methodologies that

permit the hardware and software to be developed at the same

time - splitting some functions to be implemented in hardware

for additional speed, while others are implemented in software

to free up logic resources. This is normally done offline.

The combination of HW/SW co-design techniques with online

RTR capability at both the hardware and software levels can

optimally assign functions between the FPGA and software

dynamically [3].

In order to achieve this level of RTR, the system specifica-

tion must be partitioned into temporal exclusive segments, a

process known as temporal partitioning. A challenge for RTR

is to find an execution order of a set of sub-tasks that meet

system design goals, a process known as context scheduling.

Several approaches can be found in the literature describing

these problems (e.g. [11]). All these approaches depend on

performance and resource requirements of the requisite sub-

tasks to make an optimal tradeoff [3]. This paper investigates

the power, area, and speed characteristics of particular PID

control implementations so that they may be used in future

work on hardware/software run time reconfiguration of a SoC

robotic controller.

FPGA-based SoC designs have been widely applied in

digital system applications and RTR research has been ad-

dressed by many researchers. Elbirt et al. explored FPGA

implementation and performance evaluation for the AES algo-

rithm [4]. Weiss et al. analyzed different RTR methods on the

XC6000 architecture [2]. Shirazi described a framework and

tools for RTR [5]. Noguera and Badia proposed a HW/SW

co-design algorithm for dynamic reconfiguration [3]. FPGA

power modeling and power-efficient design have also been

studied by various researchers [6]–[10].

Closed-loop control algorithms, in particular, have been

studied and implemented. Li et al. implemented a parallel

PID algorithm with fuzzy gain conditioner on an FPGA and

Closed-Loop

Controller

Power

Amplifier

Controlled

Object

e (t)
 u (t)
+

-

Sensor

P
P

d

Fig. 2. Closed-loop control system. The output of the controller, u(t), is an
attempt to reconcile the desired value Pd and the measured value P .

conducted a simulation-based study of it [12]. Chen et al.

implemented a complete wheelchair controller on an FPGA

with parallel PID design [13]. Samet et al. designed three PID

architectures for FPGA implementation - parallel, serial and

mixed [14]. Speed and area are the tradeoffs on the three

designs. Simulation results show the correct functions and

fast response time. All these prior works are for one channel

control and the important issue of FPGAs, namely power

consumption, for closed-loop control was not addressed.

In this work, different designs for the closed-loop PID

control algorithm are implemented on an FPGA for both one

and multiple channels. These designs are evaluated in terms of

area, power, and speed. In this paper, first the PID algorithm

is introduced, then, parallel and serial one-channel designs are

described in detail in Section IV. Multiple-channel designs

based on the one-channel designs are presented in Section V.

Section VI introduces the test platform and methodologies,

then presents the results. A discussion of those results follows

in Section VII.

III. CLOSED-LOOP CONTROL SYSTEM

A closed-loop control system is shown in Figure 2, which

is used to control a device such as a servo motor. P and Pd

correspond to the controlled variable (e.g. rotational position)

and its desired value, which is provided at a higher control

level. The goal is to eliminate the error between P and Pd.

The value of P is measured by the sensor, which is compared

with Pd to generate the error e(t). The output to the controlled

device, u(t), from the closed-loop controller is a function of

e(t). Typically, this is a weak signal that requires amplification.

A. PID Control Algorithm

In this project, the PID algorithm is applied for closed-loop

control. This is the most commonly used control law and has

been demonstrated to be effective for DC servo motor control.

The PID controller is described in a differential equation

as:

u(t) = Kp

[

e(t) +
1

Ti

∫ t

0

e(t)dt + Td

de(t)

dt

]

(1)

where Kp is the proportional gain, Ti is the integral time

constant and Td is the derivative time constant.

For a small sample interval T , this equation can be turned

into a difference equation by discretization [16]. A difference

equation can be implemented by a digital system, either in

hardware or software. The derivative term is simply replaced

by a first-order difference expression and the integral by a

sum, thus the difference equation is given as:

u(n) = Kp



e(n) +
T

Ti

n
∑

j=0

e(j) +
Td

T
(e(n) − e(n − 1))





(2)

Equation (2) can be rewritten as:

u(n) = Kpe(n) + Ki

n
∑

j=0

e(j) + Kd(e(n) − e(n − 1)) (3)

where Ki = KpT/Ti is the integral coefficient, and Kd =
KpTd/T is the derivative coefficient. To compute the sum, all

past errors, e(0)..e(n), have to be stored. This algorithm is

called the “position algorithm” [16].

An alternative recursive algorithm is characterized by the

calculation of the control output, u(n), based on u(n−1) and

the correction term ∆u(n). To derive the recursive algorithm,

first calculate u(n − 1) based on Eq. (3):

u(n−1) = Kpe(n−1)+Ki

n−1
∑

j=0

e(j)+Kd(e(n−1)−e(n−2))

(4)

Then calculate the correction term as:

∆u(n) = u(n) − u(n − 1)
= K0e(n) + K1e(n − 1) + K2e(n − 2)

(5)

where

K0 = Kp + Ki + Kd

K1 = −Kp − 2Kd

K2 = Kd

Equation (5) is called the “incremental algorithm”. The current

control output is calculated as:

u(n) = u(n − 1) + ∆u(n)
= u(n − 1) + K0e(n) + K1e(n − 1) + K2e(n − 2)

(6)

In the software implementation, the incremental algorithm

(Eq. 6) can avoid accumulation of all past errors e(n) and can

realize smooth switching from manual to automatic operation,

compared with the position algorithm [16]. More advantages

will be shown for the hardware implementation in Section IV.

In PID control, increasing the proportional gain Kp can

increase system response speed, and it can decrease steady-

state error but not eliminate it completely. Additionally, the

performance of the closed-loop system becomes more oscilla-

tory and takes longer to settle down after being disturbed as the

gain is increased. To avoid these difficulties, integral control

Ki and derivative control Kd can eliminate steady-state error

and improve system stability ([17], respectively).

IV. ONE-CHANNEL DESIGNS

First, we constructed a one-channel design based on the PID

control algorithm. The PID incremental algorithm (Eq. 6) is

-

P

d

EncdCnt

 *

 *

 *

Bounder

UpBoun

d

LowBoun

d

K0

K2

K1

OvFl0

 +

 +

 +

 +

OvFl2

OvFl1

OvFl3

OvFl0

OvFl2

OvFl1

OvFl3

OvFl

Output
R

E

G

Clk

R

E

G

Clk

R

E

G

Clk

Clk

R

E

G

Reset

REG0

REG3

REG2

REG1

ADD0

ADD1

ADD2

ADD3

MPL0

MPL1

MPL2

Bounder0

P
 P_neg

e(n)

e(n)

e(n-1)

e(n-2)

P0

P2

P1

S1

S2

u(n)

u(n-1)

24

24

16

16

16

16

16

16

32

32

32

32

32

16

16
 16

Fig. 3. Parallel design of incremental PID algorithm.

decomposed into its basic arithmetic operations:

e(n) = Pd + (−P)
p0 = K0 ∗ e(n)
p1 = K1 ∗ e(n − 1)
p2 = K2 ∗ e(n − 2)
s1 = p0 + p1
s2 = p2 + u(n − 1)

u(n) = s1 + s2

(7)

For a parallel design, each basic operation has its own

arithmetic unit – either an adder or multiplier. It is mainly

combinational logic. For serial design, which is composed of

sequential logic, all operations share only one adder and one

multiplier.

A. Parallel Design

Figure 3 shows our parallel design of the PID incremental

algorithm. The design requires 4 adders and 3 multipliers,

corresponding to the basic operations shown in 7. All bold

signals are I/O ports, while others are internal signals.

The clock signal clk is used to control sampling frequency.

EncdCnt, the encoder counter value, represents the current

position P . The negation of P , P neg, is generated by bit-wise

complementing and adding 1. At the rising edge of control,

signal e(n) of the last cycle is latched at register REG1, thus

becomes e(n− 1) of this cycle. In the same manner, e(n− 2)
and u(n − 1) are recorded at REG3 and REG4 by latching

e(n − 1) and u(n) respectively. The registers can be set to

initial values of 0 by asserting the reset signal, Reset. As

long as the desired position Pd is also initialized to 0 when

the system is reset, the control output is 0, which can keep

the controlled device (i.e. the motor, in this system) static.

The computed control output u(n) may exceed the range

that the controlled device can bear. Bounder, as shown in

Fig. 3, is a value limitation logic that keeps the output in the

user defined range of UpBound and LowBound.

Control can become unsteady and fail in the event of an

overflow in any of the adders. OvFlx is asserted in the case of

an overflow in adder x. All overflow signals are ORed together

to generate the OvFl signal. When asserted, this signal can

be used to shut down the controlled device.

-

P

d

EncdCnt

 *

Bounder

UpBoun

d

LowBoun

d

K0

K2

K1

OvFl

 +

Output

Reset

REG0

REG2

ADD0

MPL0

Bounder0

P
 P_neg

P0

P2

u(n)

24

32

16

16
 16

MUX

4_1

32-bit

Clk

R

E

G

Clk

R

E

G

load(0)

load(2)

Product

Product

MUX

3_1

32-bit

Clk

R

E

G

load(8)

REG1

P1

Clk

R

E

G
load(1)

Product

REG3

S1

Clk

R

E

G
load(3)

Sum

REG8

Sel0

2

Sel1

2

MUX0

MUX1

24

Sum

MUX

3_1

16-bit

Clk

R

E

G

load(4)

REG5

e(n-1)

Clk

R

E

G
load(5)

REG6

Clk

R

E

G
load(6)

REG4

Sel3

2

MUX3

MUX

3_1

16-bit

Sel2

2

MUX2

Clk

R

E

G
load(9)

REG9

Disable

Clk

R

E

G

load(7)

REG7

Product

ControlUnit

Clk

Rese

t

Req
 Ack

load(9:0)

sel0

sel1

sel2

sel3

ControlUnit0

Flip_Flop0

Clk

Reset

Start

Sel0

Sel2

Sel1

Sel3

load(9:0)

32

32

32

MUX_OUT0

MUX_OUT1

MUX_OUT2

MUX_OUT3

e(n)

e(n-2)

16

16

32

Datapath

Control Unit

16

16

16

16

Req

Ack

0

1

2

3

0

1

2

0

1

2

0

1

2

32

32

32

32

32

u(n)

Fig. 4. Serial design of incremental PID algorithm.

The module is shown in Figure 3. The critical path of

the incremental algorithm is also marked in Fig. 3. Its delay

includes 1 delay from the 16-bit adder, 2 from the 32-bit adders

and 1 from the 16-bit multiplier, expressed as

Dpos = Dadd16 + 2 ∗ Dadd32 + Dmpl16 (8)

B. Serial Design

To minimize area, in the serial design only one arithmetic

operator is used for each kind of arithmetic operation. As

shown in Figure 4, there is one adder and one multiplier. Other

parts, including arithmetic operators, registers, multiplexers

and other logic, are called the datapath. Registers are used to

store intermediate results. At the rising edge of the clock, the

input signal of the register can be latched only if the load input

signal is asserted. In each clock cycle, the control unit, which

is a finite state machine, sets selection signals of multiplexers

according to the current state and input, effectively defining

the input to each operator.

The adder is 32-bit, consequently, the multiplexers MUX0

and MUX1 that are used to select input for the adder are

also 32-bit. Desired position, Pd, and negation of position

feedback, P neg, are 24-bit thus need to be extended. The

error value e(n) is computed by the adder but only the low

16 bits are latched to REG4, which will be input to the 16-

bit multiplier. The module shown in Figure 4 is implemented

using VHDL.

V. MULTIPLE-CHANNEL DESIGNS

In multiple-channel design, either a PID unit is dedicated

to each channel, referred to as channel-level parallel (CLP)

design, or one PID unit is shared by all channels, referred

to as channel-level serial (CLS) design. The tradeoffs are in

area, speed, and complexity. A parallel design occupies quite a

large area as the number of channels increase, whereas a serial

design requires a more complex control unit and obviously

takes longer to compute all channels. Because CLP designs

are so straight-forward, only CLS designs are presented in

-

P

d

EncdCnt

 *

Bounder

UpBoun

d

LowBoun

d

K0

K2

K1

OvFl

 +

Output

Reset

REG0

REG2

ADD0

MPL0

Bounder0

P
 P_neg

P0

P2

u(n-1)

24

32

16

16
 16

MUX

4_1

32-bit

Clk

R

E

G

Clk

R

E

G

load(0)

load(2)

Product

Product

MUX

3_1

32-bit

Clk

R

E

G

load(8)

REG1

P1

Clk

R

E

G
load(1)

Product

REG3

S1

Clk

R

E

G
load(3)

Sum

REG8

Sel0

2

Sel1

2

MUX0

MUX1

24

Sum

MUX

3_1

16-bit

Clk

R

E

G

load(4)

REG6

e(n-1)

Clk

R

E

G
load(6)

REG4

Sel3

2

MUX3

MUX

3_1

16-bit

Sel2

2

MUX2

Clk

R

E

G
load(9)

REG9

Disable

Clk

R

E

G

load(7)

REG7

Product

ControlUnit0

Flip_Flop0

Clk

Reset

Start

Sel0

Sel2

Sel1

Sel3

load(9:0)

32

32

32

MUX_OUT0

MUX_OUT1

MUX_OUT2

MUX_OUT3

e(n)

e(n-2)

16

16

32

Datapath

Control Unit

16

16

16

16

Req

Ack

0

1

2

3

0

1

2

0

1

2

0

1

2

32

32

32

32

32

MUX

16_1

16-bit

CC

4

MUX4

0

15

1

2

EncdCnt(0)

EncdCnt(2)

EncdCnt(1)

EncdCnt(15)

e(n-1)
in

u(n)

Clk

R

E

G

loadout(0)

REGout0

Output_out(0)

16

.

.

.

.

.

.

.

Clk

R

E

G

loadout(1)

REGout1

Output_out(1)

16

Clk

R

E

G

loadout(15)

REGout15

Output_out(15)

16

.

.

.

.

.

.

.

CC_MAX

CC

CC_Rst

we

loadout(15:0)

ControlUnitM_srl

Clk

Rese

t

Req
Ack

load(9:0)

sel0

sel1

sel2

sel3
CC_

MAX
CC
 we

CC_

Rst

loadout(15:0

)

REG_CC

Clk

R

E

G
load(5)

MUX_CC

0
+ 1

1
0
 CC
CC_next

CC_p1

CC_Rst

4

Reset

Channel Counter

CC

Addr

Fig. 5. Serial PID based multiple-channel design.

this section. The PID units of each design can be either serial

(referred to as serial PID based design) or parallel (referred to

as parallel PID based design).

In CLS design, context switching must occur prior to the

computation of each channel output. For example, in switching

from channel 0 to channel 1, the computed results u0(n) and

e0(n) must be stored, and the parameters Pd, K0, K1, K2,

UpBound, and LowBound for channel 1 and the previously

calculated results u1(n − 1), e1(n − 1), and e1(n − 2) need

to be loaded. Registers exist in slices in FPGAs, therefore it

would consume a large number of resources to use registers as

off-datapath storage. Fortunately, FPGAs also have block and

distributed RAM, which we made use of for context switching

storage.

A. Serial PID Based Multiple-Channel Design

The serial PID based CLS design is shown in Figure 5. It

requires two cycles for context switching in addition to the

four cycles required for a serial PID control unit. One read

cycle is required before the start of the PID algorithm to load

both the previous computation results and the channel-specific

parameters from RAM. Also, a write-back cycle is required

after completion of the PID algorithm to store those data.

There exist other distinctions from the one-channel design.

Position feedback, EncdCnt, in the multiple-channel design

is selected through the multiplexer MUX4 from the current

channel in the read cycle, while the computation output

needs to be latched at register REGoutN corresponding to

the current channel N in the write-back cycle. The current

channel is determined by the channel counter signal, CC,

which can be set to 0 by an asynchronous reset signal Reset
or by a synchronous reset signal CC Rst during operations.

CC MAX is an input signal that determines the maximum

channel number to control.

ControlUnit0

Flip_Flop0

Clk

Reset

Start

load(9:0)

Control Unit

Req

Ack

MUX

16_1

16-bit

CC

4

MUX4

0

15

1

2

EncdCnt(0)

EncdCnt(2)

EncdCnt(1)

EncdCnt(15)

.

.

.

.

.

.

.

CC_MAX

CC

CC_Rst

we

loadout(15:0)

ControlUnitM_srl

Clk

Rese

t

Req
Ack

load(9:0)

CC_

MAX
CC
 we

CC_

Rst

loadout(15:0

)

REG_CC

Clk

R

E

G
load(5)

MUX_CC

0
+ 1

1
0
 CC
CC_next

CC_p1

CC_Rst

4

Reset

Channel Counter

CC

Addr

-

P

d

 *

 *

 *

Bounder

UpBoun

d

LowBoun

d

K0

K2

K1

OvFl0

 +

 +

 +

 +

OvFl2

OvFl1

OvFl3

OvFl0

OvFl2

OvFl1

OvFl3

OvFl

Reset

ADD0

ADD1

ADD2

ADD3

MPL0

MPL1

MPL2

Bounder0

P
 P_neg

e(n)

P0

P2

P1

S1

S2

u(n)

u(n-1)

24

16

16

16

16

16

16

32

32

32

32

16

16
 16

EncdCnt

24

Clk

R

E

G
load(8)

REG8
 REG6

e

n-1

Clk

R

E

G
load(6)

e(n-1)
in

Clk

R

E

G
load(0)

e(n-2)

e

n-2

R

REG0

Clk

R

E

G

load(7)

REG7
 u

n-1

R

Clk

R

E

G

load(9)

REG9

Disable

Output

Clk

R

E

G

loadout(0)

REGout0

Output_out(0)

16

Clk

R

E

G

loadout(1)

REGout1

Output_out(1)

16

Clk

R

E

G

loadout(15)

REGout15

Output_out(15)

16

.

.

.

.

.

.

.

Reset

Datapath

Fig. 6. Parallel PID based multiple-channel design (PIDm par).

B. Parallel PID based multiple-channel design

The parallel PID based CLS design is shown in Figure 6. In

this design, the PID algorithm is executed in only one cycle,

but context switching is still required. The read cycle for both

parallel and serial based designs are the same. The writing of

the results to RAM could be implemented either as a separate

write-back cycle or as part of the PID computation cycle. A

separate cycle increases the cycle count for each channel, thus

increases the delay, which is significant because the critical

path delay of the parallel design is quite long relative to

the serial design. Therefore, the write-back of the results is

included in the PID algorithm.

In the read cycle, the input signal e(n − 2) and u(n − 1)
are latched at registers REG0 and REG7, instead of being

connected to arithmetic operators directly, like in serial based

design. This is because RAM write signals are asserted during

the computation cycle. Thus the new value for e(n − 2) and

u(n−1), that is e(n−1) and u(n) of this cycle, will be written

into RAM.

VI. TEST METHODOLOGY AND RESULTS

A. Experiment Platform and Motor Control Interface Design

As seen in Figure 7, the required components of a complete

system for motor control include a trajectory generator, a PID

module, a PWM module, an amplifier and motor, a shaft

encoder, and an encoder interface. The trajectory generator

is implemented in software on the microprocessor of a Game

Boy Advanced, the PWM module and encoder interface is

implemented on the FPGA, and the amplifier, motor, and

shaft encoder are external to the system. The PID module,

which is the focus of this research, is implemented both in

hardware on the FPGA, and for comparison, in software on

the microprocessor.

All experiments were performed on the system configura-

tion as shown in Figure 7, which includes an experimental

Spartan II FPGA system with Xport 2.0 [18], [19]. This

FPGA does not have an onboard CPU, thus we used a Game

Boy Advanced System with an ARM7TDMI processor, which

Cport

CPLD

Flash

SDRAM

User expansion conectors

ARM7TDMI

microprocessor

<S/W PID>

<Trajectory Generator>

Game Boy

Advanced

Xport 2.0

Power

Amp

Motor

Shaft

Encoder

Host Computer

FPGA

Spartan II

XC2S150

< H/W PID>

PWM

Logic

Encoder

Counter

P

d

P

u(t)

Fig. 7. FPGA experimental system.

0 20 40 60 80 100 120 140 160 180 200

1000

1050

1100

1150

1200

1250

P
o

s
it
io

n
 (

e
n

c
o

d
e

r
c
o

u
n

t)

Time (ms)

Step Response

Desired position

Software PID

One−channel parallel design

One−channel serial design

Multiple−channel parallel design

Multiple−channel serial design

Fig. 8. Step response control experiment results.

is a 32-bit RISC CPU. External systems were connected to

the FPGA through user expansion connectors. The FPGA

configuration and CPU code was downloaded to the system

from a host computer through the Cport. Ultimately, the

controller will be implemented on an FPGA with an onboard

CPU, such as the Xilinx Virtex-II Pro FPGA.

B. Function Test

A performance evaluation is meaningful only after the

design is verified as functionally correct. Each PID hardware

design, as described above, was implemented and used to per-

form step response control of a motor. Additionally, a software

implementation was developed and tested. In software, a set

of preliminary PID parameters and control periods were de-

termined by performing the Ziegler-Nichols [16] experimental

method, and then the parameters were tuned to an ideal step

response. The same parameters and sampling period were

applied to the hardware PID implementations in the FPGA

to perform the step response control tests. Experiment results

of step response control for all designs are shown in Figure 8.

The parameter tuning experiment yielded the following

results: proportional gain Kp = 463, integral coefficient Ki

TABLE I

DEVICE RESOURCES UTILIZATION OF DESIGNS.

Designs One-Channel Multiple-Channel (CLS)

Parallel Serial Parallel Based Serial Based

Resources Avail Used Util Used Util Used Util Used Util

#External

GCLKIOBs

4 2 50% 3 75% 4 100% 4 100%

#External

IOBs

140 65 46% 65 46% 78 55% 86 61%

#GCLKs 4 2 50% 3 75% 4 100% 4 100%

Area

(#slices)

1728 615 35% 466 26% 1536 88% 1412 81%

= 0, derivative coefficient Kd = 4640, and the control period

T = 0.833 ms, which were used to perform control testing.

To test motor control for each design, the motor was set to

an initial position of 1000, then a desired position command

of 1200 was issued. From Figure 8, the horizontal dashed

line is the desired position, while the other curves are the

real responses sampled from the encoder counter. The results

show that all the designs performed correctly and similarly.

Response speed is fast, overshoot is small, and static accuracy

is high. The average rise time is 30.32ms and the standard

deviation of the rise time is 0.7451. The steady state error is

0.

C. Performance tests

Once the correctness of the designs was verified, perfor-

mance was analyzed. All FPGA designs were implemented

using the VHDL language in Xilinx ISE software. Xilinx

provides a variety of performance analyses, including resource

utilization, speed, and power consumption, based on simula-

tions of the hardware design. Performance was based on these

reports.

1) Resource Utilization : Resource utilization for each

design is listed in Table I. The second column indicates the

number of available resources, which includes the number of

I/O blocks (IOBs), global clocks (GCLK), and Configurable

Logic Block (CLB) slices. (CLB slice count, as opposed to

logic gate count, is a more reliable area measurement [4].)

2) Speed : The Xilinx Timing Analyzer provided detailed

and accurate timing information, including minimum clock

period and delays along the data path. In each design, there

were two timing concerns. The first was the control clock

frequency, which controls the timing of the cycles of the PID

algorithm. The control clock frequency depends on the delays

experienced along the data paths of the PID. The second

timing concern was the sampling rate, which corresponds to

the rate that the PID algorithm generates torque commands.

This frequency depends on the control clock frequency.

The one-channel parallel design is mainly a combinational

logic requiring only a single cycle to complete. The sampling

and control clock frequency are identical. The timing report

showed that the longest delay was 44.270 ns, therefore we

chose 50 ns as the minimum sampling cycle.

The longest delay in the one-channel serial design was

29.146 ns, therefore we chose 30 ns as the minimum clock

TABLE II

CLOCKS AND EXECUTION TIMES OF DESIGNS.

Designs One-Channel Multiple-Channel (CLS)
Parallel Serial Parallel Based Serial Based

Clock Per. 44.270 ns 29.146 ns 48.955 ns 29.816 ns
(≈50) (≈30) (≈50) (≈30)

Cycles 1 4 2 6

Sample Per. ≈50 ns ≈120 ns ≈100 ns ≈180 ns

TABLE III

POWER DISSIPATION OF ONE-CHANNEL PARALLEL DESIGN.

Sampling Simulation Power dissipation (mW)
Freq. (Mhz) Period (ns) Time (µs) Stable state Dynamic state

0.0012 833000 8330 11.39793 11.6651

0.012 83300 833 11.81836 13.14453

0.12 8330 83.3 16.02 17.97

0.25 4000 40 21.08 25.13

0.5 2000 20 30.81 38.9

1.25 800 8 59.99 80.23

2.5 400 4 108.63 149.21

6.25 160 1.6 254.56 355.77

8.3325 120 1.2 335.63 470.58

cycle. Each PID computation requires four cycles, so the

minimum sampling period for the one-channel serial design

was 120 ns.

Similar analyses were done for CLS parallel PID and

serial PID based multiple-channel designs. We chose 50 ns

for the minimum clock period for the CLS parallel design.

Each PID computation requires two cycles, so the minimum

sample period for each channel is 100 ns. We chose 30 ns

for the minimum clock cycle of the CLS serial design. Each

PID computation requires six cycles, so the minimum sample

period for each channel is 180 ns. All clock and sample periods

are listed in Table II.

3) Power Dissipation : Power consumption is dependent

upon the sample and control clock frequency. Thus, to com-

pare power performance, we both generated motor commands

and ran the PID module at various frequencies. For any single

comparison, such as one-channel serial versus one-channel

parallel, frequencies were the same for both. This required

significant delays in the parallel-based implementations, but it

presented a more valid comparison.

The test data obtained in the step response experiments were

used as input to the hardware simulation of each PID design.

For a static state analysis, the desired position was identical

to the current position. For dynamic state analysis, the initial

position was set to 1000 and the desired to 1200. Once this

desired position was reached, it increased by 1 every 278 µs.

This dynamic process was based on the sampled data in the

function tests. Simulation resolution is 100 ps.

Power test results with different sampling frequencies for

one-channel parallel design and serial design are shown in

Table III and IV, respectively.

The simulation time for getting a power test value is

extremely long, so multiple-channel designs are only tested for

sampling frequency 0.12MHz. Power was tested for different

numbers of channels with the control clock frequency at

TABLE IV

POWER DISSIPATION OF ONE-CHANNEL SERIAL DESIGN.

Sampling Control clock Simulation Power (mW)
Freq. (MHz) Freq. (MHz) Time(µs) (Dynamic state)

0.0012 0.0048 8330 11.40

0.012 0.048 833 11.69

0.12 0.48 83.3 13.83

0.25 1 40 16.43

0.5 2 20 21.51

1.25 5 8 36.74

2.5 10 4 62.16

6.25 25 1.6 123.64

8.3325 33.33 1.2 158.15

TABLE V

POWER DISSIPATION OF MULTIPLE-CHANNEL PARALLEL BASED DESIGN.

Sampling Control clock Simulation Number of Power (mW)

Freq. (MHz) Freq. (MHz) Time (µs) channels (Dynamic state)

10 83.3 9 459.34

1 147.33

4 276.77

0.12 8.33 83.3 8 415.98

12 564.48

16 704.81

5 83.3 9 454.66

4.17 83.3 9 453.88

8.33MHz in parallel based design and at 25MHz in serial

based design, resulting in the same execution time for serial

and parallel based designs. For other control clock frequencies,

power was only tested for 9 channels. Power test results for

CLS multiple-channel parallel PID based design are shown in

Table V. Power test results for serial PID based design are

shown in Table VI.

VII. DISCUSSION

A. Area

In one-channel and multi-channel serial designs, all arith-

metic operations share one multiplier and one adder, while in

parallel designs there are 3 multipliers and 4 adders. Because

of this, serial designs have an obvious space advantage.

However, some of this space savings is used up with additional

control logic. As shown in Table I, the one-channel serial

design is only 24.2% smaller than the parallel design, and

a mere 8% smaller with multiple-channel serial based design.

TABLE VI

POWER DISSIPATION OF MULTIPLE-CHANNEL SERIAL BASED DESIGN.

Sampling Control clock Simulation Number of Power (mW)

Freq. (MHz) Freq. (MHz) Time (µs) channels (Dynamic state)

33.33 83.3 9 231.74

1 168.03

4 190.40

0.12 25 83.3 8 214.78

12 239.87

16 267.79

12.5 83.3 9 206.87

0

2000

4000

6000

8000

10000

12000

1
 3
 5
 7
 9
 11
 13
 15

number of channels

n
u

m
b

e
r

o
f

s
li
c
e
s

CLP parallel

CLS parallel

CLP serial

CLS serial

Fig. 9. Area comparison of multiple-channel designs.

Although channel-level serial designs also have only one

PID unit, they need more support resources, such as registers,

decoders, RAM, and control logic. So multiple-channel de-

signs, even channel-level serial, require much more area than

corresponding one-channel designs, as shown in Table I. The

multiple-channel parallel based design requires 2.5 times the

area of the one-channel parallel design. The multiple-channel

serial based design requires 3.0 times the area of the one-

channel serial design.

Figure 9 compares area requirements for CLS and CLP

designs. CLS area requirements remain constant while CLP

requirements grow with the number of channels. For a large

number of channels, CLS has a significant advantage, however,

for a small number of channels, CLP is advantageous.

B. Speed

Area and speed are conversely related. The advantages in

area requirements shown for serial design are countered by

their disadvantage in speed. While the datapath in the serial

design is shorter, thus the delay is shorter, more clock cycles

are required. As expected, execution times for serial design

are longer, as shown in Table II.

CLS multiple-channel designs require more cycles for con-

text switching than one-channel designs, so execution times

are longer for each channel. The execution time of the CLS

design for N channels is N times the execution time for

one channel, while execution time of CLP design is always

equivalent to that of the one-channel design.

C. Power Analysis

Table III shows that the dynamic process consumes more

power than the stable state in the one-channel parallel design.

It also shows that power dissipation increases as sampling fre-

quency is increased, as expected. Likewise, this trend appears

in the serial design data in Table IV. Surprisingly, there is

minimal difference between the two at reasonable sampling

frequencies as shown in Figure 10. (An early hypothesis was

that the parallel design would be more power efficient due to

slower operation.)

In multiple-channel designs, for the same sampling fre-

quency and control clock frequency, power dissipation in-

creases as the number of channels increases. This feature

is shown in Figure 11, where the sampling frequency is

0.12MHz. Power is approximately linear with the number of

0

50

100

150

200

250

300

350

400

450

500

0.0012
 0.012
 0.12
 0.25
 0.5
 1.25
 2.5
 6.25
 8.3325

Sampling frequency (MHz)

P
o

w
e

r
(m

w
)

Serial

Parallel

Fig. 10. Power dissipation of one-channel serial and parallel design.

0

100

200

300

400

500

600

700

800

1
 3
 5
 7
 9
 11
 13
 15

Number of channels

P
o

w
e

r
(m

W
)

CLP parallel

CLS parallel

CLP serial

CLS serial

Fig. 11. Power comparison of multiple-channel designs.

channels. As mentioned above, it was expected that for the

same sampling frequency and execution time, the multiple-

channel parallel based design would consume less power,

because the clock frequency of the parallel based design is

lower. For one channel, the parallel based design does consume

less power, however, for a large number of channels, the

parallel-based design consumes more power than the serial-

based (an example of this is depicted in Figure 11).

Figure 11 also shows that for the same sampling frequency,

the channel-level parallel design with a serial PID unit con-

sumes the least power, but the area requirements of the CLP

design (Figure 9) rapidly exceed the capacity of the FPGA as

the number of channels increases.

VIII. CONCLUSION

In this project, preliminary work was conducted to explore

control system design for a resource-constrained robot based

on an FPGA technique. Parallel and serial architectures of

the PID control algorithm were designed and implemented for

one-channel closed-loop control. Two architectures of channel-

level serial (CLS) multiple-channel PID were designed based

on parallel and serial one-channel designs respectively. Step

response control experiments verified functional correctness of

these four designs.

Performance tests show that for a small number of channels,

CLP serial based design has the smallest area and consumes

the least power. For more channels (more than three for

Spartan II FPGA), the CLS serial based design has the smallest

area requirements and the CLP serial design still consumes

the least power, but the area requirements of the CLP serial

based design increases very quickly. Thus, for a large number

of channels, CLS serial based design is suggested. CLS serial

based design has the longest execution times, but the execution

time is not a major concern for these designs as long as the

number of channels is not so large that the total execution time

exceeds the sampling period.

In addition, the results show that the dynamic process con-

sumes more power than the stable state, that higher sampling

frequency and control clock frequency consumes more power

than lower frequency, and that power dissipation increases as

the number of channels increases.

REFERENCES

[1] R.M. Voyles and A.C. Larson, ”TerminatorBot: A Novel Robot with
Dual-Use Mechanism for Locomotion and Manipulation,” in IEEE/ASME

Transactions on Mechatronics, v. 10, n. 1, 2005, pp. 17-25.
[2] K. Weiss, R. Kistner, A. Kunzmann and W. Rosenstiel, “Analysis of the

XC6000 Architecture for Embedded System Design”, in Proc. of IEEE

Symp. on FPGAs for Custom Computing Machines, Apr, 1998, pp. 245-
252.

[3] J. Noguera and R.M. Badia, “HW/SW Codesign Techniques for Dynami-
cally Reconfigurable Architectures”, in IEEE Transactions on Very Large

Scale Integration Systems, Vol. 10, No.4, August 2002, pp. 399-415.
[4] A.J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA-Based

Performance Evaluation of the AES Block Cipher Candidate Algorithm
Finalists”, in IEEE Transactions on Very Large Scale Integration Systems,
Vol. 9, No.4, August 2001, pp. 545-557.

[5] N. Shirazi, W. Luk and P.Y.K. Cheung, “Framework and tools for run-time
reconfigurable designs”, in IEE Proceedings of Computers and Digital

Techniques, Vol. 147, No. 3, May 2000, pp. 147-151.
[6] S. Choi, R. Scrofano, V.K. Prasanna, and J-W. Jang, “Energy-Efficient

Signal Processing Using FPGAs”, in Proceedings of ACM/SIGDA 11th

ACM International Symposium on FPGA, Monterey CA, Feb. 23-25,
2003, pp. 225-233.

[7] L. Shang and N.K. Jha, “High-level Power Modeling of CPLDs and
FPGAs”, in Proceedings of 2001 IEEE International Conference on

Computer Design, Sep. 23-26, 2001, pp.46-51
[8] S. Gupta and F.N. Najm, “Power Modeling for High-Level Power Esti-

mation”, in IEEE Transactions on Very Large Scale Integration Systems,
Vol. 8, No.1, Feb. 2000, pp. 18-29.

[9] L. Shang and N.K. Jha, “Hardware-Software Co-Synthesis of Low
Power Real-Time Distributed Embedded Systems with Dynamically Re-
configurable FPGAs”, in Proceedings of the 15th IEEE International

Conference on VLSI Design (VLSID’02), Jan. 2002, pp. 345-352.
[10] A. Garcia, W. Burleson, and J.L. Danger, “Low Power Digital Design in

FPGAs: A Study of Pipeline Architectures implemented in a FPGA using
a Low Supply Voltage to Reduce Power Consumption”, in Proceedings

of 2000 IEEE International Symposium on Circuits and Systems, Geneva,
vol.5, May 28-31, 2000, pp. 561-564.

[11] R. Maestre, F.J. Kurdahi, M. Fernandez, R. Hermida, “A Framework for
Scheduling and Context Allocation in Reconfigurable Computing”, Proc.

of the International Symposium on System Synthesis, 1999, pp. 134-140.
[12] J. Li and B.-S. Hu, “The Architecture of Fuzzy PID Gain Conditioner

and Its FPGA Prototype Implementation”, in Proceedings of 2nd IEEE

International Conference on ASIC, Oct. 21-24, 1996, pp. 61-65.
[13] R.-X. Chen, L.-G. Chen, and L. Chen, “System Design Consideration

for Digital Wheelchair Controller”, in IEEE Transactions on Industrial

Electronics, Vol.47, No.4, Aug. 2000, pp. 898-907.
[14] L. Samet, N. Masmoudi, M.W. Kharrat, and L. Kamoun, “A Digital PID

Controller for Real Time and Multi Loop Control: a comparative study”,
in Proceedings of 1998 IEEE International Conference on Electronics,

Circuits and Systems, Vol.1, Sep. 7-10, 1998, pp. 291-296.
[15] M. Petko and G. Karpiel, “Semi-Automatic Implementation of Control

Algorithms in ASIC/FPGA”, in Proc. of IEEE Conf. on Emerging Tech.

and Factory Automation, Vol.1, Sep. 16-19, 2003, pp. 427-433.
[16] R. Isermann, Digital Control Systems, Springer-Verlag, 1989.
[17] G.F. Franklin, J.D. Powell and M.L. Workman, Digital Control of

Dynamic Systems, Addison-Wesley Publishing Company, 1990.
[18] http://www.charmedlabs.com
[19] Xilinx Inc., “Spartan-II 2.5V FPGA Family Product Specification”,

http://www.xilinx.com.

