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Community corrections (CC) offer an alternative to incarceration that can reduce jail overcrowding and

recidivism rates. The aim is to address the root causes behind criminal behavior, ultimately breaking the

cycle of reincarceration. However, placing all eligible individuals in CC may can strain case managers,

resulting in reduced supervision, increased violations, and higher recidivism rates, which undermines the

intended benefits for all participants in the programs. We take the first step to build a comprehensive

analytical framework based on a queueing system that incorporates various system- and individual-level

factors. We develop a Markov Decision Process (MDP) to systematically study the intricate tradoffs among

individual recidivism risks of individuals and the negative effects of overcrowded jail and CC programs.

Unlike conventional queueing routing problems, our model incorporates salient features in the criminal justice

setting, including deterministic service times (sentenced length) and convex holding and violation costs that

vary with program occupancy, which present significant theoretical and algorithmic challenges. To tackle the

theoretical challenge, we develop a unified approach with system coupling and policy deviation bounding to

compare value functions, establishing the superconvexity of the value function. This provides a theoretical

basis to innovate an efficient algorithm based on a separation of time scales. We showcase the effectiveness

of our algorithm in solving the originally intractable real-world problems through a case study using data

from our community partner. Our study provides valuable policy insights, highlighting the significance of

our approach in breaking the cycle of recidivism and offering guidance for capacity planning.
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1. Introduction

Jail crowding is a prominent challenge to the current criminal justice systems in the United States

(U.S.), causing various negative consequences on individuals and their communities (Specter 2010).

The number of incarcerated people per capita has more than quadrupled in the U.S. over the past

40 years. In recent years, there has been a record high of 2.3 million individuals incarcerated in

prisons and jails, with the jail population reaching 0.75 million (Minton and Golinelli 2013).
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What makes the overcrowding issue worse is the well-known “revolving door” phenomenon in the

criminal justice system. Over 75% of individuals released from incarceration are re-arrested within

five years (Alper et al. 2018). These released individuals often have difficulties in accessing housing,

education, job and rehabilitation opportunities, reducing their chances of successful reintegration

into society. Consequently, this increases the likelihood of recidivism, i.e., relapsing into criminal

behavior shortly after release (Spohn and Holleran 2002). This creates a vicious cycle, in which

the elevated rates of repeat offenses result in an increased number of people being incarcerated,

exacerbating the already critical problem of jail overcrowding.

Given the serious negative effects as above, as well as the often staggering expense of jails and

prisons to governments and taxpayers, addressing this vicious cycle between jail overcrowding and

recidivism has become a top priority for many policymakers (MIT News 2017). The Community

Corrections Act in the U.S. was established in 1979 for the purpose of encouraging counties to

develop a coordinated local criminal justice system in order to divert from traditional incarceration

(Pitts et al. 2014). According to the Indiana Department of Correction, community corrections

(CC) “is a community-based supervision agency used for the primary purpose of providing sen-

tencing alternatives for felony offenders in lieu of incarceration.” CC programs go beyond mere

diversion; they play a pivotal role in enhancing the long-term health and well-being of participants

by addressing the underlying root causes behind criminal behavior. For example, CC programs

provide individuals with access to services such as substance use disorder (SUD) treatment, men-

tal health services, and vocational training. These programs help participants seek jobs, improve

life skills, and ultimately increase their chances of success on reintegration into the society (Prins

et al. 2009). Studies show that CC programs help improve long-term community safety and reduce

crime (Duwe and McNeeley 2021); this reduces the need for costly new prison construction and

the burden on overcrowded jail facilities, saving taxpayer money.

While CC programs could help decrease long-term recidivism rates, they are not a universal

remedy suitable for all individuals. For example, since CC programs do not impose strict incar-

ceration, individuals placed in CC may still face the risk of reoffending while participating in

these programs (Hawken 2016). Moreover, the effectiveness of reintegration is closely tied to the

caseloads of CC case managers. Current practices primarily follow a risk-based approach, often

utilizing acceptance criteria based on risk factors (Desmarais and Lowder 2020). For cases that are

not a clear cut, additional factors including jail or CC occupancies are taken into consideration

beyond the risk assessment (Garrett et al. 2019), sometimes resulting case-by-case outcomes and

not necessarily the same for individuals who appear to be similar. However, even with all these

more nuanced considerations, placement decisions tend to be isolated in current practice, focusing

on one individual at a time. They often do not take into account the overall status of the jail and



Gao, Shi, and Kong: Incarceration Placement Decision
00(0), pp. 000–000, © 0000 INFORMS 3

CC programs, as well as the potential impact of placing this one individual on all other existing

participants. This can cause unintended consequences. For example, indiscriminately placing all

eligible individuals to CC can shift crowding from jail to CC, overburdening case managers and

compromising supervision, thereby increasing technical violations and reoffenses. This can under-

mine the benefits of CC programs and even exacerbate the cycle of incarceration (see discussions

in Section 3). Therefore, the decision on whom to divert to CC is far more nuanced than an

individual assessment or following a rigid rule – it must strike a balance among various tradeoffs

and avoid unintended consequences caused by overlooking the system effect. In essence, it neces-

sitates proactively considering how the placement decision for one individual impacts themselves

and all other existing participants in CC or jail, especially for those cases that fall into a “gray

area,” the incarceration or diversion decision for whom is not clear. While adding jail capacity or

increasing CC staffing whenever necessary may seem like the obvious solution to avoid any of the

tough decisions, this option is not always feasible due to limited state funding and various other

constraints. It necessatiates a sophisticated, system-wide view to understand the various tradeoffs

comprehensively and develop decision support to effectively use existing resources for the benefit

of both individuals and the broad society in a dynamic environment characterized by stochastic

fluctuations. Furthermore, gaining a thorough understanding of placement decisions serves as a

crucial stepping stone for capacity planning at a strategic level.

1.1. Paper Overview and Contribution

We take an important first step to develop an analytics-based approach to study placement deci-

sions for individuals in the incarceration setting. Our approach offers a holistic, system-wide

perspective that differs from current siloed and experience-based decision-making practices. Our

analytical framework considers the complex interplay between individual and system-level factors

that have not been systematically studied before, presenting a pioneering step and filling a critical

gap in this important public sector area that has lacked OR analytics support. Our research is

also practically grounded based on close collaboration with the community partner – Tippeca-

noe County Community Corrections (TCCC) in Indiana, USA, with ongoing implementation and

research translation from this work. We provide an overview of our work and summarize both our

theoretical and practical contributions as follows. We stress that criminal justice is a very compli-

cated system, and we take an initial stride in this paper to understand the incarceration diversion

from a system’s view. We make a few important remarks on how to interpret results from our

analytical model at the end in Section 1.1.2.

1.1.1. Technical contributions.
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I. New Modeling Framework. We build a modeling framework that comprehensively examines the

tradeoffs involved in community correctional placement. These tradeoffs consider both individual-

level (recidivism and violation risks in the short- and long-term) and system-level factors (staffing

needs and the negative impact of overcrowding on all participants). Prior works primarily focus on

reducing jail overcrowding and often overlook the CC perspective (Usta and Wein 2015), or solely

consider individual risks and ignore the “externalities” brought by placing the current individual

on other existing participants in the jail or CC programs (Brogan et al. 2015). In Section 3, we

specify the important individual- and system-level factors we consider and the tradeoffs. Our MDP

model, as described in Section 4, effectively integrates these intricate trade-offs through a novel cost

modeling approach. Specifically, to connect individual-level considerations and system-level impacts

within the decision making, we transform the costs associated with individual recidivism and

violations into a convex cost structure based on program occupancy (in addition to the traditional

holding cost), where the occupancy is risk-dependent. This approach allows us to capture the

increasing negative impact (the externalities) when assigning an individual to an already crowded

program, while still differentiating based on individual risk levels. In addition, we account for

salient features in this application context, including (a) pre-set and deterministic sentence lengths,

which render the system non-memoryless and necessitate the tracking of the length of stay (LOS)

for each participant; and (b) different recidivism windows, as individuals can re-offend during CC

programs but not in jail. These features bring further complication due to their interplay with the

occupancy and resulted tradeoff. These new features not only set our MDP problem apart from

classic queueing routing problems but also establish a contextual foundation for future research in

this important area of public policy.

II. Unified Approach for Value Function Comparison. We investigate the interplay among dif-

ferent tradeoffs via structural analyses of the MDP policy, including when CC placement is pre-

ferred under different system congestion levels, individual risk levels, and recidivism windows. Most

importantly, we establish the superconvexity property of the value function of the “right” state

variables (see Section 5.1 for counterexamples using insufficient state variables). These analyses

are much more complicated than conventional structrual analyses due to the unique features of

our model (deterministic service times and convex costs). We develop a unified approach that

leverages sample path coupling and policy deviation bounding techniques to decompose and com-

pare the optimal value functions starting at different states. This technical innovation avoids the

tediousness of using the traditional operator methods and directly analyzes the value function via

coupling and monotonicity results, which has independent technical interest for analyzing similar

systems beyond our application. This structural analysis result is significant since it provides not

just valuable insights but also establishes a theoretical foundation for our algorithmic development.
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III. Two-Timescale Algorithmic Solution. To solve the placement decision problem in realistic

settings, we need an algorithmic solution. However, the non-memoryless and long LOS significantly

enlarge the state space and make the problem computationally intractable. To overcome this chal-

lenge, we propose a scalable actor-critic policy gradient algorithm that leverages a separation of

timescales uniquely to our domain application. Specifically, on the slow time-scale, we transform

the original MDP into a form that (i) considers batched decisions, for which global optimality

is guaranteed by the established superconvexity results; (ii) allows us to recover the transition

dynamics accurately without tracking individual LOS, significantly reducing the state space. We

demonstrate the effectiveness of our algorithm in solving the originally intractable real-world prob-

lems via a comprehensive case study using data from our community partner. By comparing against

benchmark algorithms, we also show that neither a pure risk-based policy nor a static threshold

policy is sufficient to address the complex tradeoffs involved in the placement decision problem. A

careful balance among the factors as captured by our decision framework is necessary to achieve

the desired benefits of CC programs – stopping the revolving door of incarceration. We elaborate

more on the implication of our decision support and our practical contributions next.

1.1.2. Results Interpretation and Practical Contributions While this paper presents

an important step forward in understanding and optimizing placement decisions in the community

corrections setting, we recognize that our analytical framework is a simplified abstraction of a highly

complex and multifaceted reality. The criminal justice system is inherently complex and involves

various legal, social, and individual factors that cannot be fully captured in any mathematical

model. Thus, before getting into the details in the rest of the paper, we want to be upfront and

make a few important remarks here on how to interpret our analytical results and how our decision-

support should be viewed. This also highlights the broader practical contribution of this work

beyond the modeling and algorithm development.

First and foremost, our framework prescribes state-dependent placement decision recommen-

dation, which may raise concerns about consistency and fairness in the placement process: how

can an individual be placed to jail instead of CC just because CC is crowded? The answer is far

more multifaceted than what it seemed to be. It is crucial to emphasize that for clear-cut cases

such as those involving serious violent offenses or first-time low-level drug offenses, human (judge)

experiences are likely to be sufficient. In these cases, our placement recommendations are mainly

driven by individual cost balance and will most likely be consistent with the practice. However,

in cases where an individual falls into the “gray area,” a lot more factors need to be taken into

consideration, hence, the decisions are not necessarily consistent for individuals alike even in prac-

tice. Indeed, system congestion is a considering factor as current prosecuting guidelines recommend
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considering the availability of CC programs (Indiana Prosecuting Attorneys Council 2019) and

the growing emphasis on diverting more individuals due to jail overcrowding (Davis 2019, Gaines

and Miller 2021). Despite having these guidelines, the criminal justice system is known for its

siloed nature, where various stakeholders operate independently (Hamilton 2010). Hence, the detri-

mental effects of system congestion tend to be overlooked (e.g., judges may not fully grasp the

extensive workload of probation officers) until severe overcrowding becomes evident, amplifying the

vicious cycle. Our approach brings the important forward-looking connected view into the existing

practice for assisting these “gray-area” cases, where the system state represented via occupancy

effectively encapsulates a much broader spectrum of considerations through our cost modeling.

In other words, we present an inclusive trade-off analysis involving individual risk and the ripple

effects on others, thereby adding an extra layer of consideration that can aid various stakeholders

in the decision-making process, including judges, CC case managers, prosecutors, and more.

Second, our model should be viewed as a versatile analytical framework rather than a definitive

prescription for placement decisions. While our model provides a valuable interconnected per-

spective to assist decision-making, the ultimate decisions still rest with the judges. Nevertheless,

our practical contributions extend beyond mere placement recommendations as our model can

serve various additional purposes. One important application is its usage as a counterfactual tool,

allowing decision-makers to explore “what-if” scenarios and understand the potential outcomes

of different placement decisions for the individual in question and the effect it brings to others.

Additionally, it can assist in making decisions regarding temporary placements when specific com-

munity corrections programs reach capacity, or even in the context of early release and parole from

jail or prison; see more in Future Work in Section 8.

Lastly, we emphasize that the dynamics of the system and capacity constraints make trading

off between individual considerations with broader societal benefits certainly unavoidable, so as

variations in the placement recommendations for similar individuals, particularly those in the gray

area. This is not unique to criminal justice but probably universal in any system with resource

constraints. For example, in healthcare, patients may need to be discharged earlier when hos-

pital capacity becomes constrained (Shi et al. 2021) or denied admission to the most suitable

units (Zhalechian et al. 2023). Similarly, the insufficient community corrections program capacity

or jail space necessitates making choices that considers the overall system’s performance beyond

solely individual considerations. Our approach cannot eliminate the inherent challenges of manag-

ing constrained resources in a dynamic environment and tough choices must sometimes be made.

On the other hand, our findings in the case study shed lights to staffing and capacity management:

(1) without capacity increase, our recommended decisions could help avoid case manager burnout

and reduce their workload volatility (see Section 7.2), reducing potential turnover and maintaining
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the workforce; (2) we show that investing in more case managers can significantly reduce recidivism

and alleviate jail overcrowding, which contrasts the traditional approach of solely expanding jail

capacities and contributes to changing the stigma surrounding incarceration.

2. Literature Review

We review two streams of literature: one on applying operations tools in criminal justice work;

the other on the methodology side: state-dependent admission/routing decisions and solving high-

dimensional MDP.

OR in criminal justice. The application of OR tools in criminal justice systems is relatively

understudied. Among the few recent papers applying operations or system engineering to analyze

jail overcrowding and related issues, Hughes (2013) develops a simulation modeling based on simple

Markovian transitions for planning jail diversion programs for individuals with mental illness. The

author shows that jail diversion programs can be an effective incarceration alternative for these

individuals but highlights that “a key missing ingredient in jail diversion programs to date is a

knowledge of the requirements for capacity and staffing of systems.” Usta and Wein (2015) develop

a comprehensive simulation model to analyze the impact of different interventions on jail population

levels. They use data from the Los Angeles County Jail and show that split sentencing could not

only reduce the jail population by 20% but also cut recidivism by 7%. Master et al. (2018) build

upon this paper and develop queueing theory to provide more analytical insights.

Another related line of work studies infectious disease or public health issues among the incar-

cerated population (Franco-Paredes et al. 2021). Malta et al. (2019) provide a systematic review

of opioid-related interventions delivered before, during, and after incarceration. They find that

individuals treated with opioid agonist treatment in corrections have higher adherence to addic-

tion treatment, lower rates of relapse, and other improved outcomes. In the context of hepatitis

C treatment in U.S. prisons, Ayer et al. (2019) develop a restless bandit modeling framework to

support treatment prioritization decisions. The authors derive a closed-form index policy that is

adjusted for capacity and provide valuable insights into several contentious health policy matters

regarding hepatitis treatment, including considerations beyond liver health status and the influence

of remaining sentence lengths. Araz et al. (2022) present an analytical framework using a com-

putational epidemiology model for demonstrating the potential impact of jail-based screen-treat

programs on the prevention of sexually transmitted diseases.

Methodology. The placement decision considered in this paper is related to a vast body of lit-

erature on state-dependent admission and routing decisions in queueing systems. Various studies

have analyzed the performance and optimization of such systems using different methodologies and

policies. Mandelbaum and Pats (1998) examine state-dependent queueing networks, considering
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queue-length-dependent arrival and service rates, routing probabilities, and they derive analytical

results based on diffusion approximations. Movaghar (1997) establishes the optimality of “join the

shortest queue” (JSQ) policy for identical single-server stations with Markovian dynamics. Ansell

et al. (2003a) extend the JSQ policy to include heterogeneous stations and develop routing policies

considering congestion using DP-based policy improvement. Glazebrook et al. (2009) propose a

Markovian model for optimal control of admissions and routing in a system with heterogeneous

stations, providing an explicit construction of an index policy based on Whittle’s index. More

specifically in the healthcare context, Patrick et al. (2008) use an MDP approach with hard capacity

constraints to model the scheduling of diagnostic systems and apply approximate dynamic pro-

gramming (ADP) for solution. Samiedaluie et al. (2017) formulate an infinite-horizon average-cost

MDP to study patient admission policies in a fixed-capacity neurology ward with multiple types

of patients. Huang et al. (2015) analyze a multiclass queueing model with feedback to minimize

congestion costs in emergency departments.

Our work differs from this line of literature in that our model incorporates salient features of the

criminal justice system, which differs from conventional queueing systems in other service oper-

ations. As a result, new theories and algorithms have to be developed to address these specific

challenges. One key distinction is the unconventional assumption of deterministic service times.

This feature, along with the convex cost structure to capture the negative consequences of conges-

tion, results in the curse of dimensionality and presents significant challenges for structural analysis.

Furthermore, our model takes into account the impact of service lengths on the recidivism window

and the eventual probability of recidivism. This introduces more complex tradeoffs compared to

typical routing decisions in conventional queues.

Our research also contributes to the literature on developing scalable algorithms to address the

curse of dimensionality in MDPs. Various techniques, including value function approximation and

policy gradients, have been proposed to alleviate the computational burden of solving large-scale

MDPs; see review in Powell (2007). For queueing networks, Dai and Gluzman (2022) recently

demonstrate that a class of deep reinforcement learning algorithms, known as proximal policy

optimization, can produce control policies that consistently outperform state-of-the-art queueing

control policies. Several studies have also explored leveraging problem structure for dimensionality

reduction, as shown in the works of George et al. (2008), Nadar et al. (2018), Ulmer (2020), among

others. In our paper, we introduce a novel technique to address the curse of dimensionality in

MDPs. Specifically, we propose a two-timescale approximation scheme that takes advantage of

the long service times and relatively stable placement policies observed in the criminal justice

setting. This technique not only addresses the challenges specific to our application but also has

the potential for broader applications in dimensionality reduction in other domains.
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3. Background

In this section, we provide an overview of community corrections operations. We use our part-

ner, the Tippecanoe County Community Corrections (TCCC), as the main motivational example

to provide detailed context while drawing upon relevant criminal justice literature to make the

overview general. We start from describing the process of intake and placement to CC programs in

Section 3.1. We then discuss the various tradeoffs involved in the placement decision process, par-

ticularly with regard to the impact of system congestion, in Section 3.2, highlighting the complexity

of the placement decision.

3.1. Processes of Jail Diversion and Community Corrections Intake

CC programs serve as an alternative to traditional forms of incarceration such as jail. The process

of diverting individuals from jail to CC typically consists of five stages: identification, assessment,

referral, participation, and societal reintegration. Figure 1 shows the process flow for the jail diver-

sion and CC intake in our community partner, which we elaborate on below. While there may

be some variations among community correction centers, such as differences in eligibility criteria

for intake, this illustration provides a typical example of the intake and placement procedures for

community correction programs in other states (Magaña et al. 2022).

The diversion process begins with individual identification by law enforcement and court officials,

followed by an assessment using the Indiana Risk Assessment System (IRAS). Eligible individuals

who are willing to participate in the diversion programs may be sentenced1 to one of the CC

programs or incarcerated in jail, depending on the decision made by the judge with inputs from

prosecutors and CC managers. After completing the designated sentence length in their assigned

location, they exit the system with the goal of reintegrating into society. However, it is important

to note that some individuals may reoffend and get rearrested either after leaving the system or

while participating in the CC programs – known as recidivism; see details in Section 3.2.

Figure 1 An illustration of the jail diversion process incorporating TCCC’s practices.

1 We use sentence and place interchangeably in this paper.
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The main programs offered at TCCC are Home Detention and Work Release, which are common

programs at community correction centers under possibly different names (Gaines and Miller 2021).

Home Detention (HD) allows individuals to serve their sentence from their own homes through

electronic monitoring and regular reporting to CC case managers. Work Release (WR), on the other

hand, permits participants to leave to work during the daytime and return to stay on-site overnight,

with access to education and treatment programs. Our main analysis in this paper focuses on the

HD program, for several reasons. First, HD is the most prevalent and widely accessible program

in various community corrections, which is also known as electronic monitoring, house arrest, or

home confinement (Aloyan 2020). At TCCC, 77% of its participants are placed in the HD program.

Second, HD captures the most salient feature in community programs that differ from traditional

incarceration, i.e., loosened monitoring and supervision with the involvement of case managers.

The nature of this setup creates complex tradeoffs in placement decisions (jail vs. CC), which

we discuss in the following section. For tractability, we use HD to represent CC programs in our

technical analysis unless stated otherwise; we differentiate between HD and WR in the case study

in Section 7 where we calibrate a realistic simulation platform with TCCC data.

3.2. Key Considerations in Placement Decisions

The decision to place an individual in jail or CC is primarily made by the court (judge), with input

from the CC director. We classify these factors into two main categories: individual-level risk and

system-level congestion. While current practices tend to focus on the individual level, the system-

level effects (particularly workload on case managers) are often overlooked, potentially leading to

unintended consequences. We summarize these factors in Table 1 and elaborate on each of them as

follows. We emphasize that the placement process is a complex and multifaceted task that requires

careful consideration of numerous factors. Our intention is not to override the decisions made by

judges, but rather to provide a comprehensive and interconnected perspective on this intricate

process, laying the foundation to support decision-making for all stakeholders.

Table 1 Tradeoffs behind the criminal placement decisions between jail and CC.

Individual Level System Level
Violation In-service Recidiv Long-term Recidiv Holding Cost Congestion Effect

Jail No No Risk increase Expensive Risk increase via mixing
CC Yes Yes Risk reduce Cheap Loosened monitoring

Individual level. The risk of recidivism is a primarily used factor when deciding whether to

sentence an individual to CC or incarceration in practice. Individuals undergo the IRAS assessment

(Figure 1), which evaluates various factors (e.g., criminal history, substance use) to determine their

reoffending/recidivism risk and criminogenic needs. TCCC has specific eligibility criteria on offense
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types and risk assessments (e.g., prioritizing low-risk individuals with mental health or SUD issues);

also see similar practice used in New Jersey (Russell 2022). Considering the risk of recidivism

upon entry is important because CC programs differ from strict incarceration settings like jail,

which serve as a barrier between individuals and the community. A high-risk individual re-offending

during a CC program poses a greater risk to society. In addition, non-criminal technical violations

can also occur during CC program participation, such as drug test failures, missed appointments or

treatment programs, and non-compliance with case manager or probation officer reporting (Gould

et al. 2011). These violations can cause negative societal impact and increase CC program costs

due to stricter supervision.

What complicates the placement decision is that not only the short-term risk level at the entry

point should be considered, but also the long-term recidivism risk after completing the sentence. In

other words, the decision should account for the “treatment effect” in reducing risk post-sentencing.

Incarceration diversion aims to address the root cause to reduce long-term recidivism rates (Brogan

et al. 2015). Community correctional programs, including substance abuse treatment, cognitive

behavioral programs, and education and employment programs, have been found to contribute to

significant reductions in recidivism rates (McNiel and Binder 2007). On the other hand, individuals

in jail may lack access to necessary treatment and support programs, making reintegration and

long-term risk reduction more challenging. While jail can prevent short-term reoffending, it may

lead to a higher long-term recidivism risk. In contrast, CC programs reduce long-term risk but

may not prevent short-term technical violations and reoffenses. Therefore, the placement decision

should strike a balance, considering both short- and long-term recidivism risks for each individual.

System level. While the current focus is primarily on individual-level risk consideration, the

impact on the system level is often disregarded due to the siloed decision-making structure prevalent

in the criminal justice system (a primary issue that prompted this study). It is important to

recognize that system overcrowding affects both jails and CC programs in various aspects.

The direct impact of overcrowded jails is increased operational and maintenance costs, such

as the need for additional staff, supplies, and infrastructure. This “holding cost” is known for

being expensive (Henrichson 2015). Overcrowding also limits access to essential medical care and

rehabilitation services, resulting in inadequate care and a higher risk of illness or injury for incar-

cerated individuals. CC programs, which receive partial subsidies from participants, have lower

holding costs compared to jails. While CC programs were designed to alleviate jail overcrowding

and avoid the high costs of incarceration, an excessive number of participants in CC programs can

still overload case managers and have other negative effects as elaborated below.

The impact of system overcrowding on the risk of recidivism and violation is more nuanced,

as it affects jail and CC differently. Jail overcrowding is known to be a contributing factor to a
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higher likelihood of recidivism after release. In overcrowded jails, shared living spaces result in

increased violence, aggression, and detrimental effects on the well-being of inmates (Spohn and

Holleran 2002). On the other hand, heavy caseloads in CC put strain on case managers and hinder

the effectiveness of these programs. In particular, staff shortages often make it challenging for

overburdened case managers to provide adequate supervision and treatment to individuals in need.

Consequently, increased probation caseloads are associated with higher rates of violations and

reoffenses (Worrall et al. 2004, Camp and Camp 1999).

The effects of overloading CC programs are often neglected, in comparison to the widely dis-

cussed issue of jail overcrowding. Studies showcasing the benefits of CC programs are typically

conducted in controlled trial settings with ample resources. However, real-world implementation

often encounters resource constraints that diminish the program’s effectiveness. While existing

guidelines advocate weighing CC program availability amid overcrowding, they fall short of pro-

viding a holistic understanding of the interconnected challenges and broad impact of congestion

in the criminal justice system. In the following numerical illustration, we highlight the necessity of

considering these system-level factors.

Nuanced Decisions. Placement decisions in the current practice are commonly guided by a

risk-based approach. We refer to this current practice as the static policy since it focuses solely

on individual risk, which may result in either jail or CC becoming overcrowded due to stochastic

fluctuations. Table 2 illustrates this pitfall of the static policy using a simulation platform calibrated

with data from TCCC (see Section 7.1). The results show that the static policy performs similarly

in a system with no congestion impact and in a system with sufficient capacity. However, when

capacity is limited due to insufficient case managers, the static policy leads to dramatically higher

total costs. Specifically, recidivism and violation costs more than double, exacerbating the vicious

cycle. This highlights how the static policy fails to account for resource constraints and negative

impacts of system congestion. Ignoring externalities and focusing solely on individual risk can

be detrimental under crowded conditions, which undermines the original goal of CC programs to

break the cycle of re-incarceration and places additional strain. As discussed in Section 1.1.2, the

stochastic fluctuations and capacity constraints necessitate making tradeoffs that considers the

overall system’s performance beyond solely individual considerations. A one-size-fits-all solution

or reliance on ad-hoc experiences is insufficient for this multifaceted placement process, calling

for sophisticated decision support that considers individual risk and can adaptively adjust to the

system state.

4. Modeling Framework

We formulate an infinite-horizon, discounted-cost discrete-time MDP for the placement decision

problem. We introduce the system model in Section 4.1 and specify the MDP in Section 4.2.
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Table 2 Performance comparison of the static policy under different scenarios. The unit cost of recidivism is

set to 1 and all other costs are scaled proportionally. Each number is averaged over 100 simulation replications

with each replication corresponding to a three-year time horizon.

Scenario Recidivism Cost Violation Cost Holding cost Total Cost
No Congest-impact 2117 441 171 2729

High Staff (15 CC case managers) 2507 541 185 3233
Low Staff (9 CC case managers) 4580 1721 210 6511

4.1. System Modeling

We consider a two-station queueing network that is abstracted from the process flow of the place-

ment decision to incarceration and CC, as introduced in Section 3.1. Figure 2 illustrates this

network model, where one station corresponds to jail, and the other station corresponds to CC

(with the two CC programs combined for analytical tractability). In the rest of the paper, we

refer to the individual going through the network as “customer” and use it interchangeably with

“individual” or “client.”

Figure 2 Two-station network.

Customers arrive to the system from M classes, where the classes correspond to different risk

categories determined during the intake assessment. We assume that the risk-class distribution is

characterized by {pm}Mm=1, where each pm is the probability of a customer belonging to class m and∑M

m=1 pm = 1. The system evolves continuously, but we observe the system state at discrete time

epochs. Without loss of generality, we assume the observation is made daily and use day as the time

unit. Under this discrete-time setup, we assume that the daily number of new arrivals from class

m, denoted as Nm, is independently and identically distributed (i.i.d). It follows a general discrete

distribution with support on Z+ and probability mass function fm(·). Upon arrival, a placement

decision is made, determining which station j ∈ J = {jail, CC} to assign the customer to. After

the placement, the customer starts the service process – corresponding to serving the sentence

length decided by the court. Let d(j,m) denote the sentence length for class m customers placed

in station j. In contrast to the prevalent assumption of memoryless service times in the literature,
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we assume a deterministic value for d(j,m) for each risk class and station combination. This is a

salient feature in the context of criminal justice since the sentence length is predetermined.

A customer may recidivate after completing their service or even during it, depending on whether

they are placed in jail (with no recidivism during incarceration) or CC (with a possibility of

recidivism during service). We use qr(j,m, τ) to denote the probability that a class m customer

placed in station j will recidivate on the τ th day since “leaving the incarceration” – the time

of service completion if placed in jail and the time of service start if placed in CC. Therefore,

the cumulative recidivism probability in a given time-window T equals qr(j,m) =
∑T

τ=0 qr(j,m, τ).

Note that qr(j,m, τ) allows us to capture time-dependent recidivism risk, which is another salient

feature in the criminal justice system: the recidivism risk is highest in the months immediately

following release and gradually decreases over time (Greenberg 1978, Schmidt and Witte 2012).

4.2. MDP Model

Our primary decision is to select a station j to assign an incoming customer. To model this decision

problem, we formulate an infinite-horizon, discounted-cost discrete-time MDP, with decision epochs

occurring daily (t = 0,1, . . . ). We introduce the system state, action, transition dynamics, costs,

and objective function in sequence. We omit the explicit dependency on the epoch index t in the

description for simplicity. A summary of notations is provided in Appendix EC.1 for reference.

State. At the beginning of each day (decision epoch), we observe the pre-action system state

S ∈ S,

S = {Xj,m,0,Xj,m,1, ....,Xj,m,d(j,m)}j∈J ;m=1,...,M ,

where Xj,m,l is the number of class m customers who have been in station j for l days. Track-

ing the length-of-stay (LOS) already spent, l, is necessary since the total sentence length d(j,m)

is pre-determined. Thus, the history-dependent nature is integral to our analysis. We have l ∈

{0,1, . . . , d(j,m)}, with l = 0 denoting customers just admitted yesterday and l = d(j,m) for cus-

tomers to be released today. We refer to d(j,m)− l as the remaining LOS.

Action. The decision maker determines the placement of new arrivals based on the observed

state. In the discrete-time setting, at the start of each day, a batch of arrivals may be waiting to

be placed. Let nm be a realization of Nm, denoting the number of new customers of class m who

arrived on the current day. The action is a vector Am = {Am,k} with

Am,k ∈J , k= 1,2, ..., nm.

The realized action am,k = j ∈J means that the kth new arrival from class m is placed in station j.

The decisions are made sequentially: (i) we start with the highest-risk group and then proceed

to the lowest-risk group to prioritize public safety; (ii) within a risk group, placements are made
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sequentially based on the order of arrival times (i.e., first-come-first-serve). The decision for each

individual k depends on the current system state and can be influenced by prior placements. A

comprehensive discussion on validity of state-dependent action can be found in Section 1.1.

One-epoch cost. For a given state s = {xj,m,l}’s and action a = {am,k}’s, we calculate the pre-

action, pre-transition cost C(s) for the current day (epoch). This cost comprises three components:

holding cost ch(s), recidivism cost cr(s), and violation cost cv(s). These costs capture the key

tradeoffs discussed in Section 3.2. Mathematically, we have:

C(s) = ch(s)+ cr(s)+ cv(s).

First, the holding cost ch(s) represents the cost associated with maintaining individuals in dif-

ferent stations, reflecting the consumption of resources such as beds in jail and case managers in

CC. We assume a convex relationship between the holding cost and the occupancy of each station:

ch(s) =
∑
j∈J

cjh(sj), (1)

where cjh(·) is a convex function, and sj(s) =
∑M

m=1

∑d(j,m)

l=0 xj,m,l is the occupancy (total number of

individuals) in station j. A commonly used convex function is the quadratic function, i.e., cjh(sj) =

hjs
2
j , where hj is the unit holding cost in station j. The convex form of the holding cost function

captures the key aspect of escalating negative consequences as congestion levels deteriorate in jail

or CC. This can have detrimental effects on participants’ well-being and potentially overwhelm

case managers (Ansell et al. 2003b).

Second, the recidivism cost cr(s) =
∑

j∈J cjr(s), where cjr(s) denotes the recidivism cost from

station j and follows

cjr(s) = hr

M∑
m=1

sj,m(s)q̃r(j,m). (2)

Here, hr is the unit recidivism cost, sj,m(s) =
∑d(j,m)

ℓ=0 xj,m,ℓ is the occupancy of class m customers

in station j, and q̃r(j,m) is an adjusted recidivism probability for cost accounting purposes. The

reason for this adjustment is that, unlike holding costs, recidivism costs are incurred both during

service (for CC) and after service completion (for both jail and CC). The adjustment allows us to

appropriately distribute the future recidivism cost incurred after service completion across each

period during the service duration d(j,m). This ensures a unified form that connects each type of

cost to the system’s occupancy, effectively linking them to the congestion state. The specifics of

this adjustment for a given recidivism window T are provided in Appendix EC.4.1.

Lastly, the violation cost captures the fact that CC participants may engage in non-criminal

technical violations that do not necessarily amount to recidivism. Different from the recidivism
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cost, this violation cost is specific to CC participants and occurs only during their service, not after

service completion. Specifically, cv(s) = cCCv (s) with

cjv(s) = hv

M∑
m=1

sj,m(s)qv(sj,m), j = CC. (3)

Here, hv is the unit violation cost, sj,m(s) is defined as before, and qv(sj,m) is the probability of

violation for a class m customer in each epoch. The summation part corresponds to the expected

number of technical violations that will happen in the current epoch, and we assume that qv(sj,m)

is increasing with the occupancy level sj. As a result, cjv(s) is increasing and convex with the occu-

pancy level sj. This convex form reflects the increasing violation risk under loosened supervision

when CC gets more overcrowded, as discussed in Section 3.2.

The assumptions on the cost functions are summarized in Assumption 1. Both recidivism and

violation costs are computed by summing over costs from all risk classes. This differentiation

between risk classes, as indicated by risks q̃r(j,m) and qv(sj,m), allows us to account for individual-

level effects. The system-level effects are encapsulated by the convexity of costs cjh(s) and cjv(s)

in the class-LOS specific occupancy Xj,m,l, given that the occupancy sj =
∑M

m=1 sj,m and sj,m =∑d(j,m)

l=0 Xj,m,l. This convexity captures the increasing marginal effects that each new customer has

on the risk levels of all existing customers. Unlike traditional congestion-based routing in queueing

control literature, our model, centered around occupancy, covers a much broader spectrum of

consideration beyond the typical holding cost. This unified cost formulation also facilitates the

theoretical analysis of value function comparison; see details in Section 5.

Assumption 1. The holding cost ch(s) and violation cost cv(s) are convex in each Xj,m,l, and

the recidivism cost cr(s) is linear in Xj,m,l.

We remark that the linear recidivism cost primarily serves the purpose of interpreting the recidivism

risk. All our technical analyses can accommodate a convex form of recidivism cost, similar to what

we have done for the violation risk qv(sj,m). However, as recidivism can occur after the completion

of service when computing the adjusted q̃r(j,m) to distribute future recidivism costs across the

service duration, there is ambiguity in selecting which day’s occupancy sj to use if we adopt

the convex form. Because this occupancy can change during the service duration. To maintain

interpretability, we assume that the risk of recidivism depends solely on the class and the number

of days since release, rather than occupancy, leading to the linear cost assumption.

Transition dynamics. Denote the current state as S = {Xj,m,0,Xj,m,1, ....,Xj,m,d(j,m)}j;m, and the

state on the next day as S′ = {X ′
j,m,0,X

′
j,m,1, ....,X

′
j,m,d(j,m)}j;m. The state evolution follows:

X ′
j,m,0 =

Nm∑
k=1

1(Am,k = j), ∀j,m;

X ′
j,m,l+1 =Xj,m,l, ∀j,m, and l= 0, ..., d(j,m)− 1.

(4)
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Equation (4) states that the number of new participants in each station is determined by the

placement decisions, where Nm is the total number of new class-m arrivals. For existing participants

who have stayed l≤ d(j,m)− 1 days, they become participants who spent l+1 days on the next

day; those who have stayed d(j,m) days will be released today.

Remark 1. Because the recidivism window is long (measured in years), it induces a smoothing

effect on the impact of returning arrivals (resulting from recidivism) on the daily arrival rate (Green-

berg 1989), as long as the placement decisions remain relatively stable. For the sake of maintaining

the Markov property in theoretical analysis, we assume that the stream of recidivism arrivals is

independent of past actions and is considered part of the exogenous arrivals included in Nm. In

Appendix EC.6.1, we demonstrate how these recidivism arrivals can be integrated into the exoge-

nous arrival process and how to calculate the rate of Nm when the system is in a steady state.

Importantly, we relax this assumption in the case study presented in Section 7, where we explicitly

model the recidivated customers as a separate stream of returning flow that can be influenced by

prior placement decisions.

Objective. We define the placement policy π : S → JM as a mapping from state S to action

{Am}m=1,..,M . We focus on considering the class of stationary policies for π, s.t., πt = π,∀t. For

a given state s, π(s) is a vector with π(s) = {πm(s)}m=1,...,M , where πm(s) ∈ J prescribes the

placement action for each class m. For any optimal policy in a discounted MDP, the corresponding

value function V (·) must satisfy the following Bellman optimality equation (Puterman 2014):

V (s) = min
π∈JM·|S|

C(s)+ γ
∑
s′∈S

p(s′|s,π)V (s′), ∀s∈ S, (5)

where γ ∈ (0,1) is the discounting factor, C(s) is the one-epoch cost function, and p(s′|s,π) rep-

resents the transition probability under policy π. Given the finiteness of the action space, there

exists an optimal deterministic stationary policy; see Theorem 6.2.10 in Puterman (2014).

5. Structure Property

In this section, we study the structure of the optimal policies, which offer important insights

into the interplay among different tradeoffs and desired analytical properties for algorithm design

in Section 6. In Section 5.1, we show the preference of sending a new arrival to jail versus CC

with respect to (i) the number of existing individuals with varying LOS and (ii) different risk

classes. We also showcase, through counterexamples, that there is no monotonicity when solely

considering total occupancy or risk classes. This intricate nature prompts a thorough investigation

into the properties of the value function in Section 5.2. We establish the superconvexity of the

value function with respect to appropriately defined occupancy categories, the main technical result

of this paper. This superconvexity plays a pivotal role in our algorithm design in Section 6 to
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provide justification for the existence of global optimality. In Section 5.3, we explore the influence

of the recidivism window in individual’s placement decision, which yields valuable insights into the

long-term consequences of placing individuals in CC versus jail.

5.1. Policy Monotonicity on LOS and Risk Class

In this section, we show in Proposition 1 that the optimal placement policy is monotone with

respect to the number of each class of participants in each LOS category in each station. Through

this result, we establish two corollaries to show the impact of LOS and risk classes. We denote the

unit occupancy of class m in LOS category l in station j as ej,m,l. Denote π∗
m0

(s) as the optimal

policy for customers of class m0 at state s.

Proposition 1. Under Assumption 1, the optimal policy π∗ is monotone with the number of

participants of each class in each LOS category. For any given state s and class m0, π
∗
m0

(s) = CC

implies π∗
m0

(s+eJail,m,l) = CC, and π∗
m0

(s) = jail implies π∗
m0

(s+eCC,m,l) = jail for all m= 1, ...,M

and l= 0, ..., d(j,m).

This analysis connects the placement of individuals of each class-LOS combination to its impact

on existing customers. Specifically, when jail gets one more class m customers with LOS of l epochs

(add eJail,m,l to jail occupancy), it becomes less preferred to place a new customer in jail and more

preferred to CC; vice versa for CC. Although this may seem like a congestion-based policy, the

underlying reason is that as programs become more crowded, adding new customers raises more

risk for participant, making the placement less desirable.

Based on Proposition 1, we establish two corollaries, with a focus on individual-level consid-

erations, and then discuss their policy implications. The first corollary considers the impact of

existing participants with different LOS, highlighting the sensitivity of the optimal policy to the

LOS distribution among existing customers.

Corollary 1. Under Assumption 1, for any given state s, class m0, and two LOS l1 < l2,

π∗
m0

(s + eJail,m,l1) = jail implies π∗
m0

(s + eJail,m,l2) = jail, and π∗
m0

(s + eCC,m,l1) = CC implies

π∗
m0

(s+ eCC,m,l2) = CC, for all m= 1, ...,M .

Corollary 2 establishes the placement prioritization between different risk types. This prioritization

is based on the expected cost reduction C∆(m,s), when placing a class-m individual in CC instead

of jail at a given state s. This cost reduction comes from the difference in the three parts of

costs mentioned in Section 4.2 and its detailed formulation is delegated to Appendix EC.5.2 (see

Equation (EC.19) there).

Corollary 2. Under Assumption 1, for any given state s, and two customer classes m1 and

m2, if C∆(m1, s) ≤ C∆(m2, s), then π∗
m1

(s) = CC implies π∗
m2

(s) = CC; if C∆(m1, s) ≥ C∆(m2, s),

then π∗
m1

(s) = jail implies π∗
m2

(s) = jail.



Gao, Shi, and Kong: Incarceration Placement Decision
00(0), pp. 000–000, © 0000 INFORMS 19

The proofs of Proposition 1 and Corollaries 1 and 2 are in Appendix EC.3 and EC.5.2.

Policy implications. For the results on LOS, intuitively, a “newer” participant has longer remain-

ing time in the system. This implies longer-lasting impacts on other customers’ risks, thereby

reducing the tendency to place future customers in the station. Corollary 1 establishes this intuition

formally.

The result on the risk classes is more nuanced. Specifically, the value of C∆(m,s) is determined

by comparing the reduction in long-term recidivism risk and jail occupancy cost (benefits from

placing the individual in CC) and the increase in short-term recidivism risk, violation risk, and

CC occupancy cost (drawback of placing in CC). For example, the increase of violation cost can

be expressed as hv

∑d(CC,m)

t=0 γtE(cCCv (st,CC + eCC,m,t)− cCCv (st,CC)), where the expectation is taken over

future occupancy with st,CC denoting the occupancy of CC under the optimal policy after t epochs

of seeing state s. Therefore the increase of violation cost is determined by both the new customer’s

risk class m and the future occupancy level st,CC. When two customers belong to classes with a

large difference in risks, their personal risk difference will dominate the cost difference, as well as

the placement prioritization. This is similar to the clear-cut case discussed in Section 1.1. However,

when two customers belong to similar classes, the cost difference will be mainly driven by the future

system occupancy due to cost convexity. In other words, there is no simple rule-of-thumb priority

among the risk classes, especially for individuals whose risk levels fall into the “gray area.” The

placement decision necessitates a careful balance between individual risks and system-wide effects.

Counterexamples for non-monotonicity. Proposition 1 establishes policy monotonicity with

respect to the number of participants in each class-LOS category. While this result is intuitive, we

have counterexamples showing that the policy is not monotone (i) in the total occupancy or (ii)

considering risk classes alone. (ii) has been discussed in the preceding paragraph, and for (i), we

show that when the jail occupancy is higher, it is possible that the optimal decision still places new

participants in jail, e.g., when the remaining LOS of existing individuals in jail is short and they

are close to being released. This reaffirms our earlier discussion that there is no fixed, universal

preference ordering, rendering the static policy suboptimal. This motivates us to take a deep dive

into examining the superconvexity property of the value function in Section 5.2.

5.2. Superconvexity of Value Function

In this section, we establish the main technical result of this paper, the superconvexity of the

value function, in Theorem 1. This result highlights how the system effect from one customer is

intertwined with the characteristics of other customers in the system. We provide a sketch of proof

for Theorem 1, which is based on our novel, unified approach developed through value function

decomposition, coupling, and policy deviation bounding. We discuss the important implications of
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Theorem 1 at the end of this section. For ease of exposition, we focus on the single-class setting

(M = 1) and omit the subscript m, so ej,l denotes the unit occupancy for LOS l and station j,

and dj denotes the sentence length in station j. The applicability of the unified approach extends

naturally to multi-class models. We start by defining the superconvexity, denoted as SuperC(ei, ej)

property below.

Definition 1. A function f : S →R satisfies the SuperC(ei, ej) property if for all s ∈ S, f(s+

2ei)− f(s+ ei)≥ f(s+ ei + ej)− f(s+ ej) and f(s+2ej)− f(s+ ej)≥ f(s+ ei + ej)− f(s+ ei).

The superconvexity is a property closely related to both supermodularity and convexity (Koole

1998). Now, we are ready to state the main theorem that shows the superconvexity property of

the value function.

Theorem 1. Under Assumption 1 and some mild technical condition, the optimal value function

V ∗ satisfies SuperC(ejail,l, eCC,l), i.e., for all s∈ S and l= 0,1, ...,min{djail, dCC},

V ∗(s+2eCC,l)−V ∗(s+ eCC,l)≥ V ∗(s+ ejail,l + eCC,l)−V ∗(s+ ejail,l), (6)

V ∗(s+2ejail,l)−V ∗(s+ ejail,l)≥ V ∗(s+ ejail,l + eCC,l)−V ∗(s+ eCC,l). (7)

In the interest of space, we refer to Appendix EC.5.1 for a detailed explanation of the mild technical

condition and its verification. Inequality (6) compares the increase in the value function by placing

a customer to CC (eCC,l) at two current states, s+eCC,l and s+ejail,l, respectively, which indicates

that the increase is larger when this CC placement is done to the former state with an additional

customer of eCC,l. Inequality (7) shows a similar result for jail placement, indicating that assigning

a customer to jail in a state with an additional customer of ejail,l leads to a more substantial

increase in the value function. We outline the challenges in the proof before providing the proof

sketch and discussing the policy implications.

Technical challenges. Unlike most existing literature in proving superconvexity, the biggest chal-

lenge in proving Theorem 1 comes from the salient feature of our model: the non-memoryless service

time. Specifically, the common approach to proving the superconvexity is to use the operator-

based method (Koole 1998). However, due to the non-memoryless service time, using this method

requires us to include a new operator to account for the deterministic transition in the remaining

service time (LOS). This necessitates proving that this operator preserves all desired properties

such as increasing and superconvexity for each shift in the LOS, i.e., going from ej,l to ej,l+1, which

makes the proof extremely tedious and requires imposing strong conditions for the property pre-

serving. Furthermore, the non-memoryless LOS affects the proof for other operators as well due

to the need of tracking LOS. For example, when evaluating the operator of placement decisions,

we need to evaluate inequalities involving four dimensions, including ejail,0, eCC,0 for the impact on
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new arrivals and ejail,l, eCC,l for property preservation on existing customers. This goes beyond the

two-dimensional properties typically considered in the operator-based method.

To address these limitations, we propose a unified approach through value function decompo-

sition, leveraging the coupling techniques and policy deviation bounding based on policy mono-

tonicity. We provide a sketch of this framework below and delegate the complete details to

Appendix EC.2.

Sketch of proof. Our proof framework includes four steps. First, we decompose the value function

into marginal contribution from each individual. This starts from decomposing the convex one-

epoch cost function into the sum of marginal contributions:

C(s) =
∑
j

Cj(sj) =
∑
j

sj∑
k=1

(Cj(k)−Cj(k− 1)), (8)

where Cj(·) is the cost function for station j, sj is the occupancy level of station j at state s, and

Cj(0) = 0. Then the value function V (s) =minπ E[
∑∞

t=0 γ
tC(st)|s0 = s,π] can be decomposed into

the discounted sum of marginal costs contributed by individuals. This first step lays out the most

important foundation for our following steps in decomposing the value function difference into the

marginal cost from “one” additional customer after coupling the arrivals and placement decisions.

The optimal policies πa and πb are the same when viewed as state-action mappings. We differen-

tiate between πa and πb to highlight the different sets of decisions prescribed by the optimal policy

in the two systems with different starting states.

The key difficulty in analyzing the value functions in (6) or (7) is that each inequality necessitates

a comparison of costs across four systems under the optimal policy π∗ starting from four different

states. Despite following the same state-action mapping π∗ = {π(s)}s, these varied starting states

result in four distinct sets of “unknown” decisions. We overcome this challenge via the coupling

technique and policy deviation bounding. Taking Inequality (6) as an example, we perform the

following three steps.

(i) For each side of (6), we couple the arrivals and placement decisions of future customers using

the decisions prescribed by the optimal policy starting from one of the two states. By leveraging

suboptimality for the other state, we bound the difference in value functions and reduce the number

of sets of decisions to be analyzed from four in total to two (one on each side of the inequality).

(ii) Under coupling and the decomposition (8), the value function difference on each side simplifies

to the marginal contribution from one extra customer. For example, the left-hand side of (6) can

be expressed via
∑dCC−l

t=0 γt
(
CCC(s

1
t,CC) − CCC(s

1
t,CC − 1)

)
after some algebra, where s1t,j denotes the

occupancy at station j after t epochs when starting from s+2e2,l. While this marginal contribution

is trivial to analyze under the linear cost setting, our setting of general convex cost functions greatly

complicates the analysis. That is, the marginal cost varies with the occupancy levels of the system.
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(iii) Even though the same optimal policy π∗ is used for both systems, the systems will see different

states at each epoch if they start from different states. This can lead to different actions and different

future states. This variability makes it difficult to compare the occupancy levels across systems.

To address this, we propose a policy deviation analysis approach. By coupling the two systems

to have identical arrivals, we assess for each epoch if π∗ would prescribe different decisions in the

two systems. By exploiting the optimal policy’s inherent monotonicity (as detailed in Section 5.1),

we can then effectively characterize instances with decision discrepancy and bound the policy

deviation. This analysis then provides the occupancy deviation.

Combining all steps gives us the superconvexity result. We conclude this section by discussing two

implications from Theorem 1.

Policy implications. The first implication of Theorem 1 is that placement decisions should

be state-dependent, which aligns with the implication of Proposition 1. Additionally, when we go

from the baseline sequential decisions for each individual to considering batched decisions, which

essentially leads to a proportion-based decision, this superconvexity provides a very useful result:

the value function with respect to the number of new participants that should be placed to jail (vs

CC) could only have one local optimum, which is also globally optimal. This serves as an important

stepping stone for our algorithmic solution developed in Section 6, which we will further illustrate

there.

The second important implication is that the superconvexity result covers placement decisions

for both new arrivals (with l = 0) and individuals that come with some served LOS (with l > 0).

The latter situation corresponds to an important feature in criminal justice: plea bargains. In

practice, more than 90% of criminal convictions are obtained through plea bargains (Abrams

2011), where a common offer in plea bargains is time served. This offer allows the time that a

defendant has served in pretrial custody to be credited towards their sentence. Therefore, for

customers who take a time-served offer and have been in pretrial detention for l epochs, their

first epoch is at jail/CC is equivalent to the lth epoch. Thus, the placement decision for such a

participant is min{C(s)+ γV ∗(s+ ejail,l),C(s)+ γV ∗(s+ eCC,l)}. Our superconvexity results apply

to these individuals with plea bargains. This lays a foundation for our future work on extending

the placement decisions to different time points in the criminal justice process; see discussions in

Section 8.

5.3. Policy Monotonicity on Recidivism Window

Proposition 2 examines the impact of recidivism window on the optimal policy under Assumption 2.

This assumption captures essential aspects of the recidivism risk discussed in Sections 3.2 and 4.1,

including long-term recidivism rate reduction through CC programs and the time-dependency of

recidivism risk.
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Assumption 2. For each m= 1, ...,M , we assume that (i) qr(CC,m, τ)≤ qr(jail,m, τ) for each

τ ; (ii) there exists a τ̃m > 0, such that the recidivism window T satisfies T − d(jail,m)> τ̃m and

the recidivism risk qr(j,m, τ) decreases in τ for all τ > τ̃m and j ∈J .

Proposition 2. Consider the first incoming customer after state s as the target customer, and

let a1
m(s) and a2

m(s) be the optimal decisions for the target customer of class m under recidivism

windows T1 and T2 (where T2 > T1), respectively. Customers except for the target customer are

subject to a same recidivism window T . Suppose that Assumptions 1 and 2 hold, then for any given

state s and class m, a1
m(s) = CC implies a2

m(s) = CC.

We prove Proposition 2 by contradiction via a coupling argument, which converts the comparison

of the difference in value functions to the recidivism cost of the target customer at the given state

s0. See the complete proof in Appendix EC.4.2.

Policy implication. Proposition 2 says that if a customer should be placed in CC under a

shorter T1, then the same customer should also be placed in CC if their recidivism window is

changed to a longer T2. In other words, CC is a more preferred choice with a longer recidivism

window; and vice versa. This result highlights one of the most important tradeoffs in our setting:

traditional incarceration (jail) prevents customers from reoffending while they are in service, yet the

alternative programs (CC) suffer from the risk that customers can recidivate while in service and

impose societal issues – which has been a primary concern for many of the alternative programs.

This benefit of preventing the risk of “recidivating during service” by putting people in jail is

substantial under a short recidivism window; however, it decreases when we look at a longer

recidivism window. Therefore, when we consider the long-term effect, the benefit of CC may outline

the risk of recidivism. Decision-makers should account for this factor when considering the pros and

cons of non-traditional alternatives for incarceration. Note that Assumption 2 is consistent with

findings in the criminology field, i.e., the risk of recidivism peaks fairly quickly and then diminishes

as the time goes (Schmidt and Witte 2012). The peak time τ̃ is several months (Durose et al. 2014),

while the sentence length of jail is usually less than one year; hence T1 − d(jail,m)> τ̃m,∀m is

satisfied when we consider the typical 3-year recidivism window.

6. Efficient Algorithm based on Separation of Timescales

The structural insights derived in Section 5 are valuable for understanding the system dynamics.

However, when it comes to practical decision-making, these insights alone are insufficient. To

make informed placement decisions (requires calculating the values of V ∗), we need an algorithmic

solution. The primary hurdle in developing this solution still lies in dealing with the lengthy and

non-memoryless sentence length (LOS), as it leads to the state space growing exponentially in the

sentence length and renders conventional MDP methods intractable. We develop a novel algorithm
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that addresses this curse of dimensionality. The main idea of our algorithm is to leverage the long

LOS (relative to the arrival rate) and the natural separation between two timescales. That is, new

arrivals happen on a daily scale while the sentence lengths are in the order of weeks and months.

Hence, the relative change in the system state is small when looking at the daily level. This allows

us to formulate a “stable” placement policy on a weekly basis, transforming the original MDP

problem into one using weekly batch arrivals with a proportional placement decision, specified in

Section 6.1. The key to this transformation is the elimination of the need to track LOS, as we

can approximate departures under the stable policy, which significantly reduces the state space’s

dimensionality. Combining this approximation with a policy-gradient optimization technique, we

introduce the final algorithm in Section 6.2.

6.1. Transformed MDP: Batched Decisions

In the transformed MDP, we consider each week as a decision epoch. At the beginning of each

week, we observe the system state along with the batch of new arrivals that have accumulated

from the previous week and need to be placed. We make two important adaptions compared to

the original MDP model. First, instead of determining the placement for each arrival sequentially,

we use a placement proportion, θj,m, to determine the number of class m customers, out of the

current batch of arrivals, to be placed in station j. This placement proportion allows us to apply

a gradient-based method to efficiently solve this transformed MDP, a key for designing the final

algorithm that is scalable. Specifically, the proportion θj,m is continuous on [0,1] and allows for

the search of gradient, contrasting the discrete action space in the original problem. Second, we

no longer track the LOS in the state. Instead, we use a novel approximation that leverages the

separation of the timescales for the state transition. We elaborate on the two adaptions in sequence.

6.1.1. Batched decisions and implementation. Based on the observed state s in this

epoch, the placement policy for the batched arrivals follows

Θ(s) = {θj,m}j∈J ,m=1,...,M ,

where θj,m ∈ [0,1] is the proportion of class m customers out of this batch to placed in station

j. It is worth noting that this batched decision is not directly employed for decision-making in

the original MDP. Instead, the value function solved from the transformed MDP is used to derive

a deterministic policy for sequential arrivals in the original problem. This is achieved through a

one-step optimization of the Bellman equation, as detailed in Section 7.1. In Appendix EC.6.2, we

detail the system state, transition, cost, and objective for this transformed MDP.

For the batched arrival and proportion-based decision, Theorem 1 indicates an important prop-

erty: the value function with respect to the number of new participants placed in jail versus CC
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should only have one local optimum, which is also globally optimal. We formalize this in the fol-

lowing corollary. For notational simplicity, we use the vector e(JLm,0,CCm,0) to represent the vector

of unit occupancy in the two stations, namely (ejail,m,0, eCC,m,0).

Corollary 3 (Superconvexity for global optimality). Given n new class-m arrivals, the

amount to place in jail should only have one local minimum k ∈ {0,1, ..., n}, which satisfies

V ∗(s+(k,n− k) · e(JLm,0,CCm,0)
)
≤ V ∗(s+(k+1, n− k− 1) · e(JLm,0,CCm,0)

)
;

V ∗(s+(k,n− k) · e(JLm,0,CCm,0)
)
≤ V ∗(s+(k− 1, n− k+1) · e(JLm,0,CCm,0)

) (9)

for any state s∈ S. The equality is attained on the boundary k= 0 or n.

Corollary 3 says that only one combination (k,n− k) is optimal for the placement decisions to

jail and CC, respectively, out of any given n arriving class m individuals. This indicates that the

proportion θj,m should also only have one optimum point, which is important for our algorithmic

development: if we can find the local optimum θj,m (typical for many algorithms including gradient-

based ones), this guarantees that we also find the global optimum.

Proof. We prove Corollary 3 by contradiction. Let ∆Vn(k) = V ∗
(
s+(k,n−k) ·e(JLm,0,CCm,0)

)
−

V ∗
(
s+(k−1, n−k+1) ·e(JLm,0,CCm,0)

)
. Then (9) is equivalent to ∆Vn(k+1)≥ 0 and ∆Vn(k)≤ 0.

Suppose that for the n new arrivals, the value function V ∗ has two local optima, i.e., (9) holds for

two values of k1 and k2, with k1 <k2. Then we have

∆Vn(k1 +1)≥ 0 and ∆Vn(k1)≤ 0;

∆Vn(k2 +1)≥ 0 and ∆Vn(k2)≤ 0.
(10)

However, the superconvexity of V ∗ proved in Theorem 1 implies that ∀k ∈ {0, ..., n− 1}, ∆Vn(k+

1)≥∆Vn(k). Thus, for k2 ≥ k1 +1, we have ∆Vn(k2)≥∆Vn(k1 +1), contradicting (10). □

6.1.2. State transition approximation The second important adaption we make for the

transformed MDP is to remove the LOS index and only track the total number of customers of each

type in each station in the state, i.e., the system state is captured by S = {Xj,m}j=1,...,J;m=1,...,M .

This adaption greatly reduces the state dimension. Meanwhile, under the batched decision setting

and Poisson arrival assumption, we are able to approximately characterize the state transitions.

The key is to use the ordered statistics property for the Poisson process. In the rest of the algorithm

development, we assume that the new arrivals from each class follow a Poisson process with rate λm,

and that θj,m is stable over the past weeks under the separation of timescales as discussed earlier.

With the Poisson thinning property, the arrivals routed to station j also follow a Poisson process

with rate λj,m = λmθj,m. Correspondingly, the total number of customers that are routed (placed)

to station j by time t, Nj(t), is a Poisson random variable. The ordered statistics property says
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that, given Nj(t) = k, each of the k customers can be considered as arrived and placed uniformly

over [0, t].

To elaborate, suppose the sentence length is three weeks, and a total of six arrivals were placed

in one of the stations in the first three weeks. To approximate the state transition calculation,

it is sufficient to get the number of customers (out of the six) to be released in the fourth week,

that is, the number of participants who arrived in the first week and reached the three-week

sentenced length. Conditioning on Nj(t) = 6, the arrival times of these six customers, t1, . . . , t6, are

distributed as ordered statistics of six independent uniform variables. In other words, {t1, . . . , t6}
d
=

{u1, . . . , u6}, where ui’s are independent and identically distributed (i.i.d) random variables. They

follow the uniform distribution U
(
0, d(j,m)

)
and are ordered chronically, with d(j,m) = 3 weeks

in this example. Correspondingly, the probability that each ti’s falls in the first week is 1/3, and

the number of released customers in the fourth week follows a binomial(6,1/3) distribution.

Using this ordered-statistics argument, we can write the general form for the number of partici-

pants to be released in the next epoch as a binomial random variable Br
j,m ∼Binom

(
xj,m,

∆
d(j,m)

)
,

where ∆ is the length between two decision epochs (e.g., ∆= 1 week in the example), and {xj,m} is
the reduced state (class m customers in station j). The state transition can be characterized with

this approximate number of releases and the number of new placements Ba
j,m ∼ Pois(λj,m):

X ′
j,m =Ba

j,m +(xj,m−Br
j,m).

See details of the transition probability specification in Appendix EC.6.3.

Approximation accuracy. We numerically evaluate the accuracy of this approximation by

comparing the value function solved from the original MDP (tracking LOS in the state) and that

from the approximate state transition. Even if we utilize Monte Carlo Policy Evaluation (Singh and

Sutton 1996) in the numerical comparison, the original MDP can only be solved for small-sized and

medium-sized problems due to the large state space. Figure 3(a) shows the quantile distribution of

relative estimation errors. Figures 3(b) and 3(c) visually compare the value functions with respect

to each state. This comparison result suggests that the approximation is sufficiently accurate.

6.2. Policy Gradient Actor-Critic Algorithm

We use a policy-gradient-based, Actor-Critic algorithm to solve the transformed MDP. The idea

of actor-critic is based on policy iteration (Puterman 2014). Starting from an initial {V (s)}s∈S ,

the algorithm proceeds between (i) the policy improvement step by finding a greedy policy Θ(s) =

{θj,m(s)} from the current value function V (·) by minimizing C(s)+ γEΘ[V (s′)] for all s∈ S; and
(ii) the policy evaluation step by evaluating the value function under the obtained policy Θ(s) via

solving the Bellman equation. The algorithm iterates between the two steps until the policy con-

verges and finds the optimal policy. To facilitate the computation without enumerating the entire
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(a) Quantiles of relative estima-

tion errors
(b) Small model (c) Medium model

Figure 3 Monte Carlo policy evaluation of the value functions under the original MDP model and the transformed

model. The numerical setting is detailed in Appendix EC.7.1.

state space, we use a simulation-based method, which leads to the tabular actor-critic algorithm

specified in Algorithm 1. In this algorithm, we denote the probability of making placement deci-

sions a= {aj,m}j,m at state s under policy Θ as πΘ(a|s), where aj,m ∼ Pois
(
λmθj,m(s)

)
represents

the number of class m individuals placed in station j.

Algorithm 1: Tabular batched actor-critic policy gradient

Input : Step sizes αθ, αω. Batch size N . Number of iterations T .

Output: Policy {θj,m(s)}j,m, s∈ S and value function V (s), s∈ S.

1 Initialize {θj,m(s)}j,m, s∈ S at random, V (s) = 0, s∈ S. Initialize state s1 at random.

2 for t= 1,2, ..., T do
3 for n= 1,2, ...,N do
4 Set current state st.

5 Sample and store the placement of new arrivals an ∼ πΘ(a|st); sample and store next

state s′n ∼ P (s′|st, an).
6 end

7 Update the policy parameters:

θj,m← θj,m−αθV (st) ·
1

N

N∑
n=1

∇θj,m lnπΘ(an|st). (11)

8 Update the value function with TD(0):

V (st)← V (st)+αω

(
1

N

N∑
n=1

(
C(st)+ γ ·V (s′n)

)
−V (st)

)
. (12)

9 Sample the next states st+1 ∼ P (s′|st, aN).
10 end
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Policy Improvement. Equation (11) corresponds to the policy improvement step in PI, i.e.,

updates the policy parameters {Θ}’s based on the current value function approximation. The

continuous property of placement proportion enables us to learn the policy through policy gradient-

based methods. Specifically, we improve the actor via the gradient method, updating parameters

in the direction of the estimated policy gradient. According to the policy gradient theorem (Sut-

ton et al. 1999), the policy gradient ∇ΘV
π(s) ∝ E[V π(s)∇Θ lnπΘ(a|s)]. Denote the stations by

j1, ..., j|J |. In the transformed MDP, ∇θj,m in (11) can be written as:

∇θj,m lnπθ(a|s) =
aj,m

θj,m
−

aj|J |,m

1−
∑|J |−1

k=1 θjk,m
, j = j1, ..., j|J |−1, m= 1, ...,M.

See its derivation in Appendix EC.6.4. The policy gradient method is guaranteed to converge to a

local minimum, where the norm of the gradient equals zero, i.e., ||∇θj,m ||= 0 (Konda and Tsitsiklis

1999). Corollary 3 provides a justification that the local optima is also globally optimal.

Policy Evaluation. Equation (12) corresponds to the policy evaluation step, which uses simulated

samples to evaluate the value function V (s) under the policy in this iteration. Specifically, the

update in (12) uses temporal difference (TD) learning, which updates the value function via the

TD error 1
N

∑N

n=1(c+ γ ·V (s′n))−V (st) in the sample-average form (Tesauro 1995).

7. Case Study and Practical Implications

In this section, we perform a case study with data from our community partner, the Tippeca-

noe County Community Corrections (TCCC), to demonstrate the performance of our algorithmic

solution and generate important practical insights. We first introduce our simulation platform and

discuss the sequential decision-making process in Section 7.1. Our simulation platform removes

several assumptions made for analytical tractability in the structural analysis, allowing us to sub-

stantiate the theoretical results. In Section 7.2, we demonstrate the superior performance of our

algorithm against benchmark policies over a variety of system parameters. In Section 7.3, we illus-

trate how our approach can provide valuable insights for capacity planning.

7.1. Simulation Evaluation Platform

As shown in the data pipeline (Figure 4), our simulation platform acts as the “oracle” environ-

ment, generating simulation samples for both value function learning and performance evaluation.

Compared with the model described in Section 4.2, we incorporate additional two major realistic

features:

1. Instead of viewing CC as a single station as in theoretical analysis, we differentiate CC into two

programs in the simulation, corresponding to the actual Work Release and Home Detention

programs in TCCC.
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2. We explicitly model the recidivism through the returning flow of recidivated individuals

(Remark 1) and the proportion of technical violations returning to jail from CC.

In addition to these two major additions, we also incorporate the congestion-based recidivism risk

and risk- and need-based customer classification with an additional dimension of treatment needs

to measure the potential benefits of different CC programs.

Figure 4 Data pipeline of the process simulation, value function learning, and performance evaluation.

For practical implementation, we do not directly use the solved policy θj,m from the transformed

MDP in Section 6.2. Instead, we “de-randomize” this proportion-based policy through a one-

step optimization and prescribe individual-specific decisions. Specifically, after solving the value

functions through the transformed MDP, we obtain the placement decision for each individual by

solving a one-step optimization of the Bellman equation (5). The prescribed placement decision for

the kth arrival from class m is given by:

a∗
m,k = argmin

am,k∈J

(
C(s)+ γ · 1

N

∑
s′∈S

V (s′)
)
, (13)

where s denotes the system state prior to the decision, and s′ is the system state in the next

epoch after taking action am,k. We use the average of N samples to approximate the transition

p(s′|s,π) in the Bellman equation, where s′ is generated by our simulation platform, and V (s′) is the

value function estimated from Algorithm 1. Note that the value function learned via Algorithm 1

uses the reduced state s= {xj,m}j,m, which can be computed as xj,m =
∑d(j,m)

l=0 xj,m,l based on the

state we see in the simulation. We leverage the individualized cost functions C(·) and aggregated

value functions V (·) in Equation (13) to accommodate customer heterogeneity while keeping the

algorithm remains scalable. Specifically, we first solve a single-class-multiple-program model for

V (·) using Algorithm 1. Then in decision-making, we employ a cost function C(·) that captures

the risk and treatment needs of each individual. More details about the algorithm adaptation for

the real-sized case studies and model calibration via real data are provided in Appendix EC.6.5

and EC.7.3, respectively.
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Benchmark Policies. We refer to the policy solved from Algorithm 1 (with the above adaptions)

as the RL-based dynamic policy. We consider two benchmarks for performance comparison. The

first one is the static policy that only considers individual risk but ignores the system effect.

The second benchmark is the threshold-based policy, where predefined thresholds for occu-

pancy levels are chosen and optimized offline for each station. Under this policy, individuals are

assigned to “available” stations that have occupancy levels below the respective thresholds. In cases

where multiple stations are available, the preference is guided by individual-level cost minimiza-

tion. When no stations are available (below the threshold), individuals are assigned to the station

that minimizes their individual cost, ignoring congestion. The handling of batch arrivals adheres

to the FIFO order. This threshold-based policy improves over the static policy by accounting for

congestion effects. However, the thresholds are static and lack the state-dependent adaptability

featured in our RL-based dynamic policy.

7.2. Value of the Dynamic Approach

As explained in Section 1.1.2, constrained capacity necessitates difficult tradeoffs between indi-

vidual and societal considerations, especially for individuals in the gray area. In this section, we

highlight the value of dynamically incorporating the necessary system consideration in breaking the

cycle of recidivism by comparing it to the static policy, which can lead to an exacerbated vicious

cycle, as discussed in Section 3.2. We then discuss other benefits brought by the dynamic policy

including reducing the workload volatility and providing the flexibility to balance across various

tradeoffs.

Table 3 compares several performance metrics of the static policy and our RL-based dynamic

policy under two staffing scenarios: 15 case managers in the high-staff scenario and 9 case managers

in the low-staff scenario. For cost-related metrics, we set the baseline unit holding costs to be $54

and $15 for jail and CC, respectively (see Vera Institute of Justice) and the unit costs of recidivism

and violation to be $151,662 and $50,000, respectively (First 2018, CSG Justice Center 2019). The

staffing level affects the recidivism and violation rates among CC participants with the functional

form specified in Appendix EC.7.3. We note that WR is a residential program and its availability is

limited by the physical space; hence, all policies perform similarly on WR placement and occupancy

(Table 3). Consequently, we focus on examining the impact of placement policies on jail and HD

occupancy levels, and the resulted recidivism and violation costs in the rest of the analysis.

Avoiding the feedback loop. The first two rows in Table 3 are from simulating the static

policy in an environment without any negative consequence from overcrowded jail or CC. Thus,

the outcomes are the same under the high- and low-staffing scenarios. The third and fifth rows

are from the setting where overcrowded jail or CC increases individual recidivism and violation
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Table 3 Performance metrics of the static and dynamic policy: recidivism cost (RecidC), violation cost (VioC),

occupancy (average number of individuals) in jail, Work Release (WR), Home Detention (HD), and the average

caseload of each case manager in HD.

Policy RecidC VioC Jail Ocp. WR Ocp. HD Ocp. HD Caseloads

No Congestion
Static (high-staff) 2117 1324 236 147 540 36
Static (low-staff) 2117 1324 236 147 540 60

With Congestion

Static (high-staff) 2507 1623 252 149 515 34
Dynamic (high-staff) 2249 1578 223 148 567 38
Static (low-staff) 4580 5162 292 149 675 75

Dynamic (low-staff) 3716 3065 328 148 549 61

risks. We can see that the three-year recidivism and violation costs increase by 18% and 23% in

the high-staff scenario and by 116% and 289% in the low-staff scenario. These significant increases

result from a feedback-loop effect. That is, a higher jail occupancy leads to a higher recidivism rate,

which results in more individuals staying in the criminal system and further crowding both the

jail and CC. More importantly, the static policy ignores the congestion effect in the HD program,

and assigns more-than-optimal number of individuals to HD. This results in a heavy workload

for each case manager, particularly in the low-staff scenario (caseload increases from 60 to 75).

Consequently, the number of violations rises significantly due to the loosened supervision. Even

worse, a portion of these violations end up as jail incarceration, further congesting the jail and

triggering more subsequent recidivism events, which increases the number of individuals remaining

in the system over the long term. In essence, the static policy, which relies solely on individual risk

without proper consideration of system congestion, triggers a cascading effect due to congestion

and results in a downward spiral.

Our RL-based dynamic policy can effectively avoid this downward spiral, as demonstrated in

the fourth and sixth rows in Table 3. The dynamic policy significantly reduces the recidivism and

violation costs compared to the static policy: 10% and 3% in the high-staff scenario, and more

prominently, 19% and 41% in the low-staff scenario. This superior performance is achieved by

properly balancing the system congestion level among the different stations (jail vs CC programs)

in a real-time fashion. Because of this load balancing, the overall recidivism and violations are

much smaller, leading to fewer individuals in the system in the long run (safer community) and

avoiding case manager burnout (the caseload remains around 60 in the low-staff scenario).

Reducing workload volatility. The dynamic policy offers an additional benefit – preventing

excessive workload in either station – thereby reducing overall workload volatility. To showcase

this, Table 4 reports the standard deviations of workload in jail and HD under different policies.

The RL-based dynamic policy demonstrates its ability to significantly reduce workload volatility,

particularly in the HD program, which is crucial to case managers. Workload volatility often con-

tributes to a stressful working environment and can lead to burnout. Through the reduction of
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workload volatility, our dynamic policy provides case managers with a more predictable and man-

ageable workload within existing budget and capacity constraints. This, in turn, has the potential

to mitigate stress and burnout, enhance supervision efficiency, and improve individual reintegra-

tion (Liljegren et al. 2021, Bergman et al. 2022).

Table 4 Standard deviations of workload in jail and CC under different policies. The workload values are

normalized across 100 simulations. The number following the ± sign denotes the half-width of the 95%

confidence interval for the standard deviation.

Dynamic Policy Threshold-based Policy Static Policy
Jail 5.00%± 0.03% 5.86%± 0.04% 4.92%± 0.03%

Home Detention 4.00%± 0.03% 5.26%± 0.03% 6.31%± 0.04%

Tradeoff curves. The estimates of the unit holding, recidivism, and violation costs vary in a

large range, e.g., the jail holding cost (per customer per day) spans from $21 to $299 in the state

of Indiana (Vera Institute of Justice). Our dynamic policy has the flexibility to balance among key

tradeoffs given different cost combinations, i.e., the dynamic policy has the flexibility of achieving

various performance outcomes by using the cost parameters as a “tuning knob.” We show in

Figures 5(a) and 5(b) the tradeoff curves under the high- and low-staff scenarios when we vary

the unit holding cost ratio between the jail and CC programs. Specifically, Figure 5(a) plots the

tradeoff curve between jail congestion and HD congestion, and Figure 5(b) plots the tradeoff curve

between jail-induced recidivism and HD-induced violations. We observe that, if the dynamic policy

results in a comparable level of jail-induced recidivism as the static policy, it significantly reduces

the number of HD-induced violations; and vice versa. Moreover, Figure 5(c) compares the numbers

of recidivism and violations under both policies in the low-staff scenario, with the scenario ID

on the x-axis arranged in ascending order of HD occupancy under static policy. As expected, the

number of violations increases as the HD occupancy gets higher. The RL-based policy can keep

recidivism and violation rates lower than the static policy.

Figure 6 plots a different set of tradeoffs from the cost perspective. We plot the total recidivism

and violation costs in million dollars (M$) when we vary the unit holding cost for the jail or CC

programs. Figure 6(a) shows that our dynamic policy results in the lowest (and relatively consistent)

recidivism and violation costs compared to the other two benchmark policies. In contrast, the

threshold-based and static policies exhibit a rapidly increasing trend in recidivism and violation

costs as the unit jail holding cost rises, especially for violation. This trend can be explained by

Figure 6(b), which shows that as the unit jail holding cost increases, HD becomes a more favorable

option due to its lower holding cost. Consequently, the static and threshold-based policies tend to

place more-than-optimal customers in HD and overburden HD case managers, exacerbating the
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(a) Occupancy level tradeoff (b) Performance tradeoff (c) Performance (low-staff)

Figure 5 Tradeoff curves for the dynamic policy with different congestion sensitivity.

feedback loop and resulting in more recidivism and violations. In particular, the static policy is

prone to severe congestion in the HD station. Additional sensitivity analysis results on customer

arrival rates and lengths of recidivism window can be found in Appendix EC.7.5.

Importantly, these tradeoff curves and performance analyses can offer stakeholders (such as

judges, prosecutors and CC managers) a comprehensive array of potential options by visualizing

combinations of jail and HD occupancy levels, along with other essential performance metrics. This

approach avoids enforcing a specific “optimization” objective or prescribing single definitive place-

ment decision. In addition, the curves for scenarios with high and low staffing imply performance

enhancement through increased staffing, a topic we discuss in the following section.

(a) Individual-level cost (b) System-level cost

Figure 6 Performance comparison under different unit jail holding costs.

7.3. Insights on Capacity Planning

By incorporating system effects, our framework can analyze outcomes under various capacities,

thus guiding capacity planning. In this section, we explore outcomes under different placement
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policies and capacities by adjusting capacity parameters in the congestion-dependent risk functions;

see details in Appendix EC.7.3. Comparing the two tradeoff curves in Figure 5(a) suggests that

having a larger number of HD staff (case managers) can alleviate congestion in both the jail and

HD by avoiding the cascading effect of congestion. In particular, note that the tradeoff curve slope

is around -0.5 in the low-staff scenario and is around -1 in the high-staff scenario. This is because

under low staffing, the HD program is already congested, and placing any extra individuals there

would exacerbate the congestion effect. Correspondingly, increasing the number of case managers

can bring substantial benefits. Enhanced supervision leads to reduced recidivism and violation

rates, fostering system-wide improvement by reducing the number of individuals staying in the

criminal system. Ultimately, this reduces the long-term incarceration population.

We further examine the benefit of capacity expansion from the cost-effectiveness perspective,

with a focus on increasing the HD staffing level. Unlike jail or WR, which has limited capacities

determined by physical space (cells, residential dorms), the capacity of the HD program is more

flexible and depends on the number of case managers available. Figure 7(a) shows that adding

a few case managers to the HD program can result in a substantial reduction in recidivism and

violation costs. Considering a three-year window, increasing the number of case managers from 11

to 15 requires an additional monetary cost of around $2,373,900 (estimated based on the input from

TCCC), while the cost saving from avoided recidivism would be as high as $40,657,524. A detailed

breakdown of these estimated numbers is in Appendix EC.7.4. Figure 7(b) shows the corresponding

occupancy levels in each program and total occupancy costs. We can see that increasing the number

of case managers can reduce jail overcrowding by (i) placing more individuals in CC and (ii)

decreasing the number of returning individuals due to recidivism and violations. The marginal

benefit of staffing additional case managers diminishes though.

The capacity analysis above offers valuable insights to aid community corrections in deciding the

ideal number of case managers to hire within their budget limitations, along with the objective of

decreasing recidivism, violations, and the strain on criminal justice systems due to overcrowding.

It is important to highlight that we have shared our cost-effectiveness analysis with the director

of our community partner, who presented our results during a county council meeting to support

their upcoming budget justifications.

8. Conclusions

Jail diversion programs, such as community corrections, offer a promising solution to address jail

overcrowding and reduce crime rates. However, the current practice tends to focus primarily on

individual risks when deciding whom to place into CC programs, without adequately considering

the potential impact on system congestion. As CC capacity may not be expanded in real time,
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(a) Individual risk
(b) System occupancy

Figure 7 Performance comparison under different numbers of Home Detention case managers

sending all eligible individuals to CC can cause extreme crowding under stochastic fluctuation,

which shifts the overcrowding issue from jail to CC programs, overwhelming case managers and

resulting in increased violations and recidivism rates. This can set off a chain reaction, causing

more individuals to be re-sentenced to incarceration and exacerbating crowding within the criminal

justice system. To capture all the intricate tradeoffs in this placement decision process, we develop

a novel decision-support tool based on an MDP framework. Our approach goes beyond conven-

tional queueing routing models by incorporating key features specific to this context. This includes

accounting for predetermined sentence terms (deterministic service time), which requires tracking

length of stay (LOS), and explicitly modeling congestion-dependent costs, departing from the typ-

ical memoryless and linear holding cost assumptions. We overcome technical challenges posed by

these features, establishing the superconvexity of the value function and policy monotonicity, and

proposing a novel algorithmic solution to handle the large state space.Through a comprehensive

evaluation using data provided by our community partner, we demonstrate the effectiveness of

our dynamic approach in mitigating the cascading effect and improving both public safety and

individual outcomes. Additionally, we conduct cost-effective analyses to inform staffing planning

and prevent case manager burnout. Overall, our research provides a comprehensive framework

and practical tools to guide decision-making in jail diversion programs, considering the complex

interplay between individual and system-level factors.

It is important to stress that the criminal justice system is inherently complex, and no mathemat-

ical model can fully encapsulate its intricacies. Hence, our analytical results should be interpreted

with a nuanced perspective that recognizes the limitations of our approach and the broader context

of the real-world criminal justice system. As discussed in Section 1.1, our aim is not to provide a

definitive solution but rather to provide a connected system view. We also believe our work will
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spark future analytical interest and contribute to a growing body of research focused on improving

decision-making in this critical area.

We conclude by discussing potential directions for future work. First, our modeling framework,

based on grasping the key tradeoffs involved, could extend beyond initial placement decisions to a

series of criminal justice decisions. These include placement choices for (i) individuals pleaing guilty

with time served, (ii) temporary placements when certain community corrections programs reach

capacity, and (iii) early release decisions for the incarcerated population. By exploring placement

decisions at different points in time, we can further examine the interplay between these choices,

individual risk factors, individual (remaining) sentence length, and system effects. Furthermore, our

findings provide valuable insights for budget planning under soft capacity constraints. A natural

extension would be to investigate a bilevel problem that considers both capacity planning and

placement optimization under hard capacity constraints. Moving forward, a crucial direction is to

refine jail diversion decisions to address biases linked to race, ethnicity, and socioeconomic status.

We assume an accurate and unbiased risk classification and focus on the placement decision making

in this paper. Moving forward, we are interested in developing robust decision support tools that

account for potential prediction errors. Beyond this, a more comprehensive approach could also

encompass the integration of constraints on the fairness and consistency of placement decisions

and outcomes within decision modeling.
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Electronic Companion

EC.1. Notation Table

Table EC.1 summarizes the main notations used in the paper.

Table EC.1 Notation Table

Parameters and Variables in System Description
pm Probability of a customer from class m
Nm Daily number of new arrivals from class m
J Set of stations: J = {jail,CC}
d(j,m) Sentenced length for customers of class m in station j
qr(j,m, τ) Probability that a class m customer served at station j will recidivate during the τ th epoch

after leaving the incarceration
Tj,m Time window that recidivism may happen for class m in station j
Xj,m,l State variable: number of class m customers who have been in station j for l epochs
S System state: S = {Xj,m,0,Xj,m,1, ...,Xj,m,d(j,m)}j∈J ;m=1,...M

sj(s) Total number of customers in station j given state S = s: sj(s) =
∑M

m=1

∑d(j,m)

l=0 xj,m,l

sj,m(s) Total number of class m customers in station j given state S = s: sj,m(s) =
∑d(j,m)

l=0 xj,m,l

ej,m,l Unit occupancy of class m customers who have been in station j for l epochs
Parameters and Variables in Cost Functions

C(s) Pre-action, pre-transition one-period cost given state s
Cj(s) Pre-action, pre-transition one-period cost attributed from station j given state s
hj Unit holding cost of station j
hr Unit recidivism cost
hv Unit violation cost
ch(s) One-period holding cost
cjh(sj) One-period holding cost from station j
cr(s) One-period recidivism cost
cjr(s) One-period recidivism cost from station j
cv(s) One-period violation cost
qv(sCC,m) Cumulative probability of violations from a class m customers placed in CC
γ Discounting factor: γ ∈ (0,1)
π Policy π : S → JM is a mapping from state S to action {Am}m=1,...,M with π(s) =

{πm(s)}m=1,...,M and πm(s)∈J
Parameters and Variables in Transformed MDP

λm Arrival rate for customers of class m
θj,m Proportion of class m customers placed in station j
Θ(s) Placement policy of the batched decisions Θ(s) = {θj,m}j∈J ,m=1,...,M

Xj,m State variable: number of class m customers in station j
S System state: S = {Xj,m}j=1,...,J;m=1,...,M

πΘ(a|s) Probability of making placement decisions a= {aj,m}j,m at state s under policy Θ

EC.2. Proof of Theorem 1

We focus on proving (6), re-stated below:

V ∗(s+2eCC,l)−V ∗(s+ eCC,l)≥ V ∗(s+ ejail,l + eCC,l)−V ∗(s+ ejail,l).



ec2 e-companion to Gao, Shi, and Kong: Incarceration Placement Decision

Note that following (6), (7) can be proved by interchanging jail and CC, since our proof does not

rely on the distinction between jail and CC.

EC.2.1. Proof Roadmap

Our proof framework, as discussed in the main text, consists of the following four steps. Figure EC.1

provides a schematic flow chart.

(1) Decompose the convex cost function into the summation of marginal contributions from indi-

viduals within the system as given in (8), re-stated below:

C(s) =
∑
j∈J

Cj(sj) =
∑
j∈J

sj∑
k=1

(Cj(k)−Cj(k− 1)),

where Cj(·) is the cost function for station j, sj is the occupancy level of station j at state s, and

Cj(0) = 0. Then the value function V (s) =minπ E[
∑∞

t=0 γ
tC(st)|s0 = s,π] can be decomposed

into the discounted sum of marginal costs contributed by individuals within the system.

(2) Bound the value function difference in each side of (6) through coupling. This coupling is

necessary because when analyzing each side of (6), it necessitates a comparison of the incurred

costs under four “unknown” sets of decisions prescribed by the optimal placement policy for

future customers given four different starting states. Through coupling, we reduce the number

of sets of unknown decisions to compare from four to two.

(3) Decompose the value function difference, after coupling, for future customers into the marginal

contribution from one additional customer using (8). While this marginal contribution is trivial

under conventional linear cost setting, our setting of general convex cost functions greatly

complicates the analysis. This is because the marginal cost varies with the occupancy level,

which requires our further analysis on the occupancy difference in the next step.

(4) Bound the marginal cost via bounding the occupancy level deviations of the two systems

(Lemma EC.1). This is achieved by comparing instances and states where the optimal policy

prescribe different decisions in the two systems (Lemmas EC.2 and EC.3), which further

depend on monotonicity results established in Proposition 1 and Corollary 1.

EC.2.2. Main Proof

Proof. For notational simplicity, we refer to jail as Station 1 and CC as Station 2 in the proof. To

prove (6), we denote the left-hand side LHS = V ∗(s+2e2,l)−V ∗(s+ e2,l) and the right-hand side

RHS = V ∗(s+ e1,l + e2,l)−V ∗(s+ e1,l). We desire to show LHS ≥RHS.

Step (1) The cost decomposition is given in (8). In the single-class model, the total cost attributed

from station j, denoted as Cj, is a convex function that only depends on the occupancy level of

station j, i.e., sj. Consequently, in Step (3), when the value function difference is derived to be
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Figure EC.1 Roadmap for Proving Theorem 1.

the marginal cost from one customer, it suffices to analyze the system’s occupancy level when the

customer is in service.

Step (2) In this step, we bound both LHS and RHS by coupling. Denote the optimal policy after

seeing the starting state sa = s+2e2,l by πa. Then for LHS, we have

LHS = V πa(s+2e2,l)−V ∗(s+ e2,l)≥ V πa(s+2e2,l)−V πa(s+ e2,l), (EC.1)

where the inequality comes from the suboptimality of using policy πa for the system starting from

the different state s+ e2,l, i.e., V
∗(s+ e2,l)≤ V πa(s+ e2,l). Note that when we apply policy πa to

the system starting from s+ e2,l, we couple Systems 1 and 2 to have identical new arrivals and

sequentially apply the same decisions prescribed by πa, resulting in the exactly same placement

for new arrivals in the two systems.

Similarly, denote the optimal policy after seeing the starting state sb = s+ e1,l by πb. Then for

RHS, we have,

RHS = V ∗(s+ e1,l + e2,l)−V πb(s+ e1,l)≤ V πb(s+ e1,l + e2,l)−V πb(s+ e1,l), (EC.2)

where the inequality comes from the suboptimality of πb for the system starting from s+e1,l+e2,l,

i.e., V ∗(s+ e1,l + e2,l)≤ V πb(s+ e1,l + e2,l). Therefore, it is sufficient to prove

V πa(s+2e2,l)−V πa(s+ e2,l)≥ V πb(s+ e1,l + e2,l)−V πb(s+ e1,l). (EC.3)

Step (3): Decomposition into Marginal Costs In this step, we bound V πa(s+2e2,l)−V πa(s+

e2,l) and V πb(s+ e1,l + e2,l)−V πb(s+ e1,l) by decomposing the cost into the marginal contribution

from one extra customer.

For LHS, recall that V πa(s+ 2e2,l) and V πa(s+ e2,l) are the total discounted costs from the

systems starting at states s+2e2,l and s+ e2,l under πa, respectively. We couple the two systems,
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starting from these two states, by having identical arriving times of new arrivals and identical

placement decisions prescribed by πa for each of the new arrivals. Consequently, the departure

times of future customers become identical, as do the occupancy levels from future customers in

the two systems. Given that the total one-step cost from station j depends solely on the occupancy

level of station j, we have the following results on total costs contributed from the jail and CC

sides.

• Total costs contributed from the jail side are identical in these two systems. Because the

starting state only differs in occupancy in CC (station 2), and the jail occupancy remains the

same in both systems at any given time.

• For total costs contributed from the CC side, note that all future customers have identical

arrival times and departure times. Therefore, the difference only comes from the one additional

customer when starting from state s+ 2e2,l versus starting from s+ e2,l. In other words, we

just need to focus on bounding the cost contributed by this additional customer at each time

epoch t= 0, ..., d2− l, until this customer leaves the system.

Let sat,j denote station j’s occupancy level after t epochs when starting from state sa = s+ 2e2,l

under policy πa. Using the decomposition given in (8), we have

V πa(s+2e2,l)−V πa(s+ e2,l) =

d2−l∑
t=0

γt
(
C2(s

a
t,2)−C2(s

a
t,2− 1)

)
, (EC.4)

where Cj contains all three costs from station j and depends on occupancy via a convex form.

Similarly, for RHS, using similar arguments, we have

V πb(s+ e1,l + e2,l)−V πb(s+ e1,l) =

d2−l∑
t=0

γt
(
C2(s

b
t,2 +1)−C2(s

b
t,2)
)
, (EC.5)

where sbt,j denotes station j’s occupancy level after t epochs when starting from sb = s+ e1,l under

policy πb.

Combining (EC.4) and (EC.5) with (EC.3), it is sufficient for us to prove

d2−l∑
t=0

γt
(
C2(s

a
t,2)−C2(s

a
t,2− 1)

)
≥

d2−l∑
t=0

γt
(
C2(s

b
t,2 +1)−C2(s

b
t,2)
)
. (EC.6)

While these marginal contributions are trivial under conventional linear cost functions, in our

context of general convex cost functions (incorporating convex holding and violation costs), these

marginal costs vary with the occupancy levels. Therefore, our remaining task is to bound the

difference between the occupancy levels in the two systems after coupling: the first system uses

policy πa, the optimal policy, with occupancy sat,2 at each t; the second system uses policy πb, also

the optimal policy, with occupancy sbt,2 at each t.

Step (4): Occupancy Bounding through Monotonicity In this final step, we establish (EC.6)

by comparing the occupancy levels, sat,2 and sbt,2 with the help of Lemma EC.1.
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Lemma EC.1. (Bounding the Occupancy Deviation) Under Assumptions 1 and EC.1, for t =

0,1, ..., d2− l, the CC and jail occupancy satisfy:

jail: 0≤ sbt,1− sat,1 ≤ 1. (EC.7)

CC: 1≤ sat,2− sbt,2 ≤ 2; (EC.8)

Recall that sbt,1 − sat,1 = 1 and sa0,2 − sb0,2 = 2 for the starting states. Lemma EC.1 implies that

under the optimal policies πa and πb for each of the two systems, respectively, the disparity in the

resulting occupancy at any given t would not exceed the disparity in the starting states. The proof

of Lemma EC.1 is given in Section EC.2.3.

With Lemma EC.1, we have sat,2 ≥ sbt,2 + 1, which gives C2(s
a
t,2)− C2(s

a
t,2 − 1) ≥ C2(s

b
t,2 + 1)−

C2(s
b
t,2) under the convexity assumption of cost function C2(·). Consequently, we have:

d2−l∑
t=0

γt(C2(s
a
t,2)−C2(s

a
t,2− 1))≥

d2−l∑
t=0

γt(C2(s
b
t,2 +1)−C2(s

b
t,2)),

i.e., the desired result in (EC.6). This completes the proof. □

EC.2.3. Proof of Lemma EC.1

Lemma EC.1 establishes the relationship between the occupancy levels sat,2 and sbt,2. To compare

these occupancy levels, we analyze the discrepancies in placement decisions between the policies

πa and πb through Lemmas EC.2 and EC.3. The optimal policies πa and πb are the same when

viewed as state-action mappings. We differentiate between πa and πb to highlight the different sets

of decisions prescribed by the optimal policy in the two systems with different starting states.

Proof of Lemma EC.1. We first show in Lemma EC.2 that πa will not place more customers in

CC than πb; and πb will not place more customers in jail than πa. Combining sa0,2 − sb0,2 = 2 and

sbt,1− sat,1 = 1, we have sat,2− sbt,2 ≤ 2 and sbt,1− sat,1 ≤ 1. Then, we show in Lemma EC.3 that πa will

place at most one more customer in jail than πb; and πb will place at most one more customer in

CC than πa. Combining sa0,2− sb0,2 = 2 and sbt,1− sat,1 = 1, we have sat,2− sbt,2 ≥ 1 and sbt,1− sat,1 ≥ 0.

This completes the proof for Lemma EC.1. □

Before proving Lemmas EC.2 and EC.3, we first define the policy discrepancy times. For k =

1,2, ..., we denote

• t+k : the epoch index when πa = jail while πb = CC for the kth time;

• t−k : the epoch index when πa = CC while πb = jail for the kth time.

We prove t+k ≤ t−k ≤ t+k+1, ∀k = 1,2, ... in Lemmas EC.2 and EC.3. We give a proof outline first

before showing the details.
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To prove t+k ≤ t−k ,∀k= 1,2, . . . in Lemma EC.2, we take an inductive approach with contradiction.

In both the base case and inductive step, we first describe the system state, which comprises three

components: (1) sτ : the customers in the initial state s; (2) Aτ : the customers placed when πa and

πb make the same decisions; (3) ej,τ−t−/t+ : the customers placed when πa and πb make different

decisions. By utilizing the policy discrepancy times, we can express the system states under policies

πa and πb at any given time with these three components. Subsequently, by leveraging the inductive

hypothesis, we can compare the number of customers and their LOS prior to the decision-making

epoch on a given policy discrepancy time. This allows us to construct a contradiction that violates

the policy monotonicity given in Proposition 1 and Corollary 1. Lemma EC.3 can be proven using

a similar approach, with the exception that the contradiction arises from a tie-breaking rule given

in Assumption EC.1.

Lemma EC.2. (Bounding the Policy Discrepancy 1) Under Assumption 1, for t= 0,1, ..., d2− l,

the policy discrepancy times satisfy

t+k ≤ t−k ,∀k= 1,2, . . . .

Proof of Lemma EC.2. We prove by induction.

Base case. For k = 1, suppose the first policy discrepancy time occurs at epoch τ . Then the

system states right before the decision-making point can be written as

saτ = sτ +Aτ +2e2,l+τ ,

sbτ = sτ +Aτ + e1,l+τ .

Then by the policy monotonicity on occupancy (Proposition 1), at time τ , πa = CC implies πb = CC.

Thus if there is policy discrepancy, it could only be πa = jail implies πb = CC. In other words, it

could only be τ = t+1 . So we have t+1 ≤ t−1 .

Inductive hypothesis and induction. Suppose Lemma EC.2 holds for k= 1, ..., n− 1. This induc-

tive hypothesis states that t+1 ≤ t−1 , ..., t
+
n−1 ≤ t−n−1. This means that right before the next policy

discrepancy time, denoted as τ , both πa and πb places n− 1 customers in CC during the policy

discrepancy times. Then at τ , right before the placement decision is made, the system states are:

saτ = sτ +Aτ + e1,τ−t+1
+ · · ·+ e1,τ−t+n−1

+

+2e2,l+τ + e2,τ−t−1
+ · · ·+ e2,τ−t−n−1

,

sbτ = sτ +Aτ + e1,l+τ + e1,τ−t−1
+ · · ·+ e1,τ−t−n−1

+ e2,τ−t+1
+ · · ·+ e1,τ−t+n−1

.

(EC.9)



e-companion to Gao, Shi, and Kong: Incarceration Placement Decision ec7

Since t+1 ≤ t−1 , ..., t
+
n−1 ≤ t−n−1, we have τ − t+1 ≥ τ − t−1 , · · · , τ − t+n−1 ≥ τ − t−n−1. That is, before the

decision made at τ , sat contains n− 1 customers who arrived more earlier jail and k+1 customers

who arrived more recently at CC; sbt contains n customers who arrived more recently at jail and

n− 1 customers who arrived earlier at CC. Thus by the policy monotonicity on occupancy and

LOS (Proposition 1 and Corollary 1), at τ , πa = CC implies πb = CC. In other words, it could only

be τ = t+n . So we have t+n ≤ t−n .

Based on the principle of mathematical induction, t+k ≤ t−k holds true for all values of k. □

Lemma EC.3. (Bounding the Policy Discrepancy 2) Under Assumptions 1 and EC.1, for t =

0,1, ..., d2− l, the policy discrepancy times satisfy

t−k ≤ t+k+1,∀k= 1,2, . . . .

The proof of Lemma EC.3 follows a similar induction proof used in proving Lemma EC.2 and is

omitted here.

EC.3. Proof for Proposition 1 and Corollary 1

In this section, we prove policy monotonicity on occupancy (Proposition 1) and LOS (Corollary 1)

using induction and coupling. For ease of exposition, we present the results using the single-class

model, but the same logic applies to the multi-class model. Let ej,l be the unit customer who has

been in station j for l epochs.

EC.3.1. Proof Roadmap

Before proving Proposition 1 and Corollary 1, we provide an outline of the proof structure. We

first prove the desired monotonicity results in a finite-horizon MDP with H horizons, where the

terminal cost VH(s) represents the value function from state s in a clearance system (with no new

arrivals). After establishing the results within this finite-horizon MDP framework, we then apply

Corollary 3.5 (v) in Feinberg and Lewis (2018), which guarantees convergence of the value function

from finite-horizon to infinite-horizon MDP in the total discounted cost setting as H →∞. This

allows us to extend the results to the infinite-horizon case.

In the rest of the proof, we focus on proving the results for the finite-horizon MDP, where we

prove Proposition 1 and Corollary 1 together in each step through an inductive approach. The

proof consists of the following steps:

(1) Base case. Establish the validity of Proposition 1 and Corollary 1 for decisions made at horizon

H − 1 based on the convexity of one-step costs.
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(2) Inductive hypothesis and induction. Assuming Proposition 1 and Corollary 1 hold for deci-

sions made at horizons t+ 1, ...,H − 1, we proceed to prove their applicability at horizon t

using the coupling method.

(2.1) Construct two systems for each state of s0 and s0+ejail,l: one following the optimal policy;

the other following a suboptimal policy that prescribes the same actions as the optimal

policy except for the first incoming customer.

(2.2) For the two systems constructed in Step (2.1) starting from each state of s0 and s0+ejail,l,

we couple the sample paths to reduce the difference between their value functions to the

marginal contribution from one single customer.

(2.3) Bound the marginal cost via bounding the occupancy level deviations of the two systems.

This is achieved by comparing instances and states where the optimal policy prescribes

different decisions in the two systems, which further depends on the inductive hypothesis.

EC.3.2. Main Proof of Proposition 1 and Corollary 1

Proof. Denote the optimal policy at state s in horizon t as πt(s). For notational simplicity, we

call j = 1,2 to denote j = jail,CC, respectively. In this section, we establish the results that in the

H−horizon MDP, for all l2 < l1 <d1, t= 1, ...,H − 1,

(i) policy monotonicity on occupancy: πt(s) = CC implies πt(s+ ejail,l) = CC;

(ii) policy monotonicity on LOS: πt(s+ ejail,l1) = CC implies πt(s+ ejail,l2) = CC.

Then the results πt(s) = jail implies πt(s+ eCC,l) = jail (policy monotonicity on occupancy) and

πt(s+eCC,l1) = jail implies πt(s+eCC,l2) = jail (policy monotonicity on LOS) can be proven using

the same reasoning, given the symmetry between jail and CC.

Step (1) Decisions at Horizon H − 1. In this step, we prove the policy monotonicity on

occupancy and LOS for decisions made at Horizon H − 1 by utilizing the convexity of terminal

costs.

Policy monotonicity on occupancy. Result to show: “πH−1(s) = CC implies πH−1(s+ejail,l) = CC.”

If πH−1(s) = CC, then

c(s)+ γVH(s
′ + e2,0)< c(s)+ γVH(s

′ + e1,0),

where s′ is the next-epoch state of s after customers’ departure and LOS transition. Thus VH(s
′+

e2,0)<VH(s
′+e1,0). From the definition of the terminal cost and the convexity of one-step function,

we have

VH(s
′ + e1,l + e1,0)−VH(s

′ + e1,l + e2,0)>VH(s
′ + e1,0)−VH(s

′ + e2,0)> 0.

Thus we have

c(s)+ γVH(s
′ + e1,l + e2,0)< c(s)+ γVH(s

′ + e1,l + e1,0),
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which leads to πH−1(s+ ejail,l) = CC.

Policy monotonicity on LOS. Result to show: “for l2 < l1 < d1, πH−1(s+ ejail,l1) = CC implies

πH−1(s+ ejail,l2) = CC,” which can be shown through the same argument for policy monotonicity

on occupancy.

Step (2) Inductive Step Assuming the policy monotonicity on occupancy and LOS holds for

decisions made at Horizons t+ 1, ...,H − 1, we proceed to prove their applicability at Horizon t

using the coupling method. We present the detailed proof of the policy monotonicity on occupancy

at Horizon t. The policy monotonicity on LOS at Horizon t can be proven via the same approach.

For notational simplicity, we omit the policy and value function’s dependence on horizon index t

in the remaining of this section.

We prove the policy monotonicity on occupancy at Horizon t by contradiction. Suppose there

exists s0, s.t., π
∗(s0) = CC and π∗(s0 + ejail,l) = jail.

Step (2.1) System Construction.

We first construct two systems, both starting from s0. Consider the first incoming customer after

the starting state s0 as our target customer.

1. The first system follows the optimal policy, denoted as πa, i.e., place the target customer in

CC, i.e., πa(s0) = CC, and so forth.

2. The second system follows a suboptimal policy, denoted as π1, specified as follows: (1) placing

the target customer in jail, i.e., π1(s0) = jail. (2) placing all the other subsequent customers

in the same station as prescribed in System 1.

Denote the value functions of Systems 1 and 2 as V πa(s0) and V π1(s0), respectively. By the policy

suboptimality in System 2, we have V πa(s0)−V π1(s0)≤ 0.

We then construct two systems, both starting from s0 + ejail,l. Consider the first incoming

customer after the starting state s0 + ejail,l as our target customer.

3. The third system follows the optimal policy πb, i.e., place the target customer in jail, i.e.,

πb(s0 + ejail,l) = jail, and so forth.

4. The fourth system follows a suboptimal policy, denoted as π2, specified as follows: (1) placing

the target customer in CC, i.e., π2(s0 + ejail,l) = CC. (2) placing all the other subsequent

customers in the same station as prescribed in System 3.

Denote the value functions of Systems 3 and 4 as V πb(s0+ejail,l) and V π2(s0+ejail,l), respectively.

By the policy suboptimality in System 4, we have V πb(s0 + ejail,l)−V π2(s0 + ejail,l)≤ 0.

Step (2.2) Sample Path Coupling and Value Difference Computation.

In this step, we compare value function differences V πa(s0) − V π1(s0) and V πb(s0 + ejail,l) −

V π2(s0+ejail,l) through coupling, and derive them to be the marginal contribution from the target

customers.
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We compare V πa(s0) and V π1(s0) by coupling Systems 1 and 2 with identical arrivals. In this way,

according to the definition of policy π1, the two systems will have identical subsequent customer

placements except for the target customer. Thus, the difference between occupancy levels (and the

total costs) under πa and π1 is only from different placement of the target customer. Let sak,j be

the occupancy of station j at kth epoch after s under optimal placement policy πa. Then the value

function difference equals

V πa(s0)−V π1(s0) =

d2∑
k=0

γk(C2(s
a
k,2)−C2(s

a
k,2− 1))−

d1∑
k=0

γk(C1(s
a
k,1 +1)−C1(s

a
k,1)), (EC.10)

where
∑d2

k=0 γ
k(C2(s

a
k,2) − C2(s

a
k,2 − 1)) represents the marginal cost contributed by the target

customer in System 1, where the CC occupancy changes from sak,2− 1 to sak,2 because of the target

customer after k epochs. Similarly,
∑d1

k=0 γ
k(C1(s

a
k,1 + 1)−C1(s

a
k,1)) represents the marginal cost

contributed by the target customer in System 2, where the jail occupancy changes from sak,1 to

sak,1 +1 because of the target customer after k epochs.

We compare V πb(s0 + ejail,l) and V π2(s0 + ejail,l) by coupling Systems 3 and 4 with identical

arrivals. Similarly, the difference between occupancy levels (and the total costs) under πb and π2

is only from different placement of the target customer. Let sbk,j be the occupancy of station j at

kth epoch after s+ ejail,l under the optimal policy πb. Then the value function difference equals

V π2(s0+ejail,l)−V πb(s0+ejail,l) =

d2∑
k=0

γk(C2(s
b
k,2+1)−C2(s

b
k,2))−

d1∑
k=0

γk(C1(s
b
k,1)−C1(s

b
k,1−1)),

(EC.11)

where
∑d2

k=0 γ
k(C2(s

b
k,2 + 1) − C2(s

b
k,2)) represents the marginal cost contributed by the target

customer in System 4, where the CC occupancy changes from sbk,2 to sbk,2+1 because of the target

customer after k epochs. Similarly,
∑d1

k=0 γ
k(C1(s

b
k,1)−C1(s

b
k,1 − 1)) represents the marginal cost

contributed by the target customer in System 3, where the jail occupancy changes from sbk,1− 1 to

sbk,1 because of the target customer after k epochs.

Combining Equations (EC.10) and (EC.11), we have

(V π2(s0 + ejail,l)−V πb(s0 + ejail,l))− (V πa(s0)−V π1(s0))

=

d2∑
k=0

γk
(
(C2(s

b
k,2 +1)−C2(s

b
k,2))− (C2(s

a
k,2)−C2(s

a
k,2− 1))

)
−

d1∑
k=0

γk
(
(C1(s

b
k,1)−C1(s

b
k,1− 1))− (C1(s

a
k,1 +1)−C1(s

a
k,1))

)
.

(EC.12)

Therefore, our remaining task is to analyze the difference between the occupancy in the two systems

after coupling: the first system uses policy πa, the optimal policy, starting at state s0; the second

system uses policy πb, also the optimal policy, starting at state s0 + ejail,l.
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Step (2.3) Occupancy Bounding.

In this step, we establish (V π2(s0 + ejail,l) − V πb(s0 + ejail,l)) − (V πa(s0) − V π1(s0)) ≤ 0 by

comparing the occupancy levels, sak,j and sbk,j via Lemma EC.4.

Lemma EC.4. (Bounding the Occupancy Deviation) Under Assumption 1, for k =

0,1, ...,max{d1, d2}, the CC and jail occupancy satisfy:

jail: sbk,1− sak,1 ≥ 1 (EC.13)

CC: sak,2− sbk,2 ≥ 1 (EC.14)

By Lemma EC.4, we have (V π2(s0+ejail,l)−V πb(s0+ejail,l))−(V πa(s0)−V π1(s0))≤ 0, based on

the convexity of one-step cost functions. This contradicts with V πa(s0)−V π1(s0)≤ 0 and V π2(s0+

ejail,l)−V πb(s0 + ejail,l)≥ 0, and therefore the original assumption that π∗(s0) = CC and π∗(s0 +

ejail,l) = jail must be false. Thus the statement πt(s0) = jail implies πt(s0 + eCC,l) = jail holds

true for all s0 at horizon t.

Based on the principle of mathematical induction, πt(s0) = jail implies πt(s0+ eCC,l) = jail for

all s0 at all horizons t= 1, ...,H − 1. □

Proof of Lemma EC.4 We prove Lemma EC.4 by analyzing the discrepancies in placement

decisions between policies πa and πb. At the starting states (k = 0), we have sb0,1 − sa0,1 = 1 and

sa0,2 − sb0,2 = 0. After the placement of the target customer at time τ in both systems, we have

sbτ,1− saτ,1 = 2 and saτ,2− sbτ,2 = 1. Therefore, Lemma EC.4 is equivalent to the condition that after

the placement of the target customer, πa will place at most one more customers in jail than πb

and πb will not place more customers in CC than πa. This can be proved similarly to the proofs of

Lemma EC.2 and EC.3. □

EC.4. Recidivism Cost Formulation and Proof of Proposition 2

For notational consistency, we use the adjusted recidivism risk in the MDP formulation (Sec-

tion 4.2), where the cumulative recidivism risk within the recidivism window is distributed as a

constant risk during each epoch of service. In this section, we first introduce the formulation of

the adjusted recidivism probability q̃r(j,m) with respect to the original recidivism risk qr(j,m, τ)

and the recidivism window T . Then in Section EC.4.2, we provide the proof for Proposition 2

via coupling and contradiction, which establishes the impact of recidivism window on the optimal

placement policy.
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EC.4.1. Adjusted Recidivism Risk Formulation

We use the time window Tj,m, during which a recidivism may happen to highlight the difference

between jail and CC in preventing short-term recidivism. Given a recidivism window T , this time

window is calculated as Tj,m = T − d(j,m)1j=jail.
2 Denote the total recidivism cost incurred by

each type m customer who is placed in station j by Ψr(j,m). Then

Ψr(jail,m) = hr

Tjail,m∑
τ=0

γτ+d(jail,m)qr(j,m, τ), (EC.15)

Ψr(CC,m) = hr

TCC,m∑
τ=0

γτqr(j,m, τ), (EC.16)

where hr is the unit recidivism cost. Since individuals could recidivate only after being released

from incarceration, for individuals placed in jail, the recidivism cost is incurred after d(jail,m)

epochs after the placement decision (Equation (EC.15)). However, individuals placed in CC may

recidivate both during the service and after release (Equation (EC.16)). For the sake of formulation

uniformity, we define an adjusted recidivism risk for the class m individual during each in-service

epoch if placed in station j as q̃r(j,m). To ensure the total cost incurred by this individual remains

the same, we have

hr

d(j,m)∑
ℓ=0

γℓq̃r(j,m) =Ψr(j,m),

which leads to

q̃r(j,m) =
1

hr

1− γ

1− γd(j,m)+1
Ψr(j,m).

EC.4.2. Proof for Proposition 2

Proof. We prove by coupling and contradiction. Suppose there exists state s0 and class m, such

that optimal decision for the target customer under T1 is a1
m(s0) = CC, while optimal decision for

the target customer under T2 (where T2 > T1) is a2
m(s0) = jail. Denote the adjusted recidivism

probability under T1 and T2 as q̃1r(j,m) and q̃2r(j,m), respectively.

Step (1). System Construction. We construct two systems, both starting from s0 and having

recidivism window T1:

1. The first system follows the optimal policy, denoted as π∗
1 , i.e., placing the target customer in

CC, i.e., π∗
1,m(s0) = CC, and so forth.

2. The second system follows a suboptimal policy, denoted as π1, specified as follows: (1) placing

the target customer in jail, i.e., π1,m(s0) = jail. (2) placing all the other subsequent customers

according to the system’s optimal policy.

2 For example, if we consider three-year recidivism from the placement decision, i.e., T = 3× 365, the window for
those placed in jail is Tjail,m = 3×365−d(jail,m); for those placed in CC, it is TCC,m = 3×365. If the sentence lengths
in both the jail and CC are one year, the recidivism window is 2 years in jail (excluding the sentenced length) but is
3 years in CC.



e-companion to Gao, Shi, and Kong: Incarceration Placement Decision ec13

Denote the value functions of Systems 1 and 2 as V ∗
1 (s0) and V1(s0), respectively. By the policy

suboptimality in System 2, we have V ∗
1 (s0)−V1(s0)≤ 0.

Similarly, we construct another two systems, both starting from s0 and having recidivism window

T1 except for the target customer, whose recidivism window is changed to T2:

3. The third system follows the optimal policy, denoted as π∗
2 , i.e., placing the target customer

in jail with π∗
2,m(s0) = jail, and so forth.

4. The fourth system follows a suboptimal policy, denoted as π2, specified as follows: (1) placing

the target customer in CC, i.e., π2,m(s0) = CC. (2) placing all the other subsequent customers

according to the system’s optimal policy.

Denote the value functions of Systems 3 and 4 as V ∗
2 (s0) and V2(s0), respectively. By the policy

suboptimality in System 4, we have V ∗
2 (s0)−V2(s0)≤ 0.

Step (2). Sample Path Coupling. We couple Systems 1 and 4 to have identical arrivals. Then

they both place the target customer in CC. After this placement, Systems 1 and 4 start from the

identical occupancy levels of each station, differing only in the recidivism window of the target

customer. However, this difference does not impact the state variables of the systems. Consequently,

the optimal decisions for subsequent customers after the target customer remain identical, as they

consistently encounter the same system state. Therefore, the only difference between Systems 1

and 4 is the recidivism window of the target customer. In other words, the difference between

V ∗
1 (s0) and V2(s0) is only from the target customer who brings different costs due to different

recidivism windows. For the target customer, the holding and violation costs cancel out because

the subsequent jail’s and CC’s occupancy are the same for Systems 1 and 4. Therefore, the cost

difference equals

V2(s0)−V ∗
1 (s0) = hr

d(CC,m)∑
τ=0

γτ q̃2r(CC,m)−hr

d(CC,m)∑
τ=0

γτ q̃1r(CC,m)

= hr

T2∑
τ=0

γτqr(CC,m, τ)−hr

T1∑
τ=0

γτqr(CC,m, τ),

(EC.17)

where q̃1r(j,m) and qr(CC,m, τ) are the adjusted recidivism probability and the original recidivism

risk, respectively; (see Sections 4.2 and EC.4.1).

We couple Systems 2 and 3 to have identical arrivals. Then they both place the target customer

in jail. After this placement, Systems 2 and 3 start from the identical occupancy levels of each

station, differing only in the recidivism window of the target customer. However, this difference

does not impact the state variables of the systems. Following the same argument for the coupling of
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Systems 1 and 4, the only difference between Systems 2 and 3 comes from the recidivism windows

of the target customer. Therefore, the cost difference equals

V ∗
2 (s0)−V1(s0) = hr

d(jail,m)∑
τ=0

γτ q̃2r(jail,m)−hr

d(jail,m)∑
τ=0

γτ q̃1r(jail,m)

= hr

T2−d(jail,m)∑
τ=0

γτqr(jail,m, τ)−hr

T1−d(jail,m)∑
τ=0

γτqr(jail,m, τ).

(EC.18)

Step (3). Contradiction by Value Comparison. From Equations (EC.17) and (EC.18), we

have

(V ∗
2 (s0)−V1(s0))− (V2(s0)−V ∗

1 (s0))

=hr

(
T2−d(jail,m)∑

τ=0

γτqr(jail,m, τ)−
T1−d(jail,m)∑

τ=0

γτqr(jail,m, τ)

)
−hr

(
T2∑
τ=0

γτqr(CC,m, τ)−
T1∑
τ=0

γτqr(CC,m, τ)

)

=hr

 T2−djail∑
τ=T1−djail+1

γτ+djailqr(jail,m, τ)−
T2∑

τ=T1+1

γτqr(CC,m, τ)


=hr

T2∑
τ=T1+1

γτ
(
qr(jail,m, τ − djail)− qr(CC,m, τ)

)
>0.

The inequality comes from qr(jail,m, τ − djail) ≥ qr(jail,m, τ) ≥ qr(CC,m, τ), according to

Assumption 2. Thus, V ∗
2 (s0)−V2(s0)>V1(s0)−V ∗

1 (s0), which contradicts V1(s0)−V ∗
1 (s0)≥ 0 and

V ∗
2 (s0) − V2(s0) ≤ 0 (policy suboptimality). Therefore the original assumption that a1

m(s0) = CC

under T1, but the optimal action a2
m(s0) = jail under T2 must be false. □

EC.5. Other Proofs

In this section, we present supplemental proofs and technical details. We first describe and verify

Assumption EC.1, which is used in the proof of Lemma EC.3. We then provide a detailed formu-

lation of the expected cost reduction achieved by placing new customers in CC instead of jail, as

introduced in Proposition EC.5.2 in the main text. Finally, we conclude the section with the proof

of the increasingness of the value function.

EC.5.1. Assumption on State Ties

In this section, we introduce Assumption EC.1, which is used in the proof of Lemma EC.1. It is a

compliment to the policy monotonicity on occupancy (Proposition 1) and LOS (Corollary 1).

Definition EC.1. (State Tie) We say that there is a tie of states when there are two states s1

and s2 that have the same set of existing customers with exactly the same placement and arrival

time, and the remaining existing customers satisfy the following conditions:
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1. In state s1, there are k customers who arrived more recently at station 1 (e1,l1,1 , . . . , e1,l1,k)

and k+1 customers who arrived earlier at station 2 (e2,l2,1 , . . . , e2,l2,k+1
) with k > 1.

2. In state s2, there are k customers who arrived earlier at station 1 (e1,l2,1 , . . . , e1,l2,k) and k

customers who arrived more recently at station 2 (e2,l1,1 , . . . , e2,l1,k).

3. Index ordering for each state: l1,1 ≤ l1,2 ≤ · · · ≤ l1,k and l2,1 ≤ l2,2 ≤ · · · ≤ l2,k ≤ l2,k+1.

4. Index ordering between two states: l1,1 ≤ l2,1, l1,2 ≤ l2,2, ..., l1,k ≤ l2,k.

Station 1 and 2 refer to either jail and CC or CC and jail, respectively.

Assumption EC.1. (Tie Breaking Rule) In case of a state tie defined in Definition EC.1, the

optimal policies for s1 and s2 satisfy: if π∗(s1) = 1, then π∗(s2) = 1.

A state tie arises when two states share the same set of customer states and have clear LOS

rankings for the remaining distinct customers. However, encountering a state tie renders policy

comparison ambiguous. To address this issue, we can eliminate the customer with the longest LOS

from station 2, denoted as e2,l2,k+1
in s1. Subsequently, relying on the policy monotonicity on LOS

(Corollary 1), if the optimal decisions differ, they can only involve placing the new customer at

station 2 for s1 and placing the new customer at station 1 for s2. Nevertheless, due to the addition

of e2,l2,k+1
, the relationship between the optimal policies of the two states cannot be determined

solely based on the policy monotonicity. Hence, in situations where an additional customer with

the longest LOS is present, we introduce a tie-breaking rule in Assumption EC.1 to supplement

the policy monotonicity. Assumption EC.1 outlines the decision rule employed to resolve the state

tie. Even when a state tie occurs and s1 includes a customer with a longer LOS than any other

customer in s1 and s2, the policy monotonicity on LOS still holds.

Note that tie-breaking rule can be demonstrated to hold in the finite-horizon MDP, employing

a similar inductive approach to that used in Section EC.3 for proving the policy monotonicity

on occupancy. Suppose the terminal cost VH(s) is the value function of a system starting at s in

an clearance system (with no new arrivals). To validate Assumption EC.1 at Horizon H − 1, the

one-step cost function C(s) needs to satisfy: the difference in total cost resulting from placing a

new customer in station 1 compared to station 2 is greater at s2 than at s1 in a clearance system.

In the inductive step, to verify that the tie-breaking rule holds at Horizon t, a similar argument as

in Section EC.3 can be applied.

EC.5.2. Proof for Corollary 2

In this section we prove the Corollary 2 where we establish the relationship between risk type

prioritization and expected cost reduction by placing the customer in CC rather than jail.

Proof. We define C∆(m,s) as the expected cost reduction resulting from this placement choice,

given by:

C∆(m,s) = V (s+ ejail,m,0)−V (s+ eCC,m,0).
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Let π∗ denote the optimal policy. According to the Bellman equation, if V (s+ ejail,m,0)≥ V (s+

eCC,m,0), then π∗
m(s) = CC. Consequently, for any given state s0 and two customer classes m1 and m2,

if C∆(m1, s0)≥C∆(m2, s0), it follows that C∆(m2, s0)≥ 0 implies C∆(m1, s0)≥ 0. In other words,

if customers of class m2 are to be placed in CC, the same applies to customers of class m1. □

Formulation of C∆(m,s). Let st,j denote the occupancy of station j after t epochs. We denote

the expected reduction of holding, recidivism, and violation costs by placing class m customers

in CC instead of jail at state s as Ch
∆(m,s), Cv

∆(m,s), and Cr
∆(m,s), respectively. Leveraging the

decomposition scheme in (8), C∆(m,s) can be expressed by:

C∆(m,s) =Ch
∆(m,s)+Cv

∆(m,s)+Cr
∆(m,s).

Ch
∆(m,s) =

d(jail,m)∑
t=0

γtE(cjailh (st,jail +1)− cjailh (st,jail))−
d(CC,m)∑

t=0

γtE(cCCh (st,CC +1)− cCCh (st,CC)).

Cv
∆(m,s) =−hv

d(CC,m)∑
t=0

γtE(cCCv (st,CC +1)− cCCv (st,CC)).

Cr
∆(m,s) = hr(

Tjail,m∑
t=0

γtqr(jail,m, t)−
TCC,m∑
t=0

γtqr(CC,m, t)).

(EC.19)

Here the expectations are taken over future occupancy st,j, which depends on the placement policy.

EC.5.3. Value Function Increasingness

In this section, we formally state and prove the increasingness of value functions on state variables.

Lemma EC.5. Under Assumption 1, the optimal value function V ∗ is increasing with state

variables, i.e., for all s∈ S, j ∈J ,m= 1, . . . ,M, l= 0,1, . . . , d(m,j), V ∗(s+ ej,m,l)≥ V ∗(s).

Proof. Denote the optimal policy following s+ej,m,l and s by π1 and π2, respectively. Then we have

V ∗(s+ ej,m,l) =Eπ1
[

∞∑
t=0

γtC(st)|s0 = s+ ej,m,l]

≥Eπ1
[

∞∑
t=0

γtC(st)|s0 = s]

≥Eπ2
[

∞∑
t=0

γtC(st)|s0 = s]

= V ∗(s),

where the first inequality is due to the increasingness of one-step function C(·), and the second

inequality is due to the suboptimality of policy π1 for state s, which leads to V π1(s)≥ V π2(s) =

V ∗(s). □
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EC.6. Additional Details of the Modeling Framework, Transformed
Model and Algorithmic Solution

EC.6.1. Exogenous Recidivism Arrival Rate

To maintain the Markov property, we assume that the stream of recidivism arrivals is independent

of the policy and treat them as part of the exogenous arrivals (Remark 1). In this section, we

present the formulation of the rate of recidivism arrival in steady state. We denote the (cumulative)

probability of recidivism within the time window as

r(j,m) =

Tj,m∑
τ=0

qr(j,m, τ).

Suppose the system enters the steady state. Let x(j,m) =E[
∑d(j,m)

l=0 X∞(j,m, l)] be the throughput

of class m customers in station j, i.e., the expected number of class m customers entering/leaving

station j in the steady state. Let λ′
m denote the expected total number of class m customers

recidivating within window Tj,m. Then

λ′
m =

M∑
m=1

∑
j∈J

x(j,m)r(j,m) =
M∑

m=1

∑
j∈J

x(j,m)

Tj,m∑
τ=0

qr(j,m, τ).

EC.6.2. Formulation of the Transformed MDP

In this section, we present the formulation of the transformed MDP based on the timescale sepa-

ration described in Section 6.1. With a slight abuse of notation, we use the same notation for the

state (S) and one-step cost function (C(s)) as in the original MDP model.

State. The system state is captured by S = {Xj,m}j=1,...,J;m=1,...,M , where Xj,m denotes the total

number of class m customers in station j at current decision epoch. Thus, Xj,m =
∑d(j,m)

l=0 Xj,m,l,

where Xj,m,l is the state variable of the original MDP.

Action. All the customers arriving within the same week will be placed following the same

placement policy, which depends on the system state in the beginning of the epoch. The placement

policy is specified by: Θ(s) = {θj,m}j∈J ,m=1,...,M , where θj,m ∈ [0,1] represents the proportion of

customers of class m that are to be placed in station j in current epoch.

Cost and objective. We specify the transition dynamics in the next section after introducing the

LOS recovery mechanism. Similar with the original MDP, for a given state s = {xj,m}, the pre-

action cost per epoch is composed of holding cost ch(s), recidivism cost cr(s), and violation cost

cv(s): C(s) = ch(s)+ cr(s)+ cv(s). The objective is still minimizing the infinite-horizon discounted

cost, with the Bellman equation similar to Equation (5).
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EC.6.3. Transition Dynamics in Transformed MDP with Truncated State Space

To keep the state space finite, the arrival process is truncated for each epoch. Let H be the cutoff

of the Poisson arrival in each day. For station j, the number of new customers follows a Poisson

distribution with rate λj,m = λmθj,m. By using the approximation scheme described in Section 6.1.2,

we can model the number of participants released at the next slow-timescale epoch as a Hyper-

geometric distribution Hypergeo(xj,m,H∆,Hd(j,m)). Consequently, the transition matrix is the

convolution of Poisson distributions for new arrivals and hypergeometric distributions for remaining

participants:

Pr

{
X ′

j,m = x′
j,m,m= 1, ...,M, j = 1, ..., J |s= {xj,m}j,m

}

=
J∏

j=1

M∏
m=1

x′j,m∑
a=0

Pr
{
Br

j,m = k,Ba
j,m = x′

j,m− k
}

=
J∏

j=1

M∏
m=1

x′j,m∑
k=0

((H∆
k

)(
xj,m−H∆

xj,m−k

)(
Hd(j,m)
xj,m

) · (λj,m)
(x′j,m−(xj,m−k))e−λj,m(

x′
j,m− (xj,m− k)

)
!

)
.

Here Ba
j,m ∼ Pois(λj,m) is the number of new customers of class m in station j; and Br

j,m ∼
Hypergeo(Xj,m,H∆,Hd(j,m)) is the number of released customers of class m in station j at the

next slow-timescale epoch.

For the illustrating example in the second paragraph of Section 6.1.2, suppose the arrival process

is truncated at five for each epoch. Then out of the maximum possible 15 arrivals over the past

three epochs, six customers actually arrived in the system. Thus, in the fourth epoch, there can

be at most five customers to be released who arrived within the first week. Consequently, the

number of customers to be released follows a hypergeometric distribution with parameters K = 6

(the number of successes in the population), n= 5 (the sample size), and N = 15 (the population

size).

EC.6.4. Derivation of Policy Gradient

To derive the policy gradient in (11), we first write out the randomized policy πθj,m(a|s) according
to the Poison thinning property. Denote realized placement action as a = {aj,m}j,m. Then the

distribution of placement action is

πθj,m(a|s) =
M∏

m=1

∏
j∈J

Pr{Aj,m = aj,m|θ}

=
M∏

m=1

∏
j∈J

e−λmθj,m(−λmθj,m)
aj,m

aj,m!
,

(EC.20)

where the second equality is because the number of class m customers placed in station j, Aj,m,

follows a Poisson distribution with rate λmθj,m.
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For any class m= 1, ...,M , the placement probabilities θj,m satisfy:
∑

j∈J θj,m = 1. Thus,

θj|J |,m = 1−
|J |−1∑
k=1

θjk,m, m= 1, ...,M. (EC.21)

Substituting (EC.21) into (EC.20) and taking a partial derivative on θj,m, we have

∇θj,m lnπθj,m(a|s) =∇θj,m
(
aj,m lnθj,m + aj|J |,m ln (1−

|J |−1∑
k=1

θjk,m)
)

=
aj,m

θj,m
−

aj|J |,m

1−
∑|J |−1

k=1 θjk,m
.

EC.6.5. Adaptations for real-sized case studies

In this section, we detail adaptations of Algorithm 1 for real-sized case studies: the heuristic

algorithm addressing a large number of customer classes and the regression technique for rarely

visited states.

To handle the increased complexity caused by the detailed customer classification and separated

CC programs, we adapt Algorithm 1 developed for the analytical setting and obtain placement

decisions using the one-step optimization of Equation (13). We begin by solving a single-class-

multiple-program model to obtain the value function V (·). We then make the placement decision

on-the-go, considering two cost components: an immediate individual-level cost (which depends

on risk level, medical need, and class), and the value function output from the algorithm (which

depends on the total occupancy of each station). Specifically, the optimal placement decision for

the kth new customer from class m is determined by:

am,k = argmin
am,k∈J

(
C(s)+ γ · 1

N

∑
s′∈S

V (s′)
)
.

The equation has a same formula as (13). However, here s denotes the immediate state after the

action am,k, reflecting the class-specific costs associated with new arrivals’ placement decisions; s′

is the system state in the next epoch where s′ = {sj}j with sj representing the total occupancy in

station j. V (s′) is the value function estimated by Algorithm 1 for the one-class-multiple-program

model. By switching to the post-decision state s, we are able to leverage C(s) to accommodate the

heterogeneity brought by the increased customer classes. Meanwhile, keeping a single-class version

of value function V (s′) help maintain the tractability of the MDP model.

To estimate the value function of states that are infrequently visited or on the truncation bound-

ary, we start by identifying states that are visited frequently enough, such as those visited over

500 times. Next, we apply a LASSO regression to fit the value functions using transformed state

variables as features. Specifically, we consider the occupancy of each station-class combination as

a feature. After fitting with LASSO, we replace the value functions of lesser-visited states or those

on the truncation boundary with the value functions predicted by the regression.
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EC.7. Supplement of Experimental Settings and Results
EC.7.1. Specification of Approximation Accuracy Evaluation in Section 6.1.2

To compare the optimal value functions between the original and transformed MDP, we need to

first solve both models. In order to make the MDP solvable to the optimality, we estimate the

approximation accuracy on the small and medium models. In both models, the length of slow

timescale is two days, i.e., ∆= 2. The parameters of the two models are presented in Table EC.2.

Table EC.2 Model parameters for approximation accuracy estimation.

Small Model Medium Model
Risk class M 2 2

Arrival rate λm (0.5, 0.8) (3, 5)
Jail term (6, 2) (12, 6)
CC term (12, 4) (24, 12)

EC.7.2. Recidivism Arrival Distributions

During a customer’s participation in a CC program and or a customer completes their sentence and

is ready to be released from jail or CC, we predict the likelihood and timing of a future recidivism

event based on their risk class. If they are predicted to recidivate, we add them to the system’s

customer record with a future arrival time. This enables us to simulate the impact of returning

customers on the system over time.

Figure EC.2 shows the distributions of daily recidivism arrivals from simulation experiments. Two

policies are used: the RL-based dynamic policy and the static policy. We compare the distribution

of recidivism arrivals under three HD staffing settings. The results indicate that the static policy

produced higher recidivism arrivals, particularly when the HD was understaffed.

(a) Low staff (b) Baseline (c) High staff

Figure EC.2 Comparison of recidivism arrival distributions under different HD staffing settings
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EC.7.3. Parameter Specification of Case Study in Section 7

Table EC.3: Parameter Specification in Case Study

Parameter Value and Calibration

Discounting factor γ = 0.9999
Time horizon Simulation length: 3 years. Warm start period: 2 months.
Arrival rate λbase = 84 per week. Estimated using historical County jail and TCCC arrival

data: λjail = 37 and λCC = 47
Risk class proportion λsevere : λmild = 0.3 : 0.7. Estimated based on the proportion of each risk class

of customers in historical data.
Sentence length The baseline sentence lengths are 12 weeks for jail, 5 weeks for WR, and 15

weeks for HD, based on the average historical program length. For severe and
mild types of customers, sentence lengths are incremented by +1 week and -1
week, respectively, from the baseline.

Base recidivism risk We fit a logistic regression model to estimate the recidivism and violation
risks. We use a 70% cutoff for the high-risk class to estimate the risk dis-
tribution pm’s. The base recidivism risk is sampled from the recidivism risk
distribution estimated using a logistic regression model with an AUC score of
0.71. Recidivism risk decrease every day exponentially with rate 0.997.

Base violation risk In WR, the violation risks are 0.001 and 0.0006 for severe and mild customers,
respectively; In HD, the violation risks are 0.003 and 0.0018 for severe and
mild customers, respectively.

Congestion’s impact Recidivism/violation risk = Base recidivism/violation risk × congestion-
adjusted factor f , where f is a piecewise linear function of total occupancy in
each station:

1+
max(0,Occupancy(j)−Capacity(j))

Capacity(j)
,

where the capacities of jail, WR and HD are set as 300, 120, and 300 in
baseline case.

Holding cost Quadratic function of total occupancy in each station
Risk type transition Pm1→m2

denotes the probability of changing to type m2 from type m1 every
day. In jail, P0→1 = 0.005 and P1→0 = 0.01. In WR and HD, P0→1 = 0.01 and
P1→0 = 0.005.

EC.7.4. Cost-effectiveness Analysis of Adding Case Managers in Section 7.3

Holding Cost Holding cost estimation follows the Fiscal Impact Analyses of Illinois Sentencing

Policy Advisor Council 3, including:

1. variable costs, which directly relate to services (laundry, food, etc.) – Monitoring cost in our

case. Currently, in most Indiana counties, house arrest costs a minimum of $50 to set up and

a minimum of $10-$15 per day in community correction monitoring fee 4;

2. personnel costs, which change when staffing levels change – Case manager salary in our case;

3 https://spac.icjia-api.cloud/uploads/2023%20Update%20-%20Marginal%20Costs%20for%20Fiscal%20Impacts-
20230210T16344761.pdf

4 https://goldmanlegalhelp.com/what-is-house-arrest-in-indiana/
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3. fixed costs, which relate to physical space that vary only with large service changes – Not

applicable in our case.

Recidivism Cost Recidivism cost includes cost of rearrest, prosecution, and incarceration;

economic costs on communities, such as lost productivity 5.

Violation Cost A technical probation violation is when someone violates a rule placed on

their probation. Technical probation violations can be things like missing curfew or losing a job.

These types of violations are noncriminal violations. Technical violations accounted for 26% of the

population in the study’s group who went to jail or prison 6. The Court Services and Offender

Supervision Agency’s (CSOSA) results show that people arrested for probation violations show a

roughly 30% chance of rearrest 7. Thus we estimate the cost per technical violation as 1/3 of the

recidivism, which is $50,000.

EC.7.5. Performance under Different Arrival Rates and Recidivism Window

In this section, we present more numerical results demonstrating the performance robustness of our

proposed policy. We evaluate the policy’s performance under different customer arrival rates and

lengths of recidivism windows to demonstrate its performance robustness in varying crime rates

and holding costs.

Figure EC.3 illustrates the performance gap across various customer arrival rates. The baseline

model assumes an arrival rate of 84 customers per week, estimated through data from the TCCC

and the Indiana Department of Correction (IDOC). Simulations are conducted over a three-year

period, and we report the average value from 100 replications. The 95% confidence intervals are

tight, and we omit them in the plots.

As shown in Figures EC.3(a) and (c), our RL-based policy consistently outperforms the static

and threshold-based policies, resulting in few instances of recidivism and violation across all tested

scenarios. Notably, as the customer arrival rate increases, the recidivism and violation rates under

the RL-based policy increase at a slower rate than those of the other policies. This effect can be

attributed to the effective congestion-mitigation strategies of the RL-based policy. Additionally,

Figures EC.3(a) and (c) suggest that the threshold-based policy can outperform the static policy

with consideration of system congestion, thereby highlighting the benefits of a congestion-adjusted

placement policy. Furthermore, the performance gap among these three policies are relatively small

under lower arrival rates, where system congestion is of lesser concern. In such scenarios, the static

policy, which optimizes station assignments based on individual risks, can be beneficial.

5 https://spac.icjia-api.cloud/uploads/Illinois Result First-The High Cost of Recidivism 2018-
20191106T18123262.pdf

6 https://ijrd.csw.fsu.edu/sites/g/files/upcbnu1766/files/media/images/publication pdfs/Going Back to Jail.pdf

7 https://www.csosa.gov/wp-content/uploads/bsk-pdf-manager/2020/02/CSP-FY2021-Congressional-Budget-
Justification-02062020.pdf#page=22
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(a) Individual risk (b) System occupancy

(c) Individual risk (d) System occupancy

Figure EC.3 Performance gap under different customer arrival rates and recidivism windows

Figures EC.3(b) and (d) present the three-year average occupancy rates of jail and caseloads in

HD under the three policies. Work Release occupancy rates remain consistently high, ranging from

96% to 99%, due to capacity constraints and the benefits of training programs, thus is omitted from

the figure. As shown in Figure EC.3(b), the RL-based policy could maintain similar congestion

levels at jail and HD and avoid extreme congestion in either station. However, Figure EC.3(b) also

indicates that all stations are inevitably more congested under higher customer arrival rates, high-

lighting the importance of accurate crime rate estimations during capacity and staffing planning.

In addition, Figure EC.3(d) demonstrates that, as the length of the recidivism window increases,

the HD program becomes a more preferable option, aligning with the policy structure discussed in

Section 5.3.


