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Abstract

Individual evacuation decision is often characterized by the influence of one’s
social network. In this paper a threshold model of social contagion, originally
proposed in network science literature, is presented to characterize this social
influence in evacuation decision making process. Initiated by a single agent,
the condition of a cascade when a portion of the population decides to evac-
uate has been derived from the model. Simulation models are also developed
to investigate the effects of community mixing pattern and initial seed on
cascade propagation and the effect of previous time-steps considered by the
agents on average cascade size. Insights related to social influence include the
significant role of mixing pattern among communities in the network and the
role of initial seed on cascade propagation. Specifically, faster propagation
of warning is observed in community networks with greater inter-community
connections.

1. Introduction

Over the last decade, the study of large-scale network systems spanning
from the Internet to social networks has grown enormously (Newman, 2003a;
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Boccaletti et al., 2006). Understanding the coupled dynamics between the
structural properties and the functions of networks has been the principal
focus of a wide area of research. Due to the ubiquitous presence of networks,
the understanding of the complex network dynamics can have applications in
many fields such as the Internet and communication systems, infrastructure
systems, logistics and supply chains, trade markets and financial systems,
biological systems, and social organizations.

“Network science”, an emerging research field, brings an interdisciplinary
view to the study of complex networks (i.e. networks having an irregular,
complex and dynamic structure). This new research field shifts the focus of
the studies of networks from the analysis of single small graphs to the consid-
eration of statistical properties of large-scale real network systems (Newman,
2003a; Albert and Barabasi, 2002). Studies on these large-scale real networks
have produced many new concepts and measures attempting to characterize
the structure of networks. A series of unifying principles and statistical dis-
tributions related to different properties of real networks are identified from
theses studies. One of the foremost discoveries in this regard is the existence
of small-world property in many real networks (Milgram, 1967; Travers and
Milgram, 1969; Watts and Strogatz, 1998). The small-world property refers
to the fact that despite their large size most networks have relatively short
path between any of their two nodes. Another relevant property relates with
the degree of a node (k), i.e, the number of its direct connections to other
nodes. In real networks, the degree distribution P(k), defined as the prob-
ability that a randomly chosen node has degree k, is significantly different
from the Poisson distribution that has been traditionally assumed for mod-
eling a random graph. Instead studies have found that, in many cases, real
networks exhibit a power law (or scale-free) degree distribution (Barabasi
and Albert, 1999). Moreover, most of the real networks are characterized
with higher density of triangles (e.g., cliques in social network where every
member knows every other member) than a comparable random network.
Real networks also exhibit significant correlations in terms of node degrees
or attributes.

These discoveries initiated a substantial amount of research efforts on
developing new network modeling tools for understanding the structural net-
work properties and subsequently reproducing the structural properties ob-
served from empirical network data and for designing such networks effi-
ciently. It is naturally expected that the structure of a real network will have
an impact on its functional behavior. Therefore network models were moti-



vated to a better knowledge of the evolutionary mechanisms responsible for
the growth of the network, and thus a better understanding of its dynamical
and functional behavior. It is indeed found that real networks have interest-
ing coupling between its architecture and functional behavior. This coupling
has consequences on the robustness of a real network and its responses to
external perturbations characterized by random failures or targeted attacks
(Albert et al., 2000).

This coupling architecture of complex networks also has the potential
of studying the emerging dynamical behavior of a large number of entities
interacting through complex topologies. For example, a fundamental ques-
tion relevant to complex network systems is how the interactions between
the nodes or vertices may cause new ideas, information or fads to propagate
throughout the entire network. When does the propagation of such informa-
tion become a global cascade? How quickly does it spread? To what extent?
Such phenomenon are called as cascades or contagion and are common phe-
nomenon in many real world systems. For example, in the transmission of
infectious diseases through communities in biological systems (Murray, 2002;
Anderson and May, 1991), global spread of computer viruses on the Internet
network (Newman et al., 2002; Balthrop et al., 2004), diffusion of activities,
beliefs, ideas, and emotions in social networks (Coleman et al., 1966), power
grid failures in electricity markets (Kinney et al., 2005; Sachtjen et al., 2000)
and the collapse of financial systems (Sornette, 2003).

The characterization of contagious behavior is pertinent and plays a vital
component to investigate transportation demand analysis under specific sit-
uations. Since transportation systems, have a significant coupling between
the dynamic demand manifested by the complexity of human behavior and
the dynamic supply, manifested by the significant variations in network char-
acteristics, small changes in the behavior can significantly impact the trans-
portation network. The goal of this research is to develop a novel model for
understanding the cascade of the warning information flow in the social net-
work during hurricane evacuations. The model is developed using emerging
notions from complex network science. In addition to model development,
several numerical simulations are conducted to demonstrate the spread of
warning information during hurricane evacuation.

Hurricane evacuation is often characterized as a complex process involv-
ing decision making at different levels-individual, household level influences
and community level influences. Whether to evacuate or not; when to evac-
uate, where and which route to take are some important dimensions of the



decisions involved in the evacuation process. Individual’s evacuation be-
havior primarily depends on three basic social psychological processes: risk
perception, social influence and access to resources (Riad et al., 1999). Stud-
ies on hurricane evacuation (Baker, 1991, 1995; Dash and Gladwin, 2007)
found that in addition to the factors such as individual and household char-
acteristics, risk level, evacuation orders, and storm threat, the personal risk
perception was the most important factor in determining the evacuation de-
cision. Although the role of social influence on risk perception behavior is not
directly addressed in the literature, one can suspect that the individual risk
perception can be socially influenced as evacuation decisions spread through
social networks.

During evacuation, in addition to personal risk perception, social influ-
ences play an important role on individual’s decision making process though
individuals are finally responsible for their own decisions (Riad et al., 1999).
Evidence of the influences of individual’s social network on evacuation de-
cisions were found in studies (Riad et al., 1999; Clifford, 1956; Perry, 1979;
Mileti and Beck, 1975; Drabek and Boggs, 1968; Quarantelli, 1985). So-
cial relationship of an individual can be thought of a combination of kin
relationships (i.e. relatives) and community contacts (i.e. friends and neigh-
bors). Both kind of relationships have influences on warning propagation
and evacuation decisions. Previous research suggests that individual’s so-
cial ties have an impact on the disaster warning dissemination (i.e. content,
source, and number of warnings received) and adaptation process (Clifford,
1956). It is found that the greater the number of contacts and ties one has to
the community, the more likely one is to receive information on evacuation
recommendation (Perry, 1979). Official warning messages sometimes pro-
vide vague information that are usually confirmed through other sources (i.e.
through individual’s social network) (Mileti and Beck, 1975). It is however
generally agreed that kin relationships play more important role compared to
community relationships in evacuation decision making. Perry (1979) how-
ever reasoned that when kin relationships are weak or absent, community
contacts can serve similar function with respect to a model of evacuation
behavior.

Characteristics of individuals’ social network can be predictors of evacua-
tion patterns. For example, it is found that individuals who do not typically
evacuate have a small social network and vice versa (Drabek and Boggs,
1968). Previous social science studies on hurricane evacuation also suggest
that African American households typically possess more cohesive kinship
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and larger community networks compared to Caucasian communities and
hence have greater propagation of disaster warning information (Perry, 1979).
Previous research also find evidence that ethnic groups such as African Amer-
ican households actively involve their elders within the kin network; which
eventually contributes to a higher percentage of decisions to evacuate (Quar-
antelli, 1985).

However, in spite of the qualitative insights from many social science
studies about the impact of social network on hurricane evacuation, a model
which can characterize the complexity of the influences is currently lacking.
Within this context, in this paper, we propose to develop a novel network
science model to specifically investigate the social influence process within
a community network. In order to model this social influence process we
adopt the threshold model of social contagion process proposed by Watts
(2002). Watt’s original model is motivated by a context where individuals
in a population must decide between two alternative actions, and whose
choice of actions depend explicitly on the actions of other members within
the population. In other words individuals in a population adopt alternate
behaviors by following their peers (e.g. relatives, friends, and neighbors).
Such kind of decision making may occur in social and economic systems when
decision makers have to pay attention to others either because of limited
available information about the problem or because of individual’s limited
ability to process the available information. In such cases one seeks additional
information of the problem or seeks advice to friends, relatives or colleagues
or simply makes the decision which most people make.

Although the processes of risk perception and access to resources are well
studied within the evacuation behavior literature, the process of social influ-
ence is not well addressed. One of the major deterrent factors to empirically
observe the social influence process is the requirement of having informa-
tion on individual’s social network. Such kind of information are not readily
available in evacuation surveys which are the basis of most of the evacuation
studies. Therefore an analytical model is essential to translate qualitative
insights into quantitative measures of the social influence process on evacua-
tion behavior. As such the model developed in this paper makes a significant
methodological contribution and provides several important insights on the
role of social relationships on evacuation behavior. Specifically it intends to
determine the relationship between community or social network character-
istics and the aggregate evacuation behavior.



2. Model Description

The threshold model of social contagion process mimics a binary decision
making context where an agent (i.e. an individual or a household) has to
decide between two choices of whether to evacuate or not due to a hurricane
threat. The agent follows a simple binary decision rule observing the current
states (either 0 or 1 i.e either evacuated or not-evacuated respectively) of
k other agents which we call its neighbors, and adopts state 1 if at least
a threshold fraction of its k neighbors are in state 1, else it adopts state
0. The neighbors represent the members of the agent’s social network (the
network of friends, relatives, colleagues etc.). To account for variations in
risk perception and access to resources required to evacuate, the threshold
value of an agent is treated as heterogeneous. That is the threshold value
of an agent is randomly drawn from an arbitrary distribution of threshold
values.

Each agent belongs to a particular community having a specific degree
(i.e. number of neighbors) distribution. That is the number of neighbors of
an agent is drawn from the degree distribution of the corresponding commu-
nity of the agent. We assume multiple communities in the population and
different level of connections within the community and between communi-
ties. For example, if individuals prefer to form friendship based on race then
the network can be separated into different communities by race. Thus the
connection within the community represents the number of neighbors of an
agent of same race and the connection between communities represent the
number of neighbors of an agent with different races. This mixing pattern
in a population can be characterized by a quantity e;; which is defined as
the fraction of neighbors in a network that connect an agent of type ¢ to the
agent of type j. We assume an undirected social network i.e. e;; = ej;.

In order to investigate the effects of the strength of relationship on social
contagion process we introduce the weight w;j;of the edge. In this case an
agent does not only consider the fraction of its neighbors, instead each neigh-
bor’s weight is used calculate the fraction. A weighted fraction is calculated
by dividing the weights of the affected neighbors by total weights of the edges
of the agent.

In hurricane evacuation one important event to observe is that when
does a significant fraction of the population decide to evacuate. We refer
to this event as a global cascade where the term cascade refers to an event
when any fraction of the population decides to evacuate. Thus the term



global cascade refers to a cascade of significantly large size (in practice this
represents more than a fixed fraction of the size of the network). In this work,
we are interested to investigate the following research questions within the
threshold modeling framework of social contagion over a multiple community
network :

a) What is the condition for a cascade to occur, in other words under
what condition a fraction of the agents decides to evacuate.

b) Social networks with multiple communities can have different kinds of
mixing patten in terms of social connections; what is the role of this mixing
pattern on the propagation of evacuation decisions.

¢) Social contagion process is initiated by switching the state of a single
agent from 0 to 1. This single agent (i.e. the initial seed) therefore plays
an important role over the contagion process. We investigate the role of the
characteristics of the initial seed on the propagation of evacuation decisions.

d) In addition to the state of the neighbors, the time when they make
their decisions may also influence an agent’s decision. The influence of an
agent that decides to evacuate in the beginning may diminish over time as
the situation is changing dynamically. Therefore, instead of observing all of
it’s neighbors’ states, an agent may only consider those who have evacuated
within certain number previous time steps. We want to investigate the role
of this phenomenon on the propagation of evacuation decision and on the
size of the cascade.

e) An agent can have different levels of relationship with its neighbors.
For instance, a relative might have higher influence on agent’s decision than
a friend might have. We investigate the role of this strength of ties on social
contagion process. Specifically, does higher proportions of strong ties result
into larger cascade size?

3. Analytical Formulation of the Social Contagion Model

In this section we determine the condition when a cascade or contagion
will occur within a population of agents having a hypothetical social network.
The social network has a particular mixing pattern based on community
characteristics such as race, ethnicity, income etc. The analytical derivation
of the cascade condition uses the key results of Newman’s study (Newman,
2003b) that determines different characteristics of a network with multiple
communities. We also use the threshold model proposed by Watts (Watts,
2002). However, Watts’ model does not consider any community structures



Table 1: List of Notations

Notation | Description

k Degree of a vertex

z Average degree

2 Average degree of agents of type i

p,(f) Probability that a randomly chosen vertex of type ¢ has degree
k

€ij The fraction of edges in a network that connect a vertex of
type ¢ to a vertex of type j

10) Threshold value of an agent

Go(z) Generating function for the degree distribution py

G((f) (x) Generating function for the degree distribution p,(:) for agent
of type @

Pk Given that an agent has degree k, the probability that it has
a threshold ¢ such that ¢ < %

Fo(i) (z) Generating function for the degree distribution of the evacu-
ated agent of type i following a randomly chosen agent

F fi) (z) Generating function for the degree distribution of the evacu-
ated agent of type i following a randomly chosen edge

H(()i) (x) Generating function for the number of evacuated agents that
can be reached from a randomly chosen agent of type ¢

H 1@ (x) | Generating function for the number of evacuated agents that

can be reached from a randomly chosen edge that is connected
to an agent of type ¢




with the network. The model developed here is a physics-based model and
abstracts the key variables which influence the propagation of evacuation
decisions in a social network. The purpose of this section to introduce some
results reported in the network science literature. .

Consider a mixing matrix e;;, degree distribution of agents p,(j) of type 1 =
1,2, ...,n and a distribution of threshold values of f(¢). Assume that an agent
of type i has degree k (i.e. it has k neighbors) and the relations between this
agent and its other neighbors are referred as edges. These k edges of the agent
are divided into n types (where each type corresponds to the community they
belong) with some partition {ry,rs,...,7,,} where 7 r; = k.

Now, the probability that a partition {r;} takes a particular value is given
by the following equation of multinomial probability (Newman, 2003b)

Pt =Tl | 2] 0

Generating function (Wilf, 1994) is frequently utilized in network sci-
ence to derive different properties of distributions. For instance, to derive
the probability distribution of node degrees k of a graph, the corresponding
generating function Gy(z) can be stated by the following equation:

Gola) = Y pra* (2)
k=0

where py, is the probability that a randomly chosen vertex on the graph has
degree k. The distribution p; has to be correctly normalized so that

Go(1) =1 (3)

The probability generating function, for example G(z), has a number of
properties that are useful in deriving important relations in network science.
For a detailed review of the properties readers are referred to the reference
Newman et al. (2001).

The generating function for the distribution of the number of edges for
each type can be written as (Newman, 2003b):



G(()i)(xl,x%...,mn) = Zp 25 Zr] x Pk, {r;})at ah . ol

k=0 {r;} J
_ i ot 2 €%
= k

k=0 2.5 €

- Gy <—sz> )

Where, ¢ is the Kronecker delta function and G(()i)(x) = p,(f)xk is the
generating function for the degree distribution p,(;).
Now, one important feature to find is the distribution of the degree of

agent of type ¢ following a randomly chosen edge,

; Z kp(z)xk;—l 1 7;/
Gy (x) = ST G (@) (5)
k Pk '

Where z; = G(()i) (1) is the mean degree of type i agents.
For the distribution of the edges of different types (Newman, 2003b),

> €ijTj
> €ij

Now consider a threshold model where a randomly chosen single agent
decides to evacuate first; this agent is referred as a seed agent. The evacuation
pattern from this seed agent will propagate if at least one of its neighbors has
degree k and threshold ¢ such that ¢ < % and the corresponding probability
is pr, = P[¢ < 1] (Watts, 2002). We call this agent as evacuated agent. Thus
the probability of any agent u having degree k£ and having evacuated is pgpx
and the corresponding generating function for evacuated agent degree will
be Fy(z) =, prpex®™ (Watts, 2002). Similarly, for our case, the generating
function for evacuated agent degree of type ¢ following a randomly chosen
agent will be

Ggi)(xlyaj?a 7'rn) = GY) ( (6>

F(l Z Pk Pk (7)
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Two important quantities can be found from Eq. 7. They are: a) the
fraction of evacuated agents of type i, P\ = Féi)(l) =>, p,(;)p,(;), and b) the
average degree of an evacuated agent of type i, 20 = Féi),(l) => p,(j)k:pg).

Similar to Eq. 4, the generating function for the distribution of the number
of evacuated edges connecting to each type of agent is: Féi) (x1, T, .., Tp) =

Féi) <%> and similar to Eq. 5 the generating function for the distribu-
3 Ci

tions of the evacuated agent degree of type ¢ following a randomly chosen
edge, FI(Z) (z) = 5 FO(Z) (z). For the distribution of the edges of different
> %‘Ij)
25 €ij
An important distribution to observe is the distribution of the number of
evacuated agents that can be reached from a randomly chosen agent of type
1. The generating function Hél) for such distribution satisfies the following

self-consistency condition (Newman, 2003b)

types, Fl(i)(xlv L2y -ees xn) = Fl(i) (

HY () = 1= () + o R [H" (@), ... B (2)] (8)

And similarly the distribution of the number of evacuated agents that
can be reached by following a random edge connected to an agent of type ¢
can also be found (Newman, 2003b):

i i i 1 n
HY () = 1= FP() + 2B (B (@), .. B (2)] (9)
The average number of evacuated agents s reachable from an agent of
type ¢ is
(@)
S(Z) _ dHO
v dx
r=1

()
i 1 n iy o 2o ey (1)
= F’ {Hf '(1), .., Hy )(1)] + Ry (UT
j G
Zj eijﬂfj) (1)
> €ij
> ety (1)
> €ij
This can be written in matrix format,

sy = P, + mgH; (1) (10)

= PO+ (1)

_ Py)JFZSi
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(1),
Where mg is a matrix [mo]ij = %
3 €id

Now to find s,, we will need to know H (1)
a1y = F (a0, 5]+ B (B0, 5]

S e HY (1)

(%) @)’
= FO91)+FY (1)
1 1 Zjeij

In matrix format,

H, (1) = F1(1) + myH, (1) = Fy ()T - my] ™ (11)
@ e,
Where my is a matrix [m];; = % and
(i L nay 1 (i), (0) L2 2
BT = mh" 1= ;pk Kk = 1) = () — ) = 7

Where zy) = 20 (ie. average degree of agents of type i) and zq(fg) is the
average second evacuated neighbors of an agent of type 7.
Zy3¢ij
23 >, €ij
So finally, Eq. 10 for average size of the cluster of evacuated agents be-
comes,

So matrix my becomes, [mi];; =

Sy = PV + my [I — ml]_l F1<1) (12)

A cascade will happen when s,, diverges and s, will diverge when det[I — m;]
will reach its first zero. It is also important to characterize when the cascade
occurs in a social network with multiple communities.

29 3 e

47 e

=2y = 2" (13)

This means that a cascade will happen when the average first neighbors

of type 7 are equal to the average second evacuated neighbors of that same
type. This cascading condition can be interpreted as, when zz();) < zf) the
initial evacuated cluster of type ¢ is too small to generate a cascade within its
own community and hence the whole network. However when 2512) > zgl) the
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typical size of the evacuated clusters of type ¢ is large enough for the cascade
to percolate through their own community. However, for the cascade to
propagate across all the communities, each of the communities will have to
satisfy the above condition.

4. Simulation Model

In this work, we develop a simulation model to investigate the perfor-
mance of the analytical findings as compared to simulations on many ran-
dom social networks. Briefly, the simulation model consists of two stages:
first stage builds a social network with multiple communities with a spe-
cific mixing pattern. This stage follows the algorithm proposed by Newman
(Newman, 2003b) for creating networks with multiple communities. The sec-
ond stage applies the threshold model of social contagion on the generated
network. The essential steps to setup the simulation model are as following;:

Stage I - Building the mixed social network

1. Choose the size of the network in terms of the number of edges Mand
then draw M edges from the distribution e;;. This step generates M edges
that are identified by the types of the vertices they connect. These M edges
are created in such a way that the proportion of the edges between vertices
of type ¢ and j will be e;; as M becomes large.

2. Count the number of ends of edges of each type 7, to obtain the sum of
m;; calculate n; = Z—L: where z; is the desired mean degree of agents of type 1.

3. Draw n; agents from degree distribution pgf) of agent type ¢ making the
sum of degrees of the agents to be m;. Notice that in general the sum of the
vertex degrees will not be equal to m;. Newman (2003b) suggests to select
and discard one vertex randomly, and draw another vertex from pl(f) until
the sum of the degrees becomes equal to m;. Multiple draws are required for
the vertices to match m; and different combinations should be tried until all
nodes have the required degree which is a cumbersome process.

4. Randomly pair up the m; ends of edges of type ¢ with the generated
agents so that each agent has the number of attached edges according to its
chosen degree.

5. Repeat step 3 and 4 for each agent type.

Stage II - Applying the threshold model

1. Each agent is given a fixed threshold value, ¢ that is sampled from

f(9).
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2. There are two possible states oy (Not evacuated) and o; (Decided to
evacuate) for each agent. Neighbors of the agents who have evacuated update
their states at times ¢t =0,1,2,....

3. At a given time step each neighbor of the evacuated agents observes
the fraction of its neighbors in state o; and switches to oy if the fraction
exceeds its threshold ¢.

The simulation model is coded in C using the iGraph library (igraph,
2006).

5. Results and Discussion

Our model is applicable to any populatlon of agents forming a network
with arbitrary degree distributions pk for each agent type ¢ and threshold
distributions f(¢). However, here we demonstrate the features of our model
assuming a uniform degree distribution (i.e. number of neighbors of each
vertex is uniformly distributed between k; and ko) with a particular average
degree (z) for each type of agent. Here we consider the communities as
neighborhoods located in a region and the degree of an agent as the size of
the core network (i.e. people with whom one discusses important matters)
of the agent. This type of degree distribution is a reasonable assumption as
Hampton et al. (2011) observed such distribution of the core network size
for individuals. We also assume a uniform threshold distribution between ¢,
and ¢,. To make the network and the corresponding analysis simple we here
assume a network with two communities with the following edge distribution

matrix:
0.4 0.1
<O.1 0.4)
The communities are also assumed to have same degree distribution, however
in a later experiment we relax this assumption. To investigate the effect of the
assumed degree distribution on our results we also consider Poisson degree
distribution; the relevant results related to the Poisson degree distribution
are given in the Appendix. For each of the setup we run the simulation for
100 realizations. Whenever appropriate, simulation results are averaged over
these 100 realizations. Each realization builds a random network of 2,000
edges in which a single agent makes the decision to evacuate at time ¢ = 0.
In this section we present the following computational results:

14



a) Comparison between the cascading condition obtained from the ana-
lytical model and that obtained from the simulation model

b) Effect of the mixing pattern on cascade propagation

c) Effect of the initial seed on cascade propagation for uniform degree
distribution

d) Effect of the previous time-steps considered by the agents on average
cascade size

e) Effect of the strength of ties on average cascade size

5.1. When does a cascade occur?

Fig. 1 expresses the cascade condition (Eq. 13) graphically as a boundary
of average degree and average threshold value (z,¢). The solid line corre-
sponds to the analytical solution and the dotted line represents the the result
obtained from the simulation model. The cascade condition obtained from
the analytical model matches closely with the simulation model. The area
where no global cascade occurs represents the situation when z,, < 27 i.e.
the cluster of evacuated agents generated from the initial seed agent is too
small to generate a cascade within its own community. On the other hand,
the area where global cascade occurs represents the situation when z,5 > z;
i.e. the size of the cluster of evacuated agents generated from the seed agent
is large enough for the cascade to propagate through their own community.

An important quantity to observe is the change of average cascade size
(i.e. average fraction of the evacuated agents to the total number of agents)
with average threshold values and average degree of the communities. Fig. 2(a)
and Fig. 2(b) illustrate how average cascade size is influenced by the aver-
age threshold values for different average degree of communities. Fig. 2(a)
suggests that when average degree of a particular community is very low
the average cascade size may not attain the full network even for very low
threshold values.

These findings have important implications in terms of evacuation plan-
ning and management. For example, for successful evacuation additional
interventions may be needed to influence individuals in communities with
low average degree (i.e. community of individuals having few peers). On
the other hand, mass evacuations are expected to occur in communities with
high average degree (i.e. community of individuals having many peers).
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Figure 1: The condition for a cascade to occur

5.2. Role of mixing pattern on cascade propagation

In previous section we investigated the cascading condition in a network
with a particular edge distribution matrix. Here we investigate the effects of
the mixing patterns on cascade propagation by changing the mixing patterns
over simulation runs. We change the fraction of the intra-community and
inter-community edges as specified by the matrix mentioned in Section 5.1.
Our goal here is to identify how the interaction among the communities are
influencing the cascade propagation in the population as a whole. Does the
cascade of evacuation decision propagate faster if people have more inter-
community connections?

Two kinds of approach for changing the fraction of edges are followed:
a) keep the edge matrix symmetric (i.e. both communities will have the
same level of intra-community edges) b) keep the edge matrix asymmetric
(i.e. both communities will have different level of intra-community edges).
The quantity that we observe is the average fraction of the evacuated agents
along the simulation time line.

Fig. 3(a) and Fig. 3(b) illustrate the role of mixing patterns on cascade
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Figure 3: Role of mixing patterns on cascade propagation (Note: Due to the randomness
in the simulation, different simulation may end at different time steps. Thus it is not
possible to take the average of the 100 realizgtjons. We first find the frequency distribution
of simulation end times for those realizations in which at least 80% of the vertices decide
to evacaute. We then report the average of the results for those realizations that have the
highest frequency of simulation end time where f= frequency of the simulation end time)



propagation for symmetric and asymmetric edge distributions respectively.
Fig. 3(a) suggests that as we decrease the intra-community edges which is
equivalent to increasing inter-community edges, cascade propagates faster.
This means that the more the inter-community edges are the faster the prop-
agation of the cascade is. These inter-community edges can serve the pur-
pose of bridges and let the information or the influence to propagate faster.
The propagation curve has different stages, the initial stage consists of the
propagation of cascade within the community of the initial seed and in the
subsequent phases it starts to propagate to the other community. When
the proportion of intra-community and inter-community edges are equal the
whole network acts like a single community and in this case the rate of prop-
agation is the highest. Given that communities are common in our societies,
this analysis shows the benefits of having more connections among commu-
nities in the social network regarding the contagion process.

Fig. 3(b) presents the propagation of cascade when the communities are
not equally dense. That is they have different proportion of edges among
themselves. Similar to the previous finding, it demonstrates that the cascade
propagates faster in population with less difference in the intra-community
edges. That is it indicates that as the communities become more similar to
one another the faster the cascade propagate among the population.

These findings can be translated into important implications for managing
hurricane evacuations. For example, population with greater level of inter-
community edges are expected to respond faster to evacuation notices or
warning compared to population with lower level of inter-community edges.
This suggests that intervention strategies are to be implemented for the latter
communities.

5.3. Role of initial seed

It is important to note that we initialize our simulation by switching the
state of a single agent. That is at time t = 0 a single agent decides to
evacuate. This agent is acting as an initial seed for our contagion simulation
process. A natural question therefore would be understand the role of this
initial seed on cascade propagation. In this section, we investigate the role
of this initial seed on cascade propagation by experimenting with two types
of initial seed. Omne obvious candidate for such seed might be the agent
with the highest degree. We compare the rate of propagation of cascade
initiated from a random seed with that initiated from a seed which has the
highest degree. Fig. 4 presents the cascade propagations for random seed
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Figure 4: Role of initial seed on cascade propagation (Average threshold=0.1 and f=
frequency of the simulation end time)

and highest degree seed for uniform degree distribution. Interestingly we
find that the cascade initiated from a random seed propagates faster than
that initiated from the highest degree seed. One plausible explanation for
this might be the cascading condition described in Eqn. 13. When we select
the highest degree seed the local neighborhood of that initial seed is relatively
larger than the affected cluster size (i.e. z; > z,2); this makes the affected
cluster to propagate slowly. On the other hand, if we select a random seed
then the expected degree of the seed will be the average degree of the degree
distribution. Therefore the local neighborhood will be relatively smaller than
the affected cluster size (i.e. z; < z,2) which makes the cascade to propagate
fast.

5.4. Role of previous time steps considered by the agents

In our simulation model (see stage IT of the model described in Section 4),
every neighbor of the evacuated agents observes the fraction of its neighbors
in state oy (i.e. evacuated) and switches to oy (i.e. decides to evacuate) if the
fraction exceeds its threshold value. Here we run experiments on previous
time steps based on which agents will make their decisions. That is an agent
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will count only those who have evacuated in previous n time steps. Those
who have evacuated before n time steps do not have any influence on agent’s
evacuation decision. Analyzing the results of the the experiments for n=1,
2, 3 and 4, we observe no specific trend in the difference of the cascade
propagation rate. However, we observe difference in the size of the cascade
and simulation end times (the time to reach a stable situation) but only
between the cases for n=1 and n=2. Beyond n=2 there are no differences in
the average size of the cascades and the time to stabilize.

Fig. 5(a) and Fig. 5(b) present the role of previous time-steps considered
on average cascade size and the time to stabilize respectively. This analysis
demonstrates the sensitivity of time-steps on the findings of our model. It
shows that cascade size is not significantly different for different time hori-
zons. However, cascade size is relatively higher if agents count the number of
neighbors who evacuated in last two time steps compared to the case when
they only count the number of neighbors who evacuated only in the previous
time step. This is plausible as the fraction of neighbors who evacuated is
greater if agents consider more previous time steps. In other words if people
consider only those who evacuated recently then it is less likely to have a
global cascade of significant size than the situation when people consider all
the previous times.

5.5. Role of the strength of ties

In previous analyses agents consider only the number of its neighbors for
making the evacuation decision. However, it likely that different relationships
will have different level of influence on individual’s decisions. For instance,
a member of the agent’s kin network will have higher level of influence than
that of a member of its nonkin network. For analyzing the effects of the
strength of relationships we assign each tie a weight using two categories of
ties (i.e. string tie and weak tie). A strong tie (weight=3) represents the
relationship with a kin (e.g. spouse, parent, sibling, child, or other family
member) and a weak tie (weight=1) represents the relationship with nonkin
(e.g. co-worker, friend, advisor, neighbor, or group member). Simulations are
run by changing the overall proportions of the strong and weak ties. Instead
of calculating the fraction of the affected neighbors, agents now calculate
the weighted fraction of the affected neighbors (i.e. total weights of the ties
connected to the affected neighbors/total weights of the ties connected to all
neighbors) to compare against its threshold value.
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Fig. 6 presents the role of the strength of ties on average cascade size.
In general, we observe that until a threshold value 0.15, there is a direct
relationship between the strength of ties and the average cascade size. That
is stronger the ties, greater is the average cascade size. This result is contrary
to finding of “the strength of weak ties” by Granovetter (1973). However,
weak ties may provide greater cascade size for simple contagion but when
weights are introduced in the network the strength of weak tie is no longer
found. Since agents assign higher values to the strong ties, the likelihood of
cascade propagation increases with the proportion of increase in strong ties.
This indicates that when the network has higher proportion of strong ties
(e.g. discussion with kin about evacuation decision) the size of the evacuated
agents will be larger compared to the network with smaller proportion of
strong ties.

This finding has important implication about the role of social media. For
instance, with the advent of so called online social media sites (e.g. Face-
book, Twitter etc.), one can imagine sending the hurricane warning messages
through these media and expecting greater cascade size. However, our analy-
sis reveals that this is very unlikely. We observe that the decision to evacuate
is not only strongly influenced by whom an agent is “linked” to but also the
trust (weight) that the agent places on the connected nodes.

6. Summary and Conclusions

In this paper we investigate the effect of social connections on the conta-
gion process of decision making. It is found that the growing literature on
network science can provide an appropriate tool for investigating this phe-
nomenon. The methodology for introducing social influence is demonstrated
here. We model the social contagion process in a population with multiple
communities and investigate the effect of community characteristics on the
contagion process. A simple threshold model of decision making is applied
to a hypothetical social network. Specific questions related to the social
contagion process are answered: a) when does a cascade occur? b) what is
the role of mixing patterns on cascade propagation? c) how to control the
propagation of cascade? d) what is role of previous time steps on threshold
model? e) what is the role of the strength of ties on the contagion process?

We derive an analytical condition for any cascade to happen in the net-
work with a particular mixing distribution among communities. Our simula-
tion model gives values of the cascading condition close to the ones obtained
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from the analytical model. We also identify the role of mixing patterns on
cascade propagation. It is found that as inter-community edges increase in
the network the cascade propagates faster. On the issue of how to control the
propagation of the cascade we found that a high degree seed does not nec-
essarily propagate the cascade faster than a cascade initiated by a randomly
selected seed.

In this paper, we also demonstrate how to relate the results from our
model to hurricane evacuation. Previous literature indicated the existence
of social influence on household’s hurricane evacuation decision making. We
present a methodology to characterize such social influence. The important
insights on social influences have implications to evacuation management as
well as policy making. We highlight several specific implications.

First, as suggested from our results that mixing patterns influence the
cascade propagation, evacuation manager can take into account the existing
social network structure to anticipate the propagation of a cascade. For ex-
ample, if there exists a community with very few average inter-community
edges extra actions might be taken to influence the propagation of infor-
mation (i.e. evacuation warning). The communities in our analysis can be
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interpreted as neighborhoods present in geographic sense. In this case, our
findings also suggest land use designs favoring such cascading condition.

Second, using this type of analysis we can compare different strategies
to expedite the propagation of information (i.e. hurricane warning) in a
network. For example, in our analysis we found that faster propagation of
warning can be achieved if agents are selected randomly to have the warning
first than selecting individuals with greater number of neighbors. Although
this type of strategy may not be practical in actual hurricane evacuation
context, the model presented here is general enough to develop and evaluate
other types of strategies favoring faster propagation of hurricane warning.

Third, results indicate that the proportions of strong ties in the net-
work influence the average size of the evacuated agents. When agents make
decisions based on the level of weights of the relationship with the evacu-
ated neighbors, higher proportion of strong ties result into greater cascade
size. Evacuation managers can expect higher level of compliance or non-
compliance behavior if the underlying social network has higher proportion
of strong ties.

This analysis can also contribute to the transportation research area in
terms of building a modeling framework which incorporates the social in-
fluence on decision making relevant for transportation modeling. Future
research can address several aspects of the evacuation choice problem con-
sidering the social influence. For instance, dynamic evacuation choice mod-
els, specifying a functional form of the threshold values of the agents, can
be estimated. Thus in addition to the social influence, such kind of models
will be able to estimate the influence of the individual socio-economic vari-
ables. Another avenue of research might be to find appropriate community
structure or warning strategies favoring faster propagation of evacuation de-
cisions. Although the social contagion models have been studied in network
science literature more commonly, they have not been used in any previous
transportation literature to the best of our knowledge. We believe that such
introduction of social influences in evacuation behavior analysis can improve
the modeling capabilities and can become an essential component for future
integrated transportation models.
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Figure A.7: Role of mixing patterns on cascade propagation for Poisson degree distri-
bution(Note: Due to the randomness in the simulation, different simulation may end at
different time steps. Thus it is not possible to take the average of the 100 realizations.
We first find the frequency distribution of simulation end times for those realizations in
which at least 80% of the vertices decide to evacaute. We then report the average of the
results for those realizations that have the highest frequency of simulation end time where

f= frequency of the simulation end time)
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