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Amidst critical levels of nurse shortages, we partnered with Indiana University Health (IUH) System to

pioneer a novel suite of advanced data and decision analytics for a groundbreaking internal travel nursing

program. This state-wide program leverages a flexible pool of resource nurses who can move between the

16 IUH hospitals located in five diverse regions and serving more than 1.4 million residents. This program

breaks the mold of traditional resource nurse by moving nurses between hospitals to dynamically respond to

short-term patient census fluctuations in days rather than weeks. This paradigm shift necessitated the devel-

opment of new operational protocols and analytics to execute them, including a creating two-week advance

on-call list for travel and a 24-48 hour call-in decision. Our co-developed Delta Coverage Analytics Suite,

launched in Oct 2021 as a Microsoft Power BI application, provides an integrated solution to support this

groundbreaking initiative at an unprecedented state-wide scale, in contrast to existing nurse scheduling tools

that primarily cater to single hospitals or units. The suite incorporates (i) a patient census forecast based on

a deep generative model capturing complex spatial-temporal correlations and avoiding error accumulation

common in traditional time-series models, which seamlessly integrates with (ii) a stochastic optimization

that prescribes optimal on-call and call-in decisions. The pilot, conducted from May to June 2023, produced

a remarkable 13% reduction in understaffing, with estimated annual savings of $400K and over 250 fewer

understaffed shifts, all by efficiently managing the movement of only 10 nurses. As the first known program

of its kind, our efforts establish new benchmarks for evidence-based and data-driven nurse workforce man-

agement, potentially transforming how healthcare institutions approach staffing challenges nationwide.
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The decades long nurse shortage crisis has elevated to the level of global health emergency, with

the United States projected to face a deficit of half a million nurses within the next two years and

annual burnout and turnover rates exceeding 20%. The accelerating shortage of nurses combined

with large spikes in demand has prompted hospitals and health systems to explore innovative solu-

tions for both the short and long term. This paper presents one such such breakthrough innovation,

co-developed and successfully implemented in partnership with Indiana University Health (IUH) –

the Delta Coverage (DC) internal travel nursing program. IUH, the largest healthcare system in
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Indiana, includes 16 hospitals and over 9,000 nurses, serving 1.4 million residents across five diverse

regions spanning 14,000 square miles. The DC program, to our best knowledge, is the first imple-

mented, state-wide program that utilizes a flexible pool of resource nurses, effectively moving them

between the 16 IUH hospitals, to addresses understaffing challenges by harnessing the expansive

reach of such large hospital system. In contrast to typical travel nursing (12-week contracts), DC

employs short-term deployments, dynamically responding to geographic and temporal fluctuations

in hospital occupancies. The implemented DC network design is shown in Figure 1, along with

IUH’s catchment area to highlight its state-wide coverage.

Our collaborative efforts led to the development of the innovative Delta Coverage Analytics

Suite, a comprehensive solution and a pioneering implementation that leverages state-of-the-art

predictive and prescriptive analytics to support the DC program, dynamically optimizing nurse

deployment and staffing on an unprecedented scale. This contrasts off-the-shelf nurse scheduling

analytics, which usually target individual units or hospitals, or other existing hospital analytics

that prioritize physicians and patients. The distinctive dynamics and complexities of real-time

nurse deployment over a large network make it difficult for existing solutions to gain traction and

establish a strong foothold, leaving a gap in the market for innovations like our DC Analytics Suite

to step in and pioneer a breakthrough.Pilot Phase 2: May 2023
Pilot pilot live on May 1, 2023 

Starting with 6 hospitals split into 
pods of 3 hospitals

Recruiting: 10 positions filled

Demonstration of feasibility and 
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Figure 1 DC network design.

Red squares are IUH hospitals.

Yellow circles indicate pilot

hospitals. Colored ellipses are DC

pods. DC nurses can be deployed

to any hospital within their pod.

Reduction Understaff Overstaff

Annual Project Shifts 250 290
Percent 13% 5%

(a) System-wide value

Work Variety Sched Stability Hospital % DC
(Gini) (CV) Shifts Used

Average 0.36 0.3† 19%
Equity 0.3† 0.31 0.29†

(b) Average value and equity score across all DC nurses / hospitals

Table 1 Performance of the Delta Coverage pilot May-Jun 2023. “Work

variety” is measured via Gini coefficient; smaller value means shifts are more

equally divided among hospitals. “Schedule stability” is measured via

coefficient of variation; smaller value is better with ≤ 0.5 (†) being very

stable. “Equity” is measured by the Gini coefficient of inequality; ≤ 0.3 (†)

generally considered very equitable. More details in Appendix E.
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Implementation and Impact. Launched in October 2021, the analytics suite underwent three

phases of implementation. During the final pilot phase, which ran from May to June 2023, we

achieved remarkable results: a 13% reduction in understaffing, a 5% reduction in over-

staffing, and an allocation that is fair to participating hospitals and nurses. Table 1 provides a

summary of the pilot’s impact projected to annual estimates, alongside equity analysis for nurses

and hospitals. All this was made possible by moving only 10 DC nurses among 6 hospitals par-

ticipating in the 6-week pilot. The results demonstrate that each DC nurse is equivalent to 1.25

non-DC nurses, effectively mitigating staffing deficits. Extrapolating this impact to the United

States’ 1.7 million hospital registered nurses (source: Bureau of Labor Statistics) indicates the

potential to almost cover the nation’s half a million nurse shortfall.

The concept behind Delta Coverage is to allow highly skilled nurses to float and work on any

unit, including floating to other hospitals in the network. The ultimate goal is to respond rapidly to

fluctuations in staff and occupancy across the 16 hospitals. Unlike programs for traditional resource

nurses, who usually float between units within a hospital and receive their assignments less than

24 hours before a shift, Delta Coverage requires sophisticated advanced planning that utilizes (i)

predictive analytics to forecast occupancies for all 16 hospitals and (ii) prescriptive analytics to

determine optimal on-call and call-in decisions for DC nurse transfers. To meet this urgent need, our

team developed a first-of-its-kind analytics suite, seamlessly integrating state-of-the-art machine

learning-based time series predictions for component (i) and stochastic optimization for (ii). Figure

2 provides a close-up of the decision support for the two stages of decisions, with the “Plan” (right

panel) indicating how many nurses should be put on-call to travel 1-2 weeks in advance (e.g., from

ISR to AHC in 10 days), and the “Execution” (left panel) showing how many nurses should be

called in for travel 24-48 hours in advance (e.g., from Methodist Hospital to University Hospital

tomorrow).

Delta Coverage Deployment Plan

1 2
2

Resource Nurse Allocation Execution

Sending Receiving

MethodistUniversity
UniversityMethodist

Methodist Methodist

2 nurses on-call to deploy from 
ISR AHC… 10 days from now

4 nurses deploy from 
University Methodist… Tomorrow PlanExecution

Figure 2 Closeup snapshot of the DC Dashboard decision support for on-call and call-in decisions.
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Beyond Reducing Shortage. The reduction in understaffing achieved through our DC program

has long-term societal benefits, including improved patient care, increased professional satisfaction

among bedside nurses, and ultimately, lives saved (Aiken et al. 2014, Blegen et al. 2011). The long-

term impact of broader deployment of our DC program on the nursing crisis is significant, given

that our novel system directly addresses the primary cause of the nursing crisis - nurses leaving

the profession due the pervasive issue of understaffing (Flinkman et al. 2010).

The pilot also demonstrates the desirable “fairness” feature of our DC analytics suite, benefiting

both the DC nurses and participating hospitals, as evidenced by the “Equity” row in Table 1.

This crucial aspect ensures the sustainability and wider adoption of the program, making it also

applicable to other hospitals facing similar challenges nationwide. In particular, one significant

concern voiced by Chief Nursing Officers of individual hospitals was that the urban hospitals may

potentially be allocated most or all of the DC nurses, taking resources away from more rural hos-

pitals without giving back. However, the implementation shows promising results for the hospitals

located in more rural communities. Figure 3a provides a visual representation of the distribution of

Delta Coverage resources among participating hospitals. The figure illustrates that, despite week-

to-week fluctuations, the decisions made by the optimization engine and implemented by the DC

manager result in a fair and equitable allocation of DC nurses across the participating hospitals,

notably benefiting ARN and BMH, the two most rural hospitals in the pilot. See Appendix E for

a comprehensive analysis of the pilot program’s performance.

(a) Fraction of DC shifts allocated to each hospital by week weighted
by hospital size.

Pilot Phase 2: May 2023
Pilot pilot live on May 1, 2023 

Starting with 6 hospitals split into 
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(b) DC hospital map.

Figure 3 Hospital equity by week of the pilot and Delta Coverage (DC) pilot map

More broadly, the success of Delta Coverage highlights the viability and benefits of internal travel

nurse programs as a solution for managing nurse shortages and optimizing workforce allocation.
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This sets new benchmarks for efficiency and adaptability in addressing nurse shortages and fluc-

tuating patient demands with data-driven and analytics-based decision-making, encouraging other

hospitals to adopt similar strategies to meet the urgent demands of the healthcare landscape.

To summarize, the impact of our Delta Coverage program goes beyond immediate staffing short-

age reduction. It has the potential for far-reaching impact by effectively addressing the pressing

challenges of nurse shortage and burnout. In the long run, this approach promotes workforce sta-

bility and a supportive environment, resulting in a more resilient and satisfied nursing workforce.

More importantly, our analysis shows that the DC program’s benefits extend to rural and marginal-

ized areas that often bear the brunt of nursing shortages (as rural hospitals face more challenges in

attracting and retaining nurses due to their remote locations), disproportionately affecting access to

quality healthcare and population health outcomes in these areas. By distributing DC shifts fairly

among participating hospitals, we ensure rural hospitals receive the support needed to provide

uninterrupted care to their communities, effectively enhancing treatment accessibility in under-

served regions. The success of the program in promoting both workforce stability and equitable

distribution of nurses exemplifies the transformative power of analytics-based OR solutions.

Paper Organization. In the remainder of this paper, we detail our three-year journey from the

development and implementation of a necessity-driven innovation to a sustainable data-driven

approach that has the potential to turn the tide against the nursing shortage crisis. In Section 1,

we present an overview of our Decision Support System (DSS), the Delta Coverage Analytics Suite,

and outline the technical and practical challenges encountered, underscoring our main contributions

that lay the groundwork for subsequent sections:

• To overcome the technical challenges, we first describe the novel, multi-hospital and multi-unit

nursing demand forecast based on a deep generative model in Section 2. We then introduce

in Section 3 the prescriptive framework based on the stochastic optimization. In Section 4 we

discuss the seamless integration of forecast and optimization: the generative model structure

perfectly complements our quasi-Monte Carlo approach to overcome the curse of dimension-

ality in our large-scale decision optimization, which is critical because it must be solved daily

even with limited computational resources.

• In Section 5 we discuss the journey to launch the pilot implementation including practical

challenges and our tiered implementation approach to build trust for deploying OR analytics

for operational improvement. We conclude this paper with ongoing work in Section 6.

1. Delta Coverage Analytics Suite Details and Challenges

Our analytics suite was implemented in October 2021 as a Microsoft Power BI application and

went through three phases: (i) live testing from October 2021 to April 2022, (ii) program re-design
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and refinement with the leadership team, and (iii) pilot with end-user adoption from May 2023

to June 2023. The implemented analytics suite is fully integrated with IUH’s data-warehouse and

staffing data systems, and the following procedures run on a daily or weekly basis:

1. On Monday, based on the demand forecast, scheduled nurses at each hospital, and available

Delta Coverage resource nurses, the model determines the on-call list for a one-week period

two weeks in advance (lookahead for 21 days).

2. Each day at 4am, update the patient census data and forecasts and determine actual deploy-

ment decisions for the following day.

3. Output is loaded into the Microsoft PowerBI dashboard to support decision making. The

result of the previous day’s actions (deployment, census, and updated census prediction) are

recorded for program evaluation and control charting to monitor ongoing system accuracy.

Figure 4 provides a schematic of the DC Analytics Suite design; see Appendix D for detailed

explanation.

Figure 4 Delta Coverage Decision Support Data and Workflow.

1.1. Challenges

Given the goal of providing 1-2 weeks notice to nurses who will be put on-call to travel and 24-48

hour notice as to whether a nurse will be called-in, decisions must be made without full informa-

tion surrounding nursing supply and demand. This required both accurate nurse demand forecasts

across the 16 hospitals over multiple days as well as dynamic decisions that consider complex

spatial-temporal demand correlations while accommodating nurse preference and availability. How-

ever, these models come with significant technical challenges due to hard-to-predict occupancy

fluctuations and multiple shift rotations that introduce additional correlations, influencing the

decisions throughout the network.
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The primary challenge lies in capturing the complicated spatial-temporal correlations in patient

census at different hospitals over the next 21 days. As a most obvious example of why correlation

is important, consider an infectious disease outbreak, where the underlying disease spread drives

hospitalizations over different regions. Even without a major public health event, weather, hospi-

tal diversions, and patient transfers among units/hospitals create complex non-linear correlation

between hospitals. In our case, the decision structure that transfers nurses between hospitals com-

plicates the system further, which contrasts to typical nurse staffing with newsvendor-type models,

because (1) traveling to remote hospitals requires deployed nurses to stay there for multiple days

(“secondment”), which makes decision critically depend on correlated census patterns over multiple

days; (2) the DC nurse pool is shared across 16 hospitals forcing the decision framework to also

account for spatial correlations. Hence, nurse staffing in such a large-scale hospital network requires

accounting for spatial-temporal correlations from both the predictive and prescriptive components.

Beyond the technical challenges, we also face numerous practical obstacles. Penetrating the

nursing industry with OR analytics has been exceptionally challenging due to several factors. First,

the nursing profession relies heavily on established practices and protocols, leading to a resistance

to change and potential hurdles in adopting novel technologies and decision analytics. Convincing

the industry to embrace a groundbreaking solution requires substantial evidence of its efficacy and

benefits. Second, implementing large-scale decision analytics in the nursing field has been limited

by the absence of comprehensive solutions tailored specifically to this industry. Off-the-shelf nurse

scheduling analytics usually target individual units or hospitals, while other hospital analytics

prioritize physicians and patients, often overlooking the distinctive dynamics and complexities of

nursing. These challenges make it difficult for analytics solutions to gain trust to establish a strong

foothold. We further discuss these challenges during the implementation in Section 5.

1.2. Literature Review and Main Contributions

We review two main streams of literature that relate to the predictive and prescriptive components

of our work.

Time-series Forecast. Traditional time-series forecast tools like autoregressive models (AR and

ARIMA) or queueing-based simulations rely on parametric assumptions, such as linear dependence

or Poisson arrival processes. However, these models lack flexibility in handling highly time-varying

dynamics and complex nonlinear correlations. On the other hand, typical machine-learning predic-

tion models often provide point estimates rather than the needed distribution for decision making

under uncertainties. Recent advancements in generative models, Variational Autoencoders (VAE)

and Generative Adversarial Networks (GAN) have the advantages of providing distributions as

the output. Time-series generative models use GAN or VAE and combined with RNN, e.g., see
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Mogren (2016), Esteban et al. (2017), Desai et al. (2021), among others. TimeGAN (Yoon et al.

2019), considered as the current state-of-art method, combine autoregressive models with GANs

and aligned the latent representations of real and generated data. However, these generative mod-

els have one primary limitation: learning step-wise conditional distributions that may accumulate

errors and overlook key temporal patterns essential for downstream tasks; see more discussion in

Section 2. Moreover, they often lack theoretical justification, interpretability, and fail to consider

the structural insights of realistic problems. In contrast, the predictive model we developed in this

work effectively addresses the error accumulation issue and is domain adapted.

Nurse Staffing and Deployment. Nurse scheduling is a topic that has been well studied in the

OR/MS literature, e.g., see Griffiths et al. (2020), Saville et al. (2019) for a comprehensive review.

Recent advance on analytics have helped incorporating predictive analytics into the nurse schedul-

ing, e.g., see, Ban and Rudin (2019), Anderson et al. (2022), Spetz (2021), Shi et al. (2023), Zlotnik

et al. (2015), among others. These studies emphasize the significant impact that sophisticated pre-

diction models can have on optimizing nurse staffing levels and improving patient outcomes. The

most relevant paper to our work is Hu et al. (2021), who use predicted patient demand to guide

base and surge nurse staffing in ED. It is important to highlight that this stream of literature has

predominantly focused on staffing within individual or hospital units, which operates on a much

smaller scale compared to our work. Consequently, these studies usually do not consider complex

spatial-temporal correlations in patient demand, which are crucial for making informed decisions

in our research. Additionally, a few studies have explored patient transfers between hospitals, moti-

vated by emergent practices during the pandemic, employing robust optimization (Parker et al.

2020) and queueing-based fluid approximation (Chan et al. 2021). We emphasize that nurse transfer

presents its own unique challenges compared to patient or equipment transfer, e.g., nurses need to

move back to home location after being transferred instead of being transferred again (in contrast

to equipment that can be continuously moved). In addition, we need to design efficient and scal-

able algorithm to ensure practical implementation rather than treating it solely as a mathematical

optimization problem.

Contributions. To the best of our knowledge, this work represents a pioneering implementation

that leverages state-of-the-art predictive and prescriptive analytics to optimize nurse staffing at

an unprecedented scale. Our focus is on a state-wide program that dynamically reallocates nurses

across a hospital network, resulting in substantial contributions to both theory and practice:

• Predictive innovation: We build a novel generative modeling framework that captures the depen-

dence structure and the time-dynamics among census, arrivals, discharges, and underlying latent

variables. We design a new temporal-based variational family along with customized encoder-

decoder structures for the learning, which provides both efficient representations of the census
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timeseries and generates distributional information for the decision-optimization. Comparing to

general-purpose prediction methods in machine learning area, we integrate domain knowledge

by embedding the patient flow dynamics into the VAE framework. This allows our model to be

interpretable and importantly, provides a doubly-stochastic patient census process structure for

prescribing optimal decisions in the decision-support phase.

• Prescriptive innovation: We formulate a stochastic optimization (SO) program to effectively cap-

ture essential tradeoffs in our nurse deployment program while considering realistic implementa-

tion constraints. To efficiently solve the SO, we develop an innovative solution by transforming

the original large-scale problem into a tractable linear programming (LP) through a quasi-Monte

Carlo method for scenario generation. At the heart of our approach lies a seemingly complex

modeling structure: doubly-stochastic processes driven by multivariate Gaussian (MVG) latent

variables. This structure not only enhances prediction accuracy but also greatly facilitates the

optimization via the feasibility of using a Quasi Monte Carlo method, seamlessly integrating both

prediction and optimization components. This integrated design is not only innovative from a

methodological perspective, but also critical in providing a scalable solution that can be readily

implemented by our partner.

• Implementation: Unlike prior research, which primarily focused on small-scale staffing optimiza-

tion within individual units or hospitals, our work extends beyond those boundaries. We tackle

the complex task of optimizing nurse staffing across an entire state. Implementing decision ana-

lytics at such a large scale in the nursing industry, which has been slow to adopt technology, is a

significant contribution to this industry and the broader society. Delta Coverage decision analyt-

ics offers a transformative solution, enabling nursing organizations to align their staffing needs

with accurate and reliable forecasts and results in a substantial reduction in understaffing. More-

over, the implementation of decision analytics in the traditionally technology-resistant industry

represents a paradigm shift towards a more data-driven and evidence-based approach to manage-

ment. This transition can foster a culture of continuous improvement and innovation, unlocking

untapped potential and enabling informed decision-making. It also has a far-reaching impact

on improving nurse working conditions, enhancing patient outcomes, and especially benefiting

underserved regions that are disproportionately affected by nursing shortages.

2. Generative Modeling to Predict Correlated Hospital Occupancies

To overcome challenges associated with existing time-series forecast such as the lack of distri-

butional information and lack of the flexibility to deal with highly time-varying dynamics and

nonlinear correlations, we build a generative modeling framework. This framework is based on Li

et al. (2023), which developed a novel variational auto-encoding (VAE) method for temporal-based
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generative model learning. We tailor and adapt this framework to our specific hospital census pre-

diction setting. The adaptation captures the dependence structure and the time-dynamics among

census, arrivals, discharges, and sequence of underlying latent variables. We specify this adapted

generative model framework first and then highlight its advantage over existing methods.

2.1. Model Overview

Consider a time-series sequence {Xt, t= 0,1, . . . , T} with the length of T + 1, where Xt ∈ Rk is a

vector that corresponds to the patient census (number of patients) on day t in k hospital units.

We denote this sequence as X0:T . Our goal is to learn the joint distribution p(X0:T ). The hospital

census is driven by the daily number of arrivals At and daily discharges Dt, which are further

driven by some underlying “environmental factors” modeled as latent variables. Take the pandemic

as an example: the latent variables correspond to the disease spread and recovery, which drive the

number of patients that will be hospitalized (arrival) and how long they need to be hospitalized

(discharges). To capture this dependence, we adopt the generative modeling framework. Starting

with X0 = x0, the relationship of Xt, Xt−1, At, Dt can be described recursively as

Xt =Xt−1 +At −Dt + ϵ, t= 1, . . . , T, (1)

where ϵ∼N(0, τ). The sequences of {At} and {Dt} are further driven by the latent sequences {Za
t }

and {Zd
t }, respectively. The dependence between the arrival or discharge sequence and the latent

sequence can be modeled via some stochastic differential equations (SDE). As we elaborate below,

we do not directly learn the arrival or discharges, and thus, we leave the specification of these SDE

to Appendix A. Note that the assumption for the normal distribution of Xt’s is motivated from

the offered-load approximation in queueing networks, which are commonly used to capture the

distribution of customer count (census) in service systems (Green et al. 2007).

Cumulative Difference Learning. A common way to learn the joint distribution of {Xt} via

the generative modeling framework is through step-wise learning, i.e., learning the conditional

distribution Xt|X0:t−1 recursively for each day t. This method faces an issue: the potential accumu-

lation of errors. That is, for each time step ℓ < T , if we have a highly inaccurate estimation for the

census vector Xℓ, it will cause the estimations for all the censuses from ℓ+1 to time T to deviate

significantly from the true values. Because the calculation of census is based on step-wise learning,

i.e., Xt depends on Xt−1. In other words, the errors accumulate over time, and this could lead to

significant deviations from the “truth” for censuses in the distant future.

To overcome this issue, we use a novel cumulative difference learning, specified as follows. First,

we use ∆t =At−Dt to denote the difference between arrival and discharge variables At and Dt (i.e.,

the net changes in Xt’s). Then, we define a new variable that captures the cumulative difference:

Γt =Xt −X0 =
t∑

i=1

∆i =
t∑

i=1

(Ai −Di). (2)
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Here, Γt is the cumulative difference between the census on day t and the initial census X0 = x0.

From (1), the relationship between X0, Xt, and Γt can be characterized as:

Xt =X0 +Γt + ϵt, ϵt ∼N(0, τt), t= 1, . . . , T. (3)

This cumulative difference can be observed by γt = xt −x0 (which includes the noise) in the data,

where we use lowercase letters to denote the realized/observed values. The noise term ϵt capture the

measurement errors, which is assumed to follow a multivariate normal distribution with zero mean

and covariance τt. Note that Xt ∈ Rk is a multi-dimensional vector for the census in k locations,

hence, the covariance matrix τt ∈ Rk×k. The covariance matrix is time-varying as the noise ϵt for

the cumulative difference changes over time.

Following the literature on deep generative models, we assume that the cumulative difference

sequence depends on the sequence of latent variables {Zt} through a set of SDE:

Γ0 =∆0 = a0 − d0,

Γt =Γt−1 + bt(∆t−1)+σtZt, t= 1, . . . , T. (4)

Here, Z0, . . . ,Zk ∼N(0, Id) are i.i.d. standard Gaussian vectors in Rd, with the unknown parameters

to be learned as the drift functions bt(·), the diffusion matrix σt, and the covariance matrix τt. The

equation (4) can be seen as a discrete-time version of the Cox–Ingersoll–Ross process.

VAE Learning Framework. To learn the unknown parameters for the cumulative difference

in (4), we maximize the log-likelihood of joint distribution p(γ1:T ):

log pθ
(
γ1:T

)
= log

∫
pθ
(
γ1:T | z1:T

)
p(z1:T )dz1:T , (5)

where z1:T = (z1, . . . , zT ) denote the sequence of realized latent (prior) variables, sampled from

the prior distribution p(z1:T )∼N(0, Id), γ1:T = {γ1, . . . , γT} is the observed cumulative difference

sequence from data, and θ represents parameters in the conditional distribution for γ1:T |z1:T . The
likelihood function is intractable and hard to be evaluated numerically. We adopt the VAE frame-

work for the learning task. At a high level, VAE optimizes the Evidence Lowerbound (ELBO) as

the surrogate objective, which contains two major components: (i) learn the conditional distribu-

tion pθ(γt|z1:t) via a decoder fθ(·) with parameter θ; (ii) learn qϕ(z1:T |γ1:T ), which is the variational

distribution parameterized with fϕ(·) with parameter ϕ and approximates the true posterior distri-

bution. Part (i) is called the decoder as it decodes the latent variables z1:t to generate γt, while the

variational distribution in part (ii) is called the encoder as it encodes observed γ1:t into the latent

space via the variational distribution qϕ(z1:T |γ1:T ). We design a new temporal-based variational

family along with customized encoder-decoder structures for the VAE. The complete details of

the ELBO, and the design of the encoder and decoders are delegated to Appendix A. Figure 5

characterizes the entire pipeline for the training and generation procedure.
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Figure 5 The overall architecture of DT-VAE with its training and generation procedure. The encoder qϕ encodes

input data to the latent space, while the decoder pθ generates data from both encoder samples during

training and a prior distribution during generation.

2.2. Advantages over Existing Tools and Numerical Performance

Our generative-based prediction model offers several advantages over conventional models. First,

compared to traditional time-series forecast model such as ARIMA, the encoder-decoder structure

provides great flexibility to represent complex functional forms and allows for the easy addition

of useful auxiliary covariates to facilitate predictions, e.g., day-of-week or holiday indicators. In

particular, this flexible design enables the capture of highly nonlinear and complex spatial-temporal

correlations that are difficult to model using conventional statistical methods. This is achieved

through the recursive relationship in (4) and the mapping from Z1:t to Γt (captured via the decoder

fθ), as Γt is correlated with all previous Γ1:t−1 due to its dependence on the latent variables Z1:t,

which also drive the correlations among all locations. See Calatayud et al. (2023) for a similar idea

to capture the spatial-temporal correlations in crime incidents without explicitly using the latent

variables.

Second, by transforming the original census prediction problem into learning the cumulative

difference, our method effectively avoids the error accumulation issue associated with recursive

prediction that is commonly by time-series generative model, including many state-of-art models

such as TimeGAN (Yoon et al. 2019). Since Γt represents cumulative differences, it only requires

the initial value X0 for predicting (reconstructing) Xt, in contrast to the recursive reconstruction

method used in step-wise learning. In other words, the mapping directly connects Z1:t to all Γ1:t’s

at once. Any bias present in the reconstructed Γt−1 will not impact Γt since it is solely determined

by the latent variables. See Figure 6 for a comparison with benchmark algorithms, which shows the

advantage of our algorithm in addressing these issues. Moreover, we essentially achieve a conditional

independence among the census conditioning on the latent variables. This will further play a crucial

role in facilitating the prescriptive (decision optimization) part, which will be discussed in Section 4.
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Figure 6 t-SNE visualization: Our algorithm (a), Naive time-series VAE (b), and TimeGAN (c) for census gener-

ation in a hospital’s Med/Surg and ICU units. Red denotes original data, blue denotes generated data.

Better mixing of the dots indicates higher quality generated data.

3. Stochastic Optimization for Network Decision Making

We built a two-stage stochastic optimization (SO) that takes the forecast as input and generates

on-call and deployment decisions over a three-week horizon, implemented in a “closed loop” rolling-

horizon manner. At the beginning of each week, based on a 21-day forecast, this SO prescribes the

weekly schedule on how many nurses to put on call for potential deployment 1-2 weeks in advance

(Step 1 of the DSS). Then, at the beginning of each day, based on the realized census and updated

forecast for the rest of the week, we re-solve the SO and use the first-day decision to determine the

actual deployments on the current day (Step 2 of the DSS).

The primary objective is to reduce system-wide understaffing without being too disruptive to

nurse’s lives through excessive or unreasonable travel schedules. We denote the on-call decision as

a= {aij
t }, where each aij

t is the number of DC nurses to put on-call for a future transfer from unit

i to unit j on day t. Similarly, we denote the recourse call-in decision as b= {bijt }, which is made

after seeing the realization of the census sample path X= {X i
t}. The recourse decision corresponds

to either activates the transfer of an on-call nurse or cancels the transfer. The transferred nurse

is committed to work on multiple shifts at unit j for a length of Sij days, referred to as the

secondment. The secondment is an important design feature that avoids nurses having to travel

two long-distance legs in addition to working a 12-hour shift and ensures continuity of care.

To capture multiple tradeoffs that are used as program design parameters determining features

like the efficacy for the system and attractiveness to DC nurses, we consider the following costs.

Nurse shortage is captured via the understaffing cost. The cost associated with the transfer decision

a comes from two parts: (i) the fixed cost that compensates for the transfer, cijt , which depends on

the transfer distance, and (ii) the variable cost that compensates for the length of the secondment

cpS
ij. If a transfer is cancelled during recourse, we recoup 1− η percent of the transfer cost. We
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set the unit understaffing cost to be 1, and normalize other costs. These costs are not necessarily

the actual financial costs (e.g., of premium pay), but rather tuning parameters. During program

design we adjusted these costs to achieve desired system performance (see more in Section 5).

Mathematically, the objective is

min
a

T∑
t=1

k∑
i=1

k∑
j=1

(cijt + cpS
ij)aij

t +EX [V (a,b,X)] , (6)

V (a,b,X) =min
b

T∑
t=1

k∑
i=1

[(
X i

t − n̄i
t

)+ − (1− η)(cijt + cpS
ij)
(
aij
t − bijt

)+]
, (7)

subjected to

k∑
j=1

aij
t ≤ dit −

k∑
j=1

t−1∑
ℓ=(t−Sij+1,1)+

aij
ℓ ,

k∑
j=1

bijt ≤
k∑

j=1

aij
t , ∀i, t, (8)

where dit is the number of available DC nurses with home location i on day t, and n̄i
t is the number

of nurses available at location i on day t after considering the actual deployment (recourse decision)

and secondment to the number of scheduled regular nurses ni
t:

n̄i
t = ni

t −
k∑

j=1

t∑
ℓ=t−Sij

bijℓ +
k∑

j=1

t∑
ℓ=t−Sji

bjiℓ . (9)

Note that the nurse demand and the patient census are not equal, as the former is adjusted

based on the patient-nurse ratio, e.g., one nurse is required for taking care of two patients in ICU or

four patients in Med/Surg units. For notational simplicity, we use the same X to denote the nurse

demand and the patient census throughout the paper. For brevity, we do not specify the full set

of constraints that are employed in the implementation, particularly during the actual deployment

stage. During the iterative design process, we utilized additional constraints and parameter tuning

to capture design specifications, such as: (1) limiting the fraction of time that a nurse is put on-call

but not called in, (2) limiting the average daily volume of nurses working remote shifts, (3) ensuring

that nurses do not take two travel assignments in a row without working in their home hospital

in between, and (4) ensuring equitable use of Delta Coverage deployments to avoid perceived (or

real) favoritism for certain hospitals.

4. Integration of Predictive and Prescriptive Components

The most difficult part in the objective function (6) is the expectation EX [V (a,b,X)]. To evaluate

this expectation, a common approach is to use sample-average method. In our setting, the sampling-

based optimization should fully account for the generative modeling structure used in the forecast

part as specified in Section 2. That is, instead of directly sampling the census sequence X’s as in
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conventional settings, we first sample the latent sequence Z’s from multivariate standard Gaussian

distribution. Then, conditional on each sampled latent sequence z = z1:T , we obtain the mean and

covariance for X|z via the decoder and sample accordingly.

Recall that a benefit of our generative predictive framework is that we achieve a conditional

decomposition both temporally and spatially since the spatial-temporal correlations are captured

via the decoder fθ. Specifically, conditional on a sampled (realized) sequence z1:T , the mean for the

census in unit i on day t is µi
t,θ, and the variance is σi

t,θ. For a given initial census X0 = x0, each

X i
t can be characterized as

X i
t ∼
(
x0 +µi

t,θ(z1:t)
)
+σi

t,θ(z1:t) ·N(0,1), t= 1, . . . , T, i= 1, . . . , k,

where N(0,1) is a standard normal r.v.. In other words, X i
t is a doubly-stochastic r.v. that depends

on the latent variables z1:t and ζi,t ∼N(0,1). For the doubly-stochastic r.v., sample-average methods

require two loops to obtain the samples, where the outer loop is to sample the latent variables

and the inner loop is to sample the normal r.v. ζi,t’s. In the following, we let ζ = {ζi,t} for the set

of i.i.d normal r.v.’s for each station i and each day t, used in conjunction with z1:t to create the

doubly-stochastic distribution of X i
t . Let z

m
1:t be the mth sample of the latent sequence, and ζℓ be

the ℓth set of sampled r.v.’s.

In the interest of space, we focus on writing the calculation of the under-staffing part in

EX [V (a,b,X)]. We define ym,ℓ
i,t as the auxiliary variable that approximates the value of the under-

staffing function in unit i on day t given the mth sample zm1:t and the ℓth sample ζℓ:

EX

[
T∑

t=1

k∑
i=1

(X i
t − n̄i

t)
+

]
≈ 1

M ·L

M∑
m=1

L∑
ℓ=1

T∑
t=1

k∑
i=1

ym,ℓ
i,t , (10)

s.t.

ym,ℓ
i,t ≥

(
x0 +µi

t,θ(z
m
1:t)
)
+σi

t,θ(z
m
1:t) · ζℓi,t − n̄i

t, ∀i, t, ℓ,m, (11)

ym,ℓ
i,t ≥ 0, ∀i, t, ℓ,m. (12)

Here, for ease of exposition, we suppress the dependence of n̄i
t on the recourse decision, which can

reduce the understaffing through the minimization in V (a,b,X); see (6) and (9).

Efficient Sampling. For both the inner and outer loops, we need to sample from a multivariate

standard Gaussian distribution (for z1:T and ζ, respectively) to evaluate the sample average in (10).

The benefit is that there is no correlation among these Gaussian r.v.’s (as opposed to directly

sampling from {X i
t}’s), thus, we can sample each coordinate independently. The disadvantage is

that the dimension is still high (e.g., z1:T has 21 dimensions when we plan for three weeks out with

T = 21). Conventional Monte Carlo method is a viable approach for high-dimensional space but
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suffers from larger variance, requiring a large number of samples to achieve accurate evaluation

of the sample average. This imposes a great computational challenge for our healthcare partners

as the open-source optimization solver cannot handle a large number of samples. To address this

issue, we leverage the Quasi Monte Carlo method (QMC), which is known to reduce variance in

sampling: it can improve the rate of convergence from O(1/
√
M) in conventional MC method to

O(1/M) in QMC, where M is the number of samples (Caflisch 1998). This means a much smaller

number of samples is required to achieve similar level of accuracy.

Specifically, we use a variant of the Latin Hypercube Sampling (LHS) (Owen 1998). For a desired

number of M samples, we first divide the real line for each coordinate (a univariate Gaussian) into

a few adjacent intervals defined via I = {I1, . . . ,IM}, i.e., a set of M disjoint partitions of R. For

m= 1, . . . ,M ,
∫
Im

ϕ(x)dx is the integral of the density in each partition Im with ϕ(x) being the pdf

of the standard Gaussian. We choose the partition such that each
∫
Im

ϕ(x)dx= 1/M is equal, and

we set a “representative value” um for partition m using the middle point of Im. Finally, we follow

the LHS method to create M samples, i.e., we create T independent and random permutations

of the vector u = {u1, . . . , uM} and match the value from each of the T coordinates to have M

sampled vectors of T dimensions, {zm1:T}Mm=1. We create the samples {ζℓ}Lℓ=1 in a similar way.

Notably, even though our method still requires sampling from a high-dimensional space, the QMC

method allows us to sample efficiently regardless of the dimensions, reducing sampling variance

and the number of samples needed. This is equivalent to adding carefully chosen cuts to the LP,

as opposed to relying on purely random-generated cuts from the MC method (traditional sample

average method), to achieve more accurate approximation in (10) and speedup the solution. The

feasibility of using the LHS method benefits greatly from the multivariate Gaussian distribution,

as it allows for an explicit form of the pdf and independent sampling for each dimension. This

advantage would not be possible if working directly with the census variable, given the complexity

of the joint pdf and the correlations. In addition, the sample is from the multivariate standard

Gaussian (instead of the census variable), which can be re-used to avoid re-sampling from X when

the forecast is updated and optimization is re-solved each day (Step 2 in the DSS). The mapping

from Z to X is an exogenous input that can be trained offline (e.g., on better computational

platform) and loaded as a matrix to the LP with warm start techniques to significantly increase

solution speeds.

In summary, we transform a large-scale SO problem into a tractable LP using QMC. The seem-

ingly complex generative framework actually enhances both prediction and prescription capabili-

ties. This integration highlights the significance of the generative framework, while also providing

a portable solution for our partner’s real-world implementation needs.
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5. Implementation of Delta Coverage and Practical Challenges

In this section, we outline our tiered implementation process and discuss the challenges encountered

when deploying an analytics-based solution in a healthcare environment, which may also apply to

other researchers in similar endeavors.

5.1. Implementation

Our co-developed Delta Coverage Analytics Suite, launched in Oct 2021 as a Microsoft Power

BI application, underwent three phases of implementation. In the first phase of implementation,

we logged the performance of the recommendations from October 2021 to March 2022, with the

tool running each day in real time to provide proof of value as well as strategic insights for pro-

gram adoption. Our analysis revealed system-wide improvements across all metrics, including a

5% reduction in understaffing and a 1% reduction in overstaffing. In the second phase, we collab-

orated closely with the management team to iteratively design and enhance feasible deployment

regions. This involved crafting appropriate incentive mechanisms to encourage nurse participation

and using the model to optimize program logistics in response to valuable feedback from nursing

leadership at individual hospitals and prospective nurses; see more details of the implementation

process in Section 5. In the third phase, the pilot was approved and officially launched in May 2023

with 10 Delta Coverage nurses and 6 participating hospitals.

Performance Log. We built a system that automatically logs all data pulled for input into the

optimization and forecast models as well as the outputs of those models. This log is updated each

time the DC dashboard is run since some of the data cannot be collected after the fact; e.g., data

that comes from central data warehouses can get overwritten with newer data. This log has allowed

us to detect changes in the enterprise data systems that could affect our model inputs, validate

forecast accuracy, and monitor the value of the program to the nursing organization.

Tiered Implementation. Due to the novelty of the program we had no benchmark examples of

implementing such a program. To mitigate potential risks, we executed a tiered implementation

with report-outs to gain buy-in from upper-level management after each phase.

Pre-implementation: Historical Counterfactual. Before implementation, we conducted a counter-

factual analysis using 2 months of historical data and estimated a 4% reduction in understaffing

by implementing the optimal recommendations (we did not measure overstaffing). This “low-cost”

testing of the analytics suite was crucial in gaining management buy-in, as it demystified the

“blackbox” DSS and showcased the power of OR analytics. This was especially valuable given

previous experiences with consulting companies that provided opaque solutions lacking actionable

information.

Phase 1: Live-test Run. Based on the promising results, we launched Phase 1, building a PowerBI

Dashboard and integrating it with IUH data warehouses and the analytics suite. Over the next 5
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months, we field-tested the system live, running it daily to estimate the FTEs needed for support

and maintenance. The results showed a 5% reduction in understaffing and a 1% reduction in

overstaffing. These outcomes, along with strong advocacy from nursing organization leadership,

convinced broader executive leadership to support a pilot.

Phase 2: Iterative Design Improvement. A critical factor in the success of our iterative design

process was the ability to use our stochastic optimization and census forecast model to instantly

project the impact of different design decisions. The optimization also has tuning parameters that

can ensure the program is operationalized to meet target specifications.

Phase 3: Pilot Program. We began by identifying a group of hospitals to participate in the pilot

through discussions with all of IU Health’s Chief Nursing Officers (CNOs). Subsequently, we sought

feedback from the CNOs of the participating hospitals and iterated multiple times to design a

program that would be conducive to adoption. The recruitment process for the DC nurse pool was

a crucial aspect of the pilot program, requiring considerable effort to attract highly skilled and

location-flexible nurses. These nurses not only needed to be willing to travel but also had to be

able to work in multiple clinical settings, transcending single specialties, acuity levels, or units.

Several program specification redesigns were necessary to achieve the recruitment target, and by

the program’s launch on May 1, 2023, we successfully recruited 10 DC nurses both internally and

externally to IUH. The reasons behind the delay between the prototype and launch, along with

other practical challenges, are described in the next section.

5.2. Practical Challenges and Lessons Learned

Nursing Crisis. The greatest challenge to the Delta Coverage program was, ironically, the primary

impetus for the program itself: the nursing shortage crisis. By October 2021, we had a fully-

functional prototype of the DC Dashboard which we completed testing in April 2022. However,

the pilot launch was delayed until May 2023 due to the unprecedented severity and duration of

the nursing shortage crisis in Indiana. During this period, the National Guard had to be called in

multiple times to support hospital staffing across the state.

While the delay in the pilot launch seemed ironic, it is crucial to recognize that the crisis

highlighted the urgent need for innovative solutions like the Delta Coverage program. The gap

between the prototype development and the pilot launch provided the opportunity for the academic

team to refine and strengthen the supporting analytics theory. Additionally, the DC analytics suite

proved its value during the crisis, providing critical insights and support to IUH in managing the

nursing shortage at their hospitals. This demonstrated the suite’s versatility and effectiveness, even

in addressing challenges beyond the DC program’s original scope.

Despite the challenges posed by the nursing shortage crisis, the collaboration between the aca-

demic team and IUH remained strong. The continuous communication and development efforts
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allowed us to further enhance the DC program’s capabilities and ensure its readiness for the pilot.

The experience gained during the crisis response has enriched our understanding of the health-

care environment and reaffirmed the value and potential impact of the Delta Coverage program in

effectively managing nurse shortages in the future. In January 2023, the team decided to restart

planning for the pilot launch, focusing on two major milestones: relaunching and retesting the

analytics suite, and recruiting nurses for the Delta Coverage program.

DC Analytics Suite. When we began the relaunch, we encountered several changes in the

underlying data systems, including modifications to enterprise data systems that impacted our data

pipeline, acuity reclassification in different units, and the second-largest hospital at IUH that had

not yet been reintegrated into the central data warehouse after relocating to a new building. Despite

identifying and addressing these issues, the forecast and optimization continued to perform well

after a year of dormancy. Another significant data challenge we faced, common to many hospitals

developing data-driven operational analytics, was that hospital data is primarily designed for billing

and finance. This required us to implement major workarounds to ensure accurate operational

conclusions. For example, we had to use patient location data (the location where the patient is

billed) to construct hospital occupancy data. However, we discovered a double counting issue with

numerous patients, where they were mistakenly counted in two places due to the inpatient bed

being held for the patient while they were in surgery or a recovery room. Our team addressed

these challenges through advanced planning, anticipating future changes (e.g., hospital moves),

and incorporating an automated change detection mechanism.

Recruitment. As mentioned, one of the major challenges and milestones was recruiting nurses

for this novel job description. This involved both ingenuity and due diligence from the nursing orga-

nization management as well as scenario testing and operational design using the analytics engine.

Despite the well-planned and well-executed iterative design process, we were unable to recruit a

sufficient number of qualified nurses on our first attempt. In the subsequent redesign we were able

to use the tunable model hyper-parameters to include additional desirable features mentioned by

the different nursing teams through a second iterative process. This involved identifying different

design specifications that would make the program more attractive to DC nurses and features that

ensured fairness among hospitals and among DC nurses. Another feedback mechanism was infor-

mation sessions for DC eligible nurses. Other design changes tested in the analytics suite include

partitioning the network into smaller travel zones (or pods) each with its own set of DC nurses,

enforcing limits on the probabilities that a nurse would be deployed from the on-call list, adjusting

length of travel secondments (how many shifts a Delta Coverage nurse works at a remote location),

limiting the fraction of shifts that a DC nurse works at a remote hospital, and ensuring the fraction

of DC shifts allocated to each participating hospital was fair among others. The second wave of
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recruitment proved to be a success, thanks to the implementation of design changes tested in the

analytics suite.

6. Conclusion

The state-wide Delta Coverage Program, a collaborative effort between academia and industry,

represents a groundbreaking solution for addressing nurse staffing challenges. With its integrated

predictive-prescriptive framework, the Delta Coverage Analytics Suite provides real-time distri-

butional nurse demand forecasts and dynamic deployment decisions, resulting in reduced under-

staffing, optimized resource utilization, and improved nurse job satisfaction and patient care qual-

ity. The successful pilot phase showcased significant reductions in understaffing and overstaffing,

demonstrating its potential for long-term impact in mitigating nurse shortages and burnout, espe-

cially in underserved regions. This pioneering program offers a sustainable solution to address the

multifaceted challenges of nurse staffing, burnout, and healthcare disparities, fostering a nurtur-

ing environment for nurses and strategically allocating resources. The program’s positive impact

extends beyond immediate staffing concerns, leaving a lasting impression on the well-being of the

nursing workforce and the communities they serve.
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Appendix A: More Details on Generative Model

A.1. SDE for Modeling Generative Dependence Structure

Motivated by the stochastic SIR model Allen (2008, 2017), we assume that the arrivals At and discharges

Dt follow

A0 = a0; D0 = d0;

At = At−1 + ba(At−1)+σaZ
a
t , t= 1, . . . , T (13)

Dt = Dt−1 + bd(Dt−1)+σdZ
d
t , t= 1, . . . , T (14)

where the sequences of latent variables Za
1 , . . . ,Z

a
T ∼iid N (0, Ik) and Zd

1 , . . . ,Z
d
T ∼iid N (0, Ik) are all i.i.d.

standard Gaussian vectors in Rk and drive the arrival and discharge processes. Equations (13) and (14)

can be seen as the discretized version of the original stochastic differential equations for the stochastic SIR

model, with ba(·) and bd(·) as the (unknown) drift functions and σaZ
a
t and σdZ

d
t as the (unknown) diffusion

terms.

A.2. VAE Learning Framework

Instead of directly evaluating the likelihood function pθ(γ1:T ) given in (5), VAE optimizes the Evidence

Lowerbound (ELBO) as the surrogate objective, derived as below in our setting:

log pθ

(
γ1:T

)
= log

∫
pθ

(
γ1:T , z1:T

)
dz1:T

= log

∫
pθ

(
γ1:T , z1:T

)qϕ(z1:T | γ1:T
)

qϕ
(
z1:T | γ1:T

)dz1:T
≥Ez1:T∼qϕ

[
log

(
pθ(γ1:T , z1:T )

qϕ(z1:T |γ1:T )

)]
=Ez1:T∼qϕ

[
log

(∏T

t=1 p(γt|z1:t))p(zt|z1:t−1)∏T

t=1 qϕ(zt|z1:t−1, γ1:t)

)]

=

T∑
t=1

Ez1:t log p
(
γt|z1:t

)
−Ez1:t−1

DKL

(
qϕ(zt|z1:t−1, γ1:t)||N(0, I)

)
=L(γ1:T ).

(15)

Recall that the key for VAE evaluation lies in two parts. The first part is to learn the conditional distribution

pθ(γt|z1:t) via a decoder fθ(·) with parameter θ. It is called the decoder as it decodes the latent variables

z1:t to generate γt. The second part is to learn qϕ(z1:T |γ1:T ), which is the variational distribution with

parameter ϕ that approximates the true posterior distribution. This variational distribution is called the

encoder, parameterized with fϕ(·) with parameter ϕ. It encodes observed γ1:t into the latent space via the

variational distribution qϕ(z1:T |γ1:T ). In implementation, we use an additional hyperparameter λ> 0 in front

of the KL term to further balance the two parts in ELBO.

In the rest of this section, we will use fθ(z1:t) and pθ(γt|z1:t) interchangeably and use zprior to denote

samples from the prior distribution; we will use fϕ(γ1:t) and pϕ(z1:t|γ1:t) interchangeably, and zpost to denote

samples from the posterior distribution.
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Decoder. A key step in deriving the ELBO in (15), particularly from line 3 to line 4, is via the following

decomposition

pθ(γ1:T , z1:T ) = pθ(γ1:T |z1:T )p(z1:T )

=
( T∏

t=1

pθ(γt|z1:t)
)
p(z1:T ) =

T∏
t=1

pθ(γt|z1:t)
T∏

t=1

p(zt|z1:t−1),
(16)

where p(zt|z1:t−1) denotes the conditional prior distribution for latent variables zt. We make an important

assumption here for the conditional distribution pθ(γ1:T |z1:T ) and prior distribution p(z1:T ). As discussed, in

the cumulative difference learning setup, each γt depends on latent variables z1:t to avoid error accumulation.

This essentially makes γt to be conditionally independent across different time steps given realized latent

variables z1:t. That is, for any two time steps w ̸= v ≤ T , the cumulative difference variable (γw|z1:w) ⊥

(γv|z1:v) are independent conditional on corresponding latent variables. This assumption is crucial, allowing

the transformation from pθ(γ1:T |z1:T ) to the product form
∏T

t=1 pθ(γt|z1:t).

Following the VAE literature, we assume the conditional distribution pθ(γt|z1:t) ∼ N(µt,θ, σt,θ), i.e., a

multivariate Gaussian distribution with mean µt,θ and diagonal covariance matrix σt,θ for time t. This is

a reasonable assumption in our setting as the difference in census can be both positive or negative (in

contrast to that arrivals or departures have to be positive). Under the Gaussian assumption, the decoder

fθ is represented by the mean and covariance matrix, denoted as fθ = {(µt,θ, σt,θ)}t, with the subscript t

highlighting the time-dependency. For the prior distribution, we assume they are independent Gaussian,

namely, p(zt|z1:t−1)∼N(0, I) with I ∈Rd×d being the identity matrix. Though the priors are assumed to be

independent, the decoder fθ allows us to capture the underlying complex correlations.

Encoder. We factor the variational distribution qϕ(z1:T |Γ1:T ) as

qϕ(z1:T |γ1:T ) =
T∏

t=1

qϕ(zt|z1:t−1, γ1:t). (17)

During the training stage, we will sample zpost
t from the posterior distribution qϕ(zt|z1:t−1, γ1:t) and let

the decoder reconstruct the observed γt’s. The sampling is recursive as we need to conditional on sampled

variables zpost
1:t−1 and observed γ1:t when sampling for time t. Following the VAE literature, we assume that

variational distribution qϕ(zt|z1:t−1, γ1:t)∼N(µt,ϕ, σt,ϕ), i.e., a multivariate Gaussian distribution with mean

µt,ϕ and diagonal covariance matrix σt,ϕ. Under this Gaussian assumption, the encoder fϕ is represented

by the mean and covariance matrix, denoted as fϕ = {(µt,ϕ, σt,ϕ)}t, with the subscript t highlighting the

time-dependency.

A.3. Encoder and Decoder Design

In this section, we specify the encoder and decoder designs via recurrent neural networks.

Decoder design. For the generative process, DT-VAE uses a decoder fθ(·) with parameter θ to decode

latent variables z1:t to generate γt. In other words, the decoder fθ(·) learns the conditional distribution
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pθ(γt|z1:t). A key step in deriving the ELBO in (15), particularly from line 3 to line 4, is via the following

decomposition for pθ(γ1:T , z1:T ):

pθ(γ1:T , z1:T ) = pθ(γ1:T |z1:T )p(z1:T )

=
( T∏

t=1

pθ(γt|z1:t)
)
p(z1:T )

=

T∏
t=1

pθ(γt|z1:t)
T∏

t=1

p(zt|z1:t−1),

(18)

where pθ(γt|z1:t) denotes the approximation of the true conditional distribution p(γt|z1:t) and p(zt|z1:t−1)

denotes the conditional prior distribution for latent variables zt.

From (18), we make an important assumption on the conditional distribution pθ(γ1:T |z1:T ) and prior

distribution p(z1:T ). As previously mentioned, for each γt, it solely depends on latent variables z1:t to avoid

error accumulation. This essentially makes γt to be conditionally independent across different time steps

given the latent variables zprior
1:t . That is, for any two time steps w ̸= v ≤ T , the cumulative difference

variable (γw|z1:w)⊥ (γv|z1:v) are independent conditional on corresponding latent variables. This assumption

is crucial, allowing the transformation from pθ(γ1:T |z1:T ) to the product form
∏T

t=1 pθ(γt|z1:t).
Following the VAE literature, we assume the conditional distribution pθ(γt|z1:t) ∼ N(µt,θ, σt,θ), i.e., a

Gaussian distribution with a diagonal covariance matrix. This also makes sense in our application as the

difference in census can be both positive or negative (in contrast to that arrivals or departures have to be

positive). Also note that σt,θ is time-varying as from (3). For the prior distribution, we assume they are

independent Gaussian, namely, p(zt|z1:t) ∼ N(0, I). Though zprior
t ’s are independent, the decoder fθ still

allows us to capture the underlying correlation via the relationship between γt and zprior
1:t . Specifically, we

design the decoder via a recurrent network fθ1 , enclosing all time steps information zprior
1:t recursively, with

a feedforward network fθ2 , further transforming the input to µt,θ and σt,θ, i.e.,

ht,θ1 = fθ1(ht−1,θ1 , zt) (µt,θ, σt,θ) = fθ2(ht) (19)

where ht,θ1 is the hidden state in the RNN structure fθ1 .

Encoder design. Next, we will describe the posterior distribution, also known as the encoder. DT-VAE

learns an encoder fϕ(·) with parameter ϕ to encode observed γ1:t into the variational (posterior) distribution

qϕ(z1:T |γ1:T ). We factor the posterior distribution qϕ(z1:T |Γ1:T ) as

qϕ(z1:T |γ1:T ) =
T∏

t=1

qϕ(zt|z1:t−1, γ1:t) (20)

During the training stage, we will sample zpost
t from the posterior distribution qϕ(zt|z1:t−1, γ1:t) and let the

decoder reconstruct the observed γt’s. For samples from posterior distribution, at each t, we sample zpost
t

from the distribution conditioned on the historical posterior variables zpost
1:t−1 and all observed γ1:t.

Following the VAE literature, we assume that variational distribution qϕ(zt|z1:t−1, γ1:t)∼N(µt,ϕ, σt,ϕ), i.e.,

a Gaussian distribution with a diagonal covariance matrix, where the µt,ϕ and σt,ϕ are learned using the

encoder fϕ. To capture that the historical information relies on both zpost’s and γ’s, we decompose fϕ into

three functions with parameters ϕ1, ϕ2 and ϕ3:

ht,ϕ1
= fϕ1

(ht−1,ϕ1
, γt)

µt,ϕ = fϕ2
(ht,ϕ1

, µt−1,ϕ)
σt,ϕ = fϕ3

(ht,ϕ1
, σt−1,ϕ)

(21)
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where ht,ϕ1
is the hidden state in RNN structure fϕ1

. For each time step, ht,ϕ1
encodes the all observed γ1:t.

The RNN structure fϕ2
will output the mean of posterior distribution µt,ϕ by utilizing the ht,ϕ1

and previous

µt−1,ϕ. Therefore, for each time step, the current mean µt,ϕ contains information of previous means µ1:t−1,ϕ,

which resembles the conditional structure in qϕ(zt|z1:t−1, γ1:t) from (20). Similarly, the RNN structure fϕ3

outputs σt,q by utilizing ht,ϕ1
and σt−1,ϕ that contain prior information of γ1:t and zpost

1:t−1. It is noteworthy

that the recursive design is guided by our mathematical results, which turn out to be critical. We tried other

heuristic designs without properly using the prior information as suggested by the theoretical form and they

failed to learn, which highlights the importance of theoretical justification.

Appendix B: Prediction Performance Evaluation

We demonstrate the advantage of our method (the generative modeling structure and cumulative difference

learning) over traditional statistical methods such as AR model. Our evaluation platform is a semi-synthetic

hospital census dataset created from a simulation model, which is calibrated with real data from a partner

hospital. Specifically, the daily arrivals a(t) follow the discretized Cox–Ingersoll–Ross(CIR) process Cox

et al. (2005) with the drift function depending on the day-of-week, and the daily discharges d(t) come

from simulating patients movements within hospital units. All the parameters to simulate the arrival and

discharges are calculated empirically using real data. We provide an overview of the CIR model, a description

of the real dataset, and details of the semi-synthetic generation in the rest of this section.

B.1. Cox–Ingersoll–Ross model

In generating the arrival process, we assume the arrival rates on different days are random and follow the

CIR process. The standard CIR process can be characterized by the following SDE:

dr(t) = α(µ− r(t))dt+σ
√
r(t)dW (t) (22)

where Wt is the Wiener process, µ represents the long-term mean, α represents the speed of the adjustment

to the long-term mean, and σ represents the variation of the process. Note that the drift function, α(µ−r(t)),

in the standard CIR process is time-stationary. However, the real data shows the hospital arrivals exhibit a

strong day-of-week pattern. We describe how we modify the standard CIR process to have a time-varying

drift function in Section B.3.

To simulate arrivals from the CIR model, one common approach is through the Euler–Maruyama method,

which provides an approximated numerical solution:

r(t) =max
(
r(t− 1)+α(µ− r(t− 1))∆t+σ

√
|r(t− 1)|

√
∆tzt,0

)
, (23)

where the process uses max(·,0) to ensure that there are no negative values appearing during the approxi-

mation, which is one of the properties in the CIR model.

B.2. Description of the real dataset from paterner hospital

The real dataset comes from a partner hospital in the state of Indiana. The dataset contains patient-level

movement history between different units in the hospital. The data spans from 2020 to 2021. The units can

be categorized into two types: Medical/Surgical units (non-ICU units) and ICU units. For each patient, the



Author: Delta Coverage Implementation
Article submitted to INFORMS Journal on Applied Analytics; manuscript no. 0000 27

data contains timestamps on their arrival time to each unit, the transfer-in/out times between units, and

the discharge time from the hospital. With these time stamps, we can estimate the empirical daily arrival

rates for the two types of units and the length-of-stay distributions in each type of unit.

We use the following notations for these estimated quantities. For each day ahos,t =
∑

u au,t denotes the

total arrival rate on the day t and au,t the arrival rate to units u, where u ∈ U = {nonICU, ICU} denotes

one of the two types of units. Assuming we have T = 7n days in total with n samples for each day-of-week,

then

• mean of arrival rate by day-of-week : {µ1, . . . , µ7}, where µi = 1/n
∑n

w=0(ahos,i+7w);

• standard deviation for arrival rate by day-of-week : σi = 1/n
∑n

w=0(ahos,i+7w −µi);

• routing probability : pu = 1/T
∑T

t=1
au,t

ahos,t
for each u;

• LOS distribution: pdis
u,s =

Xu,s

Xu
;

where Xu,s denotes the number of patients stayed in unit category u for s days and Xu denotes the total

number of patients stayed in this unit category. For the LOS distribution, we further assume that the

maximum LOS is 4 days (validated by the data as the proportion of patients staying longer than 4 days is

small). With these parameters estimated empirically from the real dataset, we then use them to generate

semi-synthetic data as described in Section B.3.

B.3. Semi-synthetic data generation

Algorithm 1 Semi-synthetic Data Generation

Generate Arrivals: First, we generate the arrivals by the numerical CIR process with the parameters

{µ1, . . . , µ7} depending on the day-of-week,

a(t) =max
(
a(t− 1)+αt

(
µt%7 − a(t− 1)

)
∆t+σt%7

√
|a(t− 1)|

√
∆tzt,0

)
Assign Arrivals to Units: Here we have two units as U ∈ {MS,ICU}:

au(t) =Bionomial(a(t), pu), for u∈ {nonICU, ICU}

Generate Discharges: Then, we can generate the number of discharges in the 4 future days according

to the length of stay probability table:

d̃u(t+ i) =Multinomial(au(t), p
dis
u,i), for i∈ {0,1, . . . ,4}

du(t) =

j∑
j=t−4

d̃u(j)

Generate Census: Since we have generated each day’s arrivals and discharges, we can generate our

census:

xu(t) = xu(t− 1)+ au(t)− du(t)
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Algorithm 1 describes the procedure of generating the semi-synthetic data. Note that to capture the day-of-

week pattern in the arrival rates, we modify the standard CIR process to have a time-varying drift function,

where µi follows a periodic pattern with one week (7 days) as the period. Correspondingly, we need to adjust

the mean reversion factor αt to be time-varying through a weekly update scheme, e.g., α1, . . . , α7 = 0.1 and

α8, . . . , α14 = 0.2. We let αt gradually increase to one during the first five weeks to capture the transient

effect. The primary benefit of this semi-synthetic generation via Algorithm 1 is that it allows us to calculate

the “ground truth” parameters. For example, the expected number of arrivals, discharges, daily census,

etc. With these calculated numbers, we could compare them with corresponding results estimated from the

generative models for evaluation.

Appendix C: Enlarged Figure for Delta Coverage Network DesignPilot Phase 2: May 2023
Pilot pilot live on May 1, 2023 

Starting with 6 hospitals split into 
pods of 3 hospitals

Recruiting: 10 positions filled

Demonstration of feasibility and 
value

18
0 

m
ile

s

80 miles

Pod 1

Pod 3

Pod 2

Figure 7 Final network configuration for the Delta Coverage program. Small yellow circles are participating

hospitals. The larger non-yellow circles are the pods of hospitals, each with their own Delta Coverage

team. A Delta Coverage team only floats within their own pod.
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Appendix D: Delta Coverage Dashboard Functionality and Features

In this section, we describe the Delta Coverage Dashboard and how it supports on-call and deployment

decision making in a variety of ways.

Dashboard Functionality and Usage. Once or twice a day, non-DC staffing data for the next 21

days is pulled from the Kronos time-keeping database and from a separate DC staffing database. The latter

was manually curated in order for the DC program’s implementation team to have more control over the

datastream as the program was being rolled out. We also pull patient location data from the enterprise

data warehouse which provides information about individual patient movement for the last 30 days. The

movement data contains the location of each patient on each hour of the day. The granular patient location

is then sent through a data-pipeline where it is cleaned of (significant) data-errors and converted into daily

patient arrival rates (emergency department or elective admission), discharge rates, and occupancy acuity

level (M/S, PCU, ICU) at each hospital. The data is gathered separately for day vs night shift, with day

shift data coming from 11AM and night shift data coming from 11PM.

Once the data passes through the pipeline, it is fed into the prediction model that can generate census

sample paths to input into the stochastic optimization model. The optimization is the run using a warm-

start approach where the algorithm uses the previous day’s optimization solutions to most efficiently use the

computational power allocated to the pilot. The on-call and deployment decisions along with the current

staffing plan and expected nurse demand at each hospital are written to a platform-agnostic csv file. The

output data-file is then read into a user interface that the Delta Coverage design-team created to inform

Delta Coverage scheduling and deployment decisions shown in Figure 8. The left panel of the figure allows

the user to display different views of the data in graphical form (e.g., bottom right panel that plots the

nurse demand vs the staffing) or table form by allowing the user to filter the table based on the selected

criteria. The user can select day or night shift (upper left panel), any subset of hospitals (one panel down),

deployment group that denotes which set of DC nurses being considered for transfer.

The DC nurse manager deploys DC nurses scheduled for the current day based the optimization model’s

deployment (recourse) decisions that are fed into the Delta Coverage Dashboard. Once a week, the DC

manager informs the DC nurses of their planned work location (on-call location) based on the optimal on-call

decisions coming from the most recent run of the full optimization model.

Dashboard Visualization Features.One of the key features of the Delta Coverage Analytics application

that both supports user decision making, design for adoptability, and the change management process is a

suite of visualizations to help users understand the impact of the nurse deployment actions on the broader

system. The visualizations allow for

(i) Heatmaps detailing the level of understaffing at all the different hospitals before and after the deploy-

ment decisions;

(ii) Graphs of the past and forecasted occupancies and the nursing staff utilization before and after deploy-

ment decisions;.

These features are integral to the Delta Coverage decision and execution process as they allow
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Figure 8 Full view of Delta Coverage Dashboard front page.

(i) Users to test what if scenarios and get immediate feedback on how changing the optimal recommenda-

tions would impact the system

(ii) Management to provide evidence to the individual hospitals of WHY the decisions are being made and

how the decisions increase the fairness in the system.

As an example, the bottom right panel of Figure 8 displays the forecasted demand and scheduled nurses

over the next two weeks. In the bottom left panel of the figure, users can adjust which staffing plan to view.

On the main page they can view the staffing and demand based on schedule as it stands or the recommended

schedule after the optimal deployment decisions (before and after). This way managers can immediately see

the impact of the optimization recommendation.

Appendix E: Detailed Post-pilot Analysis

We had three phases of performances that tie to the three phases of implementation. In the pre-

implementation part (historical counterfactual), the two month analysis suggested a 4% reduction in under-

staffing. In phase 1, the live testing of the analytics suite, we projected based on the 5 month test window

that the Delta Coverage program could potentially reducing understaffing by 5% and overstaffing by 1%.

The phase 3 performance analysis was the most critical, given that it was based on the full pilot imple-

mentation where we were able to learn exactly how the analytics suite could be used in combination with

additional knowledge of nurse managers using the dashboard. During this phase we expanded our perfor-

mance metrics to include equity among Delta Coverage nurses and equity among hospitals participating in

the pilot; definitions of equity are detailed in the associated subsection.
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To perform the analysis, we compare two cases for a fair “apples to apples” assessment of the pilot program.

Case 1: We (counterfactually) assign each of the Delta Coverage nurses to a fixed hospital location (“home

hospital”) and do not allow them to work at any other hospital (standard pre-Delta Coverage approach).

Case 2: Is what was actually implemented in the pilot (which involves moving nurses based on the Delta

Coverage Analytics Tool)

For each shift that was worked by a Delta Coverage nurse, we compared the actual understaffing (nurses

required minus nurses working with zero being the lower bound) that occurred with what the understaffing

would have been had the Delta Coverage nurse worked the shift in their (counterfactual) “home hospital.”

We utilize the same method for overstaffing. Next, we present the impact of Delta Coverage on the system as

a whole by calculating under- and over-staffing metrics across all Delta Coverage shifts in all participating

hospital E.1.

E.1. System Level Metrics

We were pleased to discover that the results of the pilot from May 7 to June 23, 2023 were better than our

initial dry run projected. In this analysis we consider the impact that the Delta Coverage program has had

on understaffing and overstaffing in terms of number of understaffed shifts eliminated, percent reduction in

understaffing, and estimated annual cost savings from the program.

Understaffing. Among the shifts that the DC nurses worked, in a little more than 1 month (36 days) the

Delta Coverage pilot has

• reduced the number of understaffed shifts by 24.5 (in 36 days). This is equivalent to

—248 fewer understaffed shifts per year (25 shifts per DC nurse per year)

—reducing understaffing by 13%

—1 fewer understaffed shift for every 4 shifts worked by a Delta Coverage nurse

• Reduced the number of overstaffed shifts by 28.5 in 36 days. This is equivalent to

—289 fewer overstaffed shifts (29 shifts per DC nurse per year)

—reducing overstaffing by 5%

—1.2 fewer overstaffed shifts for every 4 shifts worked by Delta Coverage nurse

• $400K in cost savings

—Cost avoidance was calculated based on overtime costs associated with understaffing, premium pay

for extra nurses that are not needed, overstaffing costs, among other metrics.

• Lives saved, nurses retained, mistakes avoided, better care given.

E.2. Delta Coverage Nurse Work Variety, Stability, and Equity.

To measure equity in terms of how Delta Coverage nurses are used in the program, we measure the proportion

of time (shifts) each nurses spends at a remote facility. Of interest is that (1) each Delta Coverage nurse have

sufficient variety of working location based on the feedback that these nurses want to travel (which is why

they joined the program) but also want some stability of working in their home hospital, and (2) comparing
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between nurses, each Delta Coverage nurse should have a similar amount of variety in the working location

so that the travel regime is fair across Delta Coverage nurses.

Figure 9 provides a high-level visual summary of Delta Coverage nurses’ work schedules. For the 10

individual nurses participating the 6-week pilot, Figure 9 shows the percentage of shifts worked at different

hospitals for each of them. Some nurses worked in a pod of three hospitals and others worked in a pod of

two hospitals. In general we see a pattern that shows that the nurses have fairly similar distributions of

Figure 9 Fraction of shifts worked at each of a nurses locations for all 10 Delta Coverage nurses.

work locations (compare nurses with 3 hospitals separately from nurses with two hospitals). Recall that we

do not need the shifts to be evenly distributed among hospitals, but rather that all nurses have a similar

distribution of shifts across hospitals. As a final note, Nurse 10 was certified in 1 (out of 3) acuity levels,

which somewhat restricted their transfer capability.

Additionally, we capture (1) the variety of opportunity - are they visiting each hospital regularly enough

to gain experience and earn travel premium and (2) the stability of each individuals’ schedule from week

to week, and (3) the equity among Delta Coverage nurses for measures (1) and (2). These metrics were

summarized in Table 1 in the main paper. We now explain more details about the calculation of these

metrics. To measure the work variety and equity, we use the Gini coefficient, which is commonly used as a

measure of dispersion in many fields. The Gini coefficient lies between zero and one, with zero representing

perfect equality and one being perfect inequality. In our context, a Gini coefficient of zero in terms of work

variety means that the nurse spends an equal amount of time at each of the hospitals in their catchment.

Similarly if they spent all their time in one hospital then the Gini coefficient would be one. We do not set a

target on work variety, but rather a target such that all the nurses have similar work variety, since traveling

to different hospitals is the only difference between a DC nurse and a resource nurse.

When discussing equity in the subsequent paragraphs, a general rule of thumb is that a Gini coefficient

of 0.3-0.4 is considered fair and 0.2-0.3 is considered very fair. With respect to equity between nurses, a

smaller Gini coefficient means that individual nurse’s work variety / schedule stability is close to each other,

indicating a fair implementation of the program. We use this interpretation of the Gini to evaluate our
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metrics as well. To measure stability, we use the coefficient of variation of each nurse’s work variety over

time calculated over the weekly the Gini for each nurse.

Work Variety and Equity. Work variety is measured at the individual level by obtaining one Gini coef-

ficient for each individual for the measurement period (May-June). The average work variety (mean of the

Gini coefficient) across all Delta Coverage nurses is 0.42. Note that Nurse 10 was an outlier due to lower

flexibility in what roles they could fill so we remove the outlier when calculating equity in work variety. After

doing so, the equity in work variety measured across Delta Coverage nurses has a Gini coefficient of 0.3,

which is very fair.

Schedule Stability and Equity. To measure the stability of a Delta Coverage nurse’s schedule, we calculate

the variability in work variety from week to week. Quantitatively, for each nurse we first calculate work

variety for each week using the Gini method above. Next, for each nurse we calculate the coefficient of

variation (CV) of their work variety over the 6 week horizon of the pilot. The CV is the standard deviation

of work variety over the course of the pilot divided by the mean, which is a common normalized measure

of variability. The smaller the CV, the less variable the nurse’s work variety. We adopt the convention that

CV < 1 is consider low variability and CV > 1 would be high variability. Considering all nurses, the average

CV of work variety is 0.41 and the equity (Gini of the CV) is 0.31, indicating that the program is creating

schedules that are both stable and very consistent / fair across Delta Coverage nurses.

Delta Coverage Hospital Equity. To measure fairness of the allocation of Delta Coverage nurses to

hospitals, we again use the Gini coefficient. After removing the single outlier (BTN) mentioned in the

introduction, which maintains the concept of fairness since that hospital was well-staffed during the pilot

period, the Gini coefficient was 0.29 and indicates a very fair allocation.

Recap. In summary, the previous analyses have demonstrated the the pilot has not only achieved significant

reductions in under- and over-staffing, but is also creating nurse schedules and allocating Delta Coverage

resources in a desirable and equitable manner.
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