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Abstract

Tensor learning is gaining increasing attention in recent years. This survey provides

an overview of tensor analysis in modern statistical learning. It consists of four

main topics, including tensor supervised learning, tensor unsupervised learning, tensor

reinforcement learning, and tensor deep learning. This review emphasizes statistical

models and properties, as well as connections between tensors and other learning topics

such as reinforcement learning and deep learning.

Keywords: Tensor decomposition; Tensor regression; Tensor clustering; Tensor graphical

model; Tensor reinforcement learning; Tensor deep learning.

1 Introduction

Tensors, also known as multidimensional arrays, are generalizations of vectors and matrices

to higher dimensions. In recent years, tensor data are fast emerging in a wide variety of

scientific and business applications, including but not limited to recommendation systems

(Rendle and Schmidt-Thieme, 2010; Bi et al., 2018), speech or facial recognitions (Vasilescu

and Terzopoulos, 2002; Ma et al., 2019), networks analysis (Li et al., 2011; Ermis et al.,

2015), knowledge graphs and relational learning (Trouillon et al., 2017; Liu et al., 2020),

among many others. Tensor data analysis is thus gaining increasing attention in statistics

and machine learning communities. In this survey, we provide an overview of tensor analysis

in modern statistical learning.

We begin with a brief introduction of tensor notations, tensor algebra, and tensor

decompositions. For more details on tensor basics, we refer to Kolda and Bader (2009). We

then divide our survey into four topics, depending on the nature of the learning problems:

(a) tensor supervised learning, including tensor predictor regression and tensor response

regression, (b) tensor unsupervised learning, including tensor clustering and tensor graphical
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model, (c) tensor reinforcement learning, including low-rank tensor bandit and low-rank

Markov decision process, and (d) tensor deep learning, including deep neural networks

compression and deep learning theory via tensor formulation. For each topic, we start with

the study goals and some motivating applications. We then review several key methods and

some related solutions. We conclude each topic by a discussion of some open problems and

potential future directions.

We also note that, there have already been several excellent survey papers on tensor

learning in statistics and machine learning, for instance, Rabanser et al. (2017); Sidiropoulos

et al. (2017); Janzamin et al. (2019); Song et al. (2019); Bi et al. (2020). However, our review

differs in terms of the focus and the organization of different tensor learning topics. Particu-

larly, Rabanser et al. (2017); Sidiropoulos et al. (2017); Janzamin et al. (2019) concentrated

on tensor decomposition, which aims to dissolve tensors into separable representations, while

Song et al. (2019) reviewed tensor completion, which aims to impute the unobserved entries of

a partially observed tensor. Tensor decomposition and tensor completion are both fundamen-

tal problems in tensor data analysis. However, given there are already fairly thorough reviews

on these topics, we will not go over them in detail, but instead refer to the aforementioned

survey articles. Bi et al. (2020) divided numerous tensor methods by three major application

areas, i.e., recommendation systems, biomedical imaging, and network analysis. We instead

divide our review by different types of learning problems. Moreover, Bi et al. (2020) only

briefly mentioned some connections between tensor analysis and deep learning, while one of

the focuses of our review is about more recent topics of tensor reinforcement learning and

tensor deep learning and their relations with tensor analysis.

Given fast development of tensor learning, it is inevitable that we will miss some important

papers in this survey. Nevertheless, our goal is to provide a good entry point to the area of

tensor data analysis, with emphasis on statistical models and properties, as well as connections

with other learning topics.

2 Background

We begin with a brief review of some basics of tensors. For more details, we refer to Kolda

and Bader (2009) for an excellent review.

Notations: The order of a tensor, also referred to as the mode, is the dimension of the

array. A first-order tensor is a vector, a second-order tensor is a matrix, and tensors of order

three and higher are referred to as high-order tensors, see Figure 1. The fiber of a tensor is

defined by fixing all indices but one. For example, given a third-order tensor X ∈ Rp1×p2×p3 ,

its mode-1, 2 and 3 fibers are denoted as X :jk, X i:k and X ij:, respectively.
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Figure 1: An example of first, second and third-order tensors.

Tensor operations: Tensor unfolding, also known as tensor matricization, is a tensor

operation that arranges tensor fibers into a matrix. Given a tensor X ∈ Rp1×p2×...×pD , the

mode-d unfolding, denotes as X (d), arranges the mode-d fibers to be the columns of the

resulting matrix. For example, the mold-1 unfolding of a third-order tensor X ∈ Rp1×p2×d3 ,

denoted by X (1), results in the matrix [X :11, . . . ,X :p21, . . . ,X :p2p3 ] ∈ Rp1×(p2p3); see Figure

2 for a graphic illustration. Tensor vectorization is a tensor operation that arranges tensor

fibers into a vector. The vectorization of tensor X ∈ Rp1×p2×...×pD , denoted by vec(X ), is the

vector of length
∏D

d=1 pd that is obtained by stacking the mode-1 fibers of X . For example,

given an order-three tensor X ∈ Rp1×p2×p3 , vec(X ) =
(
X>:11, . . . ,X>:p21, . . . ,X>:p2p3

)>
; again

see Figure 2 for an illustration.

Figure 2: Tensor fibers, unfolding and vectorization.

For two tensors X ,Y ∈ Rp1×p2×...×pD , their inner product is defined as 〈X ,Y〉 =
∑

i1,...,iD

X i1,...,iDY i1,...,iD . For a tensor X ∈ Rp1×p2×...×pM and a matrix A ∈ RJ×pm , the d-mode tensor

matrix product, denoted by ×d, is defined as X ×d A ∈ Rp1×...×pd−1×J×pd+1×...×pD . In this

operation, each mode-d fiber of X is multiplied by the matrix A, and elementwisely, we have

(X ×d A)i1,...,id−1,j,id+1,...,iD
=
∑pd

id=1 X i1,...,iDAjid .

Tensor decompositions: We next introduce two tensor decompositions that play funda-

mental roles in tensor data analysis.

The first is the CP-decomposition. For a Dth-order tensor B∗, the rank-R CP decomposi-
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tion of B∗ is defined as,

B∗ =
R∑
r=1

w∗rβ
∗
r,1 ◦ · · · ◦ β∗r,D, (1)

where w∗r ∈ R, β∗r,d ∈ Spd , r = 1, . . . , R, d = 1, . . . , D, Sd = {v ∈ Rd | ‖v‖ = 1}, and

◦ denotes the outer product. The CP-decomposition is sometimes abbreviated as B∗ =

JW ∗;B∗1 , . . . ,B
∗
DK, where W ∗ = diag(w∗1, . . . , w

∗
R) ∈ RR×R is a diagonal matrix, and B∗d =

[β∗1,d, . . . ,β
∗
R,d] ∈ Rpd×R are the factor matrices. If B∗ admits a CP structure (1), then the

number of free parameters in B∗ is reduced from
∏D

d=1 pd to R×
∑D

d=1 pd.

The second is the Tucker decomposition. For a Dth-order tensor B∗, the rank-(R1, . . . , RD)

Tucker decomposition of B∗ is defined as,

B∗ =

R1∑
r1=1

· · ·
RD∑
rD=1

w∗r1,...,rDβ
∗
r1,1
◦ . . . ◦ β∗rD,D, (2)

where w∗r1,...,rD ∈ R, β∗rd,d ∈ Spd , rd = 1, . . . , Rd, d = 1, . . . , D. The Tucker decomposition is

sometimes abbreviated as B∗ = JW ∗;B∗1 , . . . ,B
∗
DK, where W ∗ = (w∗r1,...,rD) ∈ RR1×...×RD is

the Dth-order core tensor, and B∗d = [β∗1,d, . . . ,β
∗
Rd,d

] ∈ Rpd×Rd are the factor matrices. If

B∗ admits a Tucker structure (2), then the number of free parameters in B∗ is reduced from∏D
d=1 pd to

∑D
d=1 Rd × pd +

∏D
d=1Rd.

3 Tensor Supervised Learning

The first topic we review is tensor supervised learning, where the primary goal is to study the

association between a tensor object and some other univariate or multivariate variables. The

problem can be cast as a regression, and tensor can appear at either the predictor side or the

response side. This leads to the two subtopics we review: the tensor predictor regression and

the tensor response regression. The tensor supervised learning idea can also be generalized to

involve multiple tensors on one side of the regression, or having tensors showing up on both

sides of the regression model.

3.1 Tensor Predictor Regression

Motivating examples: Neuroimaging data often take the form of tensors. For instance,

electroencephalography (EEG) measures voltage value from numerous electrodes placed on

scalp over time, and the resulting data is a two-dimensional matrix. Anatomical magnetic

resonance imaging (MRI) measures brain structural features such as cortical thickness, and

the data is a three-dimensional tensor. Figure 3 shows an example of 3D MRI at different
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Figure 3: An example of magnetic resonance imaging. The image is obtained from internet.

slices and directions. It is often of great scientific interest to model the association between

the tensor-valued images and the clinical outcomes such as diagnostic status, or cognition

and memory scores. This can be formulated as a tensor predictor regression problem, where

the response is a binary or continuous scalar, the predictor is an imaging tensor, and the goal

is to understand the change of the outcome as a function of the tensor.

Low-rank linear and generalized linear model: Consider a Dth-order tensor predictor

X i ∈ Rp1×...×pD and a scalar response yi ∈ R, for i.i.d. data replications i = 1, . . . , n. Zhou

et al. (2013) considered the tensor predictor regression model of the form,

yi = 〈B∗,X i〉+ εi, (3)

where B∗ ∈ Rp1×...×pD denotes the coefficient tensor that captures the association between

X i and yi and is of the primary interest, and εi ∈ R denotes the measurement error. Without

loss of generality, the intercept term is set to zero to simplify the presentation. Model (3) is a

direct generalization of the classical multivariate linear regression model. The issue, however,

is that B∗ involves
∏D

d=1 pd parameters, which is ultrahigh dimensional and far exceeds the

typical sample size. To efficiently reduce the dimensionality, Zhou et al. (2013) imposed the

CP low-rank structure (1) on B∗. Accordingly, the number of unknown parameters involved

in B∗ is reduced to R
∑D

d=1 pd. They then proposed to estimate B∗ via penalized maximal

likelihood estimation, by solving

min
wr,βr,1,...,βr,D

n∑
i=1

(
yi −

〈
R∑
r=1

wrβr,1 ◦ . . . ◦ βr,D,X i

〉)2

+
D∑
d=1

R∑
r=1

Pλ(|βr,d|), (4)
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under the additional constraints that wr > 0 and ‖βr,d‖2 = 1 for all r = 1, . . . , R and

d = 1, . . . , D, and Pλ(·) is a sparsity-inducing penalty function indexed by the tuning

parameter λ. This penalty helps to obtain a sparse estimate of βr,d, which translates to

sparsity in the blocks of B∗, and in turn facilitates the interpretation of B∗. Denote the factor

matrices Bd = [β1,d, . . . ,βR,d] ∈ Rpd×R, for d = 1, . . . , D. Zhou et al. (2013) proposed a block

updating algorithm to solve (4) for each Bd while fixing all other Bd′ , d
′ 6= d. They further

considered a generalized linear model formulation of (3) by introducing a link function so to

work with a binary or count type yi.

Relatedly, Li et al. (2016) extended (3) to multivariate response variables. Guhaniyogi

et al. (2017) formulated the tensor predictor regression (3) in a Bayesian setting, and

introduced a novel class of multiway shrinkage priors for tensor coefficients. Li et al. (2018b)

considered the Tucker decomposition (2) for B∗ and demonstrated its flexibility over the

CP decomposition. Zhang et al. (2019) extended (3) to the generalized estimating equation

setting for longitudinally observed imaging tensors.

Large-scale tensor regression via sketching: A common challenge associated with the

tensor predictor regression with a low-rank factorization is the high computational cost. This

is especially true when the dimension of the tensor predictor is large. Sketching offers a

natural solution to address this challenge, and is particularly useful when the dimensionality

is ultrahigh, the sample size is super large, or the data is extremely sparse.

Yu and Liu (2016) introduced the subsampled tensor projected gradient approach for a

variety of tensor regression problems, including the situation when the response is a tensor

too. Their algorithm was built upon the projected gradient method with fast tensor power

iterations, and leveraged randomized sketching for further acceleration. In particular, they

used count sketch (Clarkson and Woodruff, 2017) as a subsampling step to generate a reduced

data, then feed the data into tensor projected gradient to estimate the final parameters.

Zhang et al. (2020) utilized importance sketching for low-rank tensor regressions. They

carefully designed sketches based on both the response and the low-dimensional structure

of the parameter of interest. They proposed an efficient algorithm, which first used the

high-order orthogonal iteration (De Lathauwer et al., 2000) to determine the importance

sketching directions, then performed importance sketching and evaluated the dimension-

reduced regression using the sketched tensors, and constructed the final tensor estimator

using the sketched components. They showed that their algorithm achieves the optimal

mean-squared error under the low-rank Tucker structure and randomized Gaussian design.

Nonparametric tensor regression: Although the linear tensor regression provides a

simple and concise solution, the linearity assumption in (3) can be restrictive in numerous

applications (Kanagawa et al., 2016; Suzuki et al., 2016). For instance, Hao et al. (2019)

showed that, in a digital advertising study, the association between the click-through-rate
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and the impression tensor of various ads on different devices is clearly nonlinear.

Hao et al. (2019) proposed a nonparametric extension of model (3), by assuming

yi =

p1∑
j1=1

. . .

pD∑
jD=1

f ∗j1...jD ([X i]j1...jD) + εi, (5)

where [X i]j1...jD denotes the (j1, . . . , jD)th entry of the tensor X i, and f ∗j1...jD(·) is some

smooth function that can be approximated by B-splines (Hastie and Tibshirani, 1990),

f ∗jkl([X i]jkl) ≈
H∑
h=1

β∗j1...jDhψh([X i]j1...jD), 1 ≤ j1 ≤ p1, . . . , 1 ≤ jD ≤ p3,

with theB-spline basis ψj1...jDh and coefficients β∗j1...jDh. Let [Fh(X i)]j1...jD = ψj1...jDh([X i]j1...jD)

and [Bh]j1...jD = β∗j1...jDh. The compact tensor representation of their model is

yi =
H∑
h=1

〈Bh,Fh(X i)〉+ εi. (6)

In this model, Fh(X i) ∈ Rp1×...×pD is the predictor tensor under the B-spline transformation,

and Bh ∈ Rp1×...×pD captures the association information. The linear tensor regression model

(3) becomes a special case of (6), with ψj1...jDh(x) = x and H = 1. By considering nonlinear

basis functions, e.g., trigonometric functions, model (6) is more flexible and has a better

prediction power. Moreover, Hao et al. (2019) imposed the CP structure (1) on Bh, and

a group-wise penalty to screen out the nuisance components. They proposed to solve the

following penalized optimization problem,

min
β1hr,...,βDhr

1

n

n∑
i=1

(
yi −

H∑
h=1

〈
R∑
r=1

β1hr ◦ . . . ◦ βDhr,Fh(X i)

〉)2

+ λ
D∑
d=1

pd∑
j=1

√√√√ H∑
h=1

R∑
r=1

β2
dhrj. (7)

The optimization in (7) is done in a block-wise fashion for βdhr, d = 1, . . . , D, and each block

is solved by the back-fitting algorithm for the standard sparse additive model (Ravikumar

et al., 2009). The regularization parameter λ is tuned by cross-validation.

Relatedly, Zhou et al. (2020b) considered a broadcasted nonparametric tensor regression

model where all entries of the tensor covariate are assumed to share the same function, which

is a special case of (5).

Future directions: There are a number of open questions for tensor predictor regression.

One is to integrate multiple tensor predictors, each of which represents a tensor measurement

from a data modality, and there are multiple modalities of data collected for the same group

of experimental subjects. Challenges include how to model the interactions between different
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tensors, and how to perform statistical inference. In addition, it is of interest to investigate

how to speed-up the computation in nonparametric tensor regression. One possible solution

is to use the sketching idea, or the divide-and-conquer approach (Zhang et al., 2015b), when

the data can not fit into a single machine.

3.2 Tensor Response Regression

Motivating examples: While the tensor predictor regression focuses on understanding

the change of a phenotypic outcome as the tensor varies, in numerous applications, it is

important to study the change of the tensor as the covariates vary. One example is anatomical

MRI, where the data takes the form of a 3D tensor, and voxels correspond to brain spatial

locations. Another example is functional magnetic resonance imaging (fMRI), where the

goal is to understand brain functional connectivity encoded by a symmetric matrix, with

rows and columns corresponding to brain regions, and entries corresponding to interactions

between those regions. In both examples, it is of keen scientific interest to compare the scans

of brains, or the brain connectivity patterns, between the subjects with some neurological

disorder to the healthy controls, after adjusting for additional covariates such as age and sex.

Both can be formulated as a regression problem, with image tensor or connectivity matrix

serving as the response, and the disease indicator and other covariates forming the predictors.

Sparse low-rank tensor response model: Consider a Dth-order tensor response Y i ∈
Rp1×...×pD , and a vector of predictors xi ∈ Rp0 , for i.i.d. data replications i = 1, . . . , n.

Rabusseau and Kadri (2016); Sun and Li (2017) considered the tensor response regression

model of the form,

Y i = B∗ ×m+1 xi + E i, (8)

where B∗ ∈ Rp1×...×pD×p0 is an (D+ 1)th-order tensor coefficient that captures the association

between xi and Y i, and E i ∈ Rp1×...×pD is an error tensor that is independent of xi. Without

loss of generality, the intercept term is set to zero to simplify the presentation.

Both Rabusseau and Kadri (2016) and Sun and Li (2017) imposed the rank-R CP structure

(1) for the coefficient tensor B∗, while Sun and Li (2017) further incorporated the sparsity

structure. Specifically, Sun and Li (2017) proposed to solve

min
wr,βr,d

r∈[R],d∈[D+1]

1

n

n∑
i=1

∥∥∥∥∥Y i −
R∑
r=1

wr(β
>
r,D+1xi)βr,1 ◦ . . . ◦ βr,D

∥∥∥∥∥
2

F

, subject to ‖βr,d‖0 ≤ sd, (9)

and ‖βr,d‖2 = 1, where sj is the sparsity parameter. In (9), the sparsity of the decomposed

components is encouraged via a hard-thresholding penalty. The optimization in (9) is utterly

different from that of (4) for tensor predictor regression, which leads to a more complicated
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algorithm and a more subtle interplay between the computational efficiency and the statistical

rate of convergence. To solve (9), Sun and Li (2017) proposed an iterative updating algorithm

consisting of two major steps. In the first step, the estimation of wr,βr,1, . . . ,βr,d for k ∈ [K],

given βr,D+1, r ∈ [R] and wr′ ,βr′,1, . . . ,βr′,d, r
′ 6= r, is reformulated as a sparse rank-1

tensor decomposition problem (Sun et al., 2017), while in the second step, the estimation of

βr,D+1 for r ∈ [R], given wr,βr,1, . . . ,βr,D, r ∈ [R] and βr′,D+1, r
′ 6= r becomes a standard

least-squares optimization problem and has a closed-form solution.

Additional tensor response regression models: Li and Zhang (2017) proposed an

envelope-based tensor response model, which utilized a generalized sparsity principle to

exploit the redundant information in the tensor response, and seeked linear combinations of

the response that are irrelevant to the regression. Raskutti et al. (2019) developed a class

of sparse regression models, under the assumption of Gaussian error, when either or both

the response and predictor are tensors. Their approach required a crucial condition that the

regularizer was convex and weakly decomposable, and the low-rankness of the estimator was

achieved via a tensor nuclear norm penalty. Later, Chen et al. (2019) proposed a projected

gradient descent algorithm to efficiently solve the non-convex optimization in tensor response

regression, and provided the theoretical guarantees for learning high-dimensional tensor

regression models under different low-rank structural assumptions. Motivated by longitudinal

neuroimaging studies where image tensors are often missing, Zhou et al. (2020a) developed

a regression model with partially observed dynamic tensor as the response and external

covariates as the predictor vector. Their solution combined the tensor completion loss idea of

a single partially observed tensor (Jain and Oh, 2014) with the tensor response regression

model of Sun and Li (2017), and developed an element-wise updating algorithm.

Future directions: There are a number of open questions for tensor response regression.

One is how to obtain a consistent estimator of the rank R when the CP structure is employed.

More importantly, it remains open to derive the corresponding convergence rate, and combine

the estimated rank with the subsequent estimator of B∗ when studying the asymptotic

properties. The existing solutions generally treat R as known in the asymptotic studies.

Moreover, the current studies have primarily focused on parameter estimation, whereas

parameter inference remains a challenging and open question for tensor response regression,

especially when the sample size is limited.

4 Tensor Unsupervised Learning

The second topic we review is tensor unsupervised learning, which involves no external

variables. We review two topics: tensor clustering, and tensor graphical model. The former
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aims to identify clusters by studying the structure of tensor itself, whereas the latter aims to

characterize the dependency structure of the individual mode of tensor-valued data.

4.1 Tensor Clustering

Motivating examples: Consider two motivating examples. One is a digital advertisement

example consisting of the click-through rates for advertisements displayed on an internet

company’s webpages over weeks during the ad campaign. The data is a fourth-order tensor,

recording the click-through rate of multiple users over a collection of advertisements by

different publishers and published on different devices, and the data was aggregated across

time. The goal is to simultaneously cluster users, advertisements, and publishers to improve

user behavior targeting and advertisement planning. Another example is dynamic brain

connectivity analysis based on fMRI data, where the data is in the form of brain region

by region by time tensor, and the goal is to cluster over time, so to better understand the

interactions of distinct brain regions and their dynamic patterns over time. Both examples

can be formulated as a tensor clustering problem. The prevalent clustering solutions, however,

have mainly focused on clustering of vector or matrix-valued data. Notably, biclustering

extends the classical clustering along both the observations (rows) and the features (columns)

of a data matrix (Madeira and Oliveira, 2004; Chi et al., 2017).

Convex tensor co-clustering: We first review a convex co-clustering method that extends

biclustering to tensor co-clustering by solving a convex formulation of the problem. Specifically,

without loss of generality, Chi et al. (2018) considered a third-order tensor X ∈ Rp1×p2×p3 .

They assumed that the observed data tensor is a noisy realization of an underlying tensor

that exhibits a checkerbox structure modulo some unknown reordering along each of its

modes. Suppose that there are K1, K2, and K3 clusters along mode 1, 2, and 3 respectively.

If the (i1, i2, i3)th entry in X belongs to the cluster defined by the r1th mode-1 group, r2th

mode-2 group, and r3th mode-3 group, then the observed tensor element xi1i2i3 is

xi1i2i3 = c∗r1r2r3 + εi1i2i3 , (10)

where c∗r1r2r3 is the mean of the co-cluster defined by the r1th mode-1 partition, r2th mode-2

partition, and r3th mode-3 partition, and εi1i2i3 is the noise. Consequently, the observed tensor

X can be written as the sum of a mean tensor U∗ ∈ Rp1×p2×p3 , whose elements are expanded

from the co-cluster means tensor C∗ ∈ RK1×K2×K3 , and a noise tensor E ∈ Rp1×p2×p3 . Figure

4 illustrates an underlying mean tensor U∗ after permuting the slices along each of the modes

to reveal a checkerbox structure. The co-clustering model in (10) is the 3-way analogue of

the checkerboard mean model often employed in biclustering data matrices (Madeira and

Oliveira, 2004; Chi et al., 2017).
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Figure 4: A third-order tensor with a checkerbox structure

Estimating model (10) consists of finding the partitions along each mode and finding

the mean values of the K1K2K3 co-clusters. The challenge is the first step, i.e., finding the

partitions G1,G2, and G3, which denote the indices of the r1th mode-1, r2th mode-2, and r3th

mode-3 groups, respectively. Chi et al. (2018) proposed to solve a convex relaxation to the

original combinatorial optimization problem, by simultaneously identifying the partitions

along the modes of X and estimating the co-cluster means through the optimization of the

following convex objective function,

Fγ(U) =
1

2
‖X − U‖2

F + γ

[
R1(U) +R2(U) +R3(U)

]
︸ ︷︷ ︸

R(U)

, (11)

where R1(U) =
∑

i<j w1,ij‖U i:: − U j::‖F, R2(U) =
∑

i<j w2,ij‖U :i: − U :j:‖F, and R3(U) =∑
i<j w3,ij‖U ::i − U ::j‖F. By seeking the minimizer Ûγ ∈ Rp1×p2×p3 of (11), it casts co-

clustering as a signal approximation problem, modeled as a penalized regression, to estimate

the true co-cluster mean tensor U∗. The quadratic term in (11) quantifies how well U
approximates X , while the regularization term R(U) penalizes deviations away from a

checkerbox pattern. The nonnegative parameter γ tunes the relative emphasis on these two

terms and is selected via a BIC-type information criterion. The nonnegative weights wd,ij
fine tunes the shrinkage of the slices along the dth mode. Chi et al. (2018) showed that the

solution Û for (11) produces an entire solution path of checkerbox co-clustering estimates

that varies continuously in γ, from the least smoothed model where Û = X and each tensor

element occupies its own co-cluster, to the most smoothed model where all the elements of Û
are identical and all tensor elements belong to a single co-cluster.

Tensor clustering via low-rank decomposition: We next review tensor clustering based

on low-rank tensor decompositions (Papalexakis et al., 2013; Sun and Li, 2019). Unlike the

convex tensor co-clustering of Chi et al. (2018) that targets a single tensor object, here we

target the problem of clustering a collection of tensor samples.
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Figure 5: A schematic illustration of the low-rank tensor clustering method.

Given N copies of Dth-order tensors, X 1, . . . ,XN ∈ Rp1×...×pD , Papalexakis et al. (2013);

Sun and Li (2019) aimed to uncover the underlying cluster structures of the N samples,

with K clusters, and an equal number of l = N/K samples per cluster, for simplicity. Sun

and Li (2019) proposed to first stack all n tensor samples into a (D + 1)th-order tensor

T ∈ Rp1×···×pD×N , then consider a structured decomposition of T , and finally apply a usual

clustering algorithm, e.g., K-means, to the matrix from the tensor decomposition that

corresponds to the last mode to obtain the cluster assignment. Figure 5 shows a schematic

plot of this method. Specifically, assume that the tensor T is observed with noise, i.e.,

T = T ∗ + E, where E is an error tensor, and T ∗ is the true tensor with a rank-R CP

decomposition structure, T ∗ =
∑R

r=1w
∗
rβ
∗
r,1 ◦ · · · ◦ β∗r,D+1, where β∗r,j ∈ Rpj , ‖β∗j,r‖2 = 1,

w∗r > 0, j = 1, . . . , D + 1, r = 1, . . . , R. Then the cluster structure of samples along the

last mode of the tensor T is fully determined by the matrix that stacks the decomposition

components, i.e.,

B∗D+1 =
(
β∗1,D+1, . . . ,β

∗
R,D+1

)
=
(
µ∗>1 , . . . ,µ∗>1︸ ︷︷ ︸

l samples

, . . . ,µ∗>K , . . . ,µ∗>K︸ ︷︷ ︸
l samples

)>
∈ RN×R,

where µ∗k = (µ∗1,k, . . . , µ
∗
R,k) ∈ RR, k = 1, . . . , K, indicates the cluster assignment. Accord-

ingly, the true cluster means of the tensor samples X 1, . . . ,XN can be written as,

M1 :=
R∑
r=1

w∗rβ
∗
r,1 ◦ · · · ◦ β∗r,Dµ∗r,1︸ ︷︷ ︸

cluster center 1

, . . . , MK :=
R∑
r=1

w∗rβ
∗
r,1 ◦ · · · ◦ β∗r,Dµ∗r,K︸ ︷︷ ︸

cluster center K

.

This reveals the key structure, i.e., each cluster mean is a linear combination of the outer
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product of R rank-1 basis tensors, and all the cluster means share the same R basis tensors.

Sun and Li (2019) further introduced the sparsity and smoothness fusion structures in

tensor decomposition to capture the sparsity and dynamic properties of the tensor samples.

They proposed an optimization algorithm consisting of an unconstrained tensor decomposition

step followed by a constrained optimization step. They established theoretical guarantee

for their proposed dynamic tensor clustering approach, by deriving the corresponding non-

asymptotic error bound, the rate of convergence, and the cluster recovery consistency.

Additional tensor clustering approaches: We briefly discuss some additional tensor

clustering methods. Zhang et al. (2015a) unfolded tensor in each mode to construct an

affinity matrix, then applied spectral clustering algorithm on this affinity matrix to obtain

the cluster structure. Wu et al. (2016) utilized super-spacey random walk to propose a tensor

spectral co-clustering algorithm for a nonnegative three-mode tensor. More recently, Luo

and Zhang (2020) studied high-order clustering with planted structures for testing whether a

cluster exists and identifying the support of cluster.

Future directions: In the model T = T ∗ + E considered by Sun and Li (2019), no

distributional assumption is imposed on the error tensor E. If one further assumes that E
is a standard Gaussian tensor, then the method reduces to a tensor version of Gaussian

mixture model with identity covariance matrix. One possible future direction is to consider

a more general tensor Gaussian mixture model with non-identity covariance matrix. The

tensor cluster means and the covariance matrices can be estimated using a high-dimensional

expectation-maximization algorithm (Hao et al., 2018), in which the maximization-step

solves a penalized weighted least squares. Moreover, in the theoretical analysis of all the

aforementioned tensor clustering projects, the true number of clusters was assumed to be

given. It is of great interests to study the property of the tensor clustering when the number

of cluster is estimated (Wang, 2010).

4.2 Tensor Graphical Model

Motivating examples: Tensor graphical model aims to characterize the dependency struc-

ture of the individual mode of the tensor-valued data. As an example, consider the microarray

study for aging (Zahn et al., 2007), where multiple gene expression measurements are recorded

on multiple tissue types of multiple mice with varying ages, which forms a set of third-order

gene-tissue-age tensors. It is of scientific interest to study the dependency structure across

different genes, tissues, and ages.

Gaussian graphical model: Similar to the vector-valued graphic model, He et al. (2014);

Sun et al. (2015) assumed that the Dth-order tensor T ∈ Rp1×...×pD follows a tensor
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normal distribution with zero mean and covariance matrices Σ1, . . . ,ΣD. Denote it by

T ∼ TN(0; Σ1, . . . ,ΣD), and its probability density function is given by

p(T |Σ1, . . . ,ΣD) = (2π)−p/2

{
D∏
d=1

|Σd|−p/(2pd)

}
exp

(
−‖T ×Σ−1/2‖2

F/2
)
, (12)

where p =
∏D

d=1 pd, and Σ−1/2 =
{

Σ
−1/2
1 , . . . ,Σ

−1/2
D

}
. When D = 1, it reduces to the vector

normal distribution with zero mean and covariance Σ1. Following Kolda and Bader (2009),

T ∼ TN(0; Σ1, . . . ,ΣD) if and only if vec(T ) ∼ N(vec(0); ΣD ⊗ . . .⊗Σ1), where ⊗ denotes

the Kronecker product.

Given n copies of i.i.d. samples T1, . . . , Tn from TN(0; Σ∗1, . . . ,Σ
∗
D), the goal of ten-

sor graphical modeling is to estimate the true covariance matrices Σ∗1, . . . ,Σ
∗
D, and the

corresponding true precision matrices Ω∗1, . . . ,Ω
∗
D, where Ω∗d = Σ∗−1

d , d = 1, . . . , D. For

identifiability, assume that ‖Ω∗d‖F = 1 for d = 1, . . . , D. This renormalization does not

change the graph structure of the original precision matrix. A standard solution is the

penalized maximum likelihood estimation which minimizes

1

p
tr[S(ΩD ⊗ . . .⊗Ω1)]−

D∑
d=1

1

pd
log |Ωd|+

D∑
d=1

Pλd(Ωd), (13)

where S = n−1
∑n

i=1 vec(Ti)vec(Ti)>, and Pλd(·) is a penalty function indexed by the tuning

parameter λd. Adopting the usual lasso penalty used in vector graphical model, let Pλd(Ωd) =

λd‖Ωd‖1,off, where ‖ · ‖1,off means the sparsity penalty is applied to the off-diagonal elements

of the matrix. The problem reduces to the classical sparse vector graphical model (Yuan and

Lin, 2007; Friedman et al., 2008) when D = 1, and the sparse matrix graphical model (Leng

and Tang, 2012; Yin and Li, 2012; Tsiligkaridis et al., 2013; Zhou, 2014) when D = 2. He

et al. (2014) showed that the global minimizer of (13) enjoys nice theoretical properties.

Note that the objective function in (13) is bi-convex, in the sense that it is convex in

terms of Ωd when the rest of D − 1 precision matrices are fixed. Exploring this bi-convex

property, Sun et al. (2015) proposed to solve (13) by alternatingly updating one precision

matrix while fixing the rest, which is equivalent to minimizing

1

pd
tr(SdΩd)−

1

pd
log |Ωd|+ λd‖Ωd‖1,off, (14)

where Sd = pd/(np)
∑n

i=1 Vd
iV

d>
i , Vd

i =
[
Ti ×

{
Ω

1/2
1 , . . . ,Ω

1/2
d−1, 1pd ,Ω

1/2
d+1, . . . ,Ω

1/2
D

}]
(d)

, ×
denotes the tensor product operation, and [·](d) denotes the mode-d matricization operation.

Minimizing (14) corresponds to estimating the vector-valued Gaussian graphical model, which

can be efficiently solved (Yuan and Lin, 2007; Friedman et al., 2008). Sun et al. (2015) further
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showed that the estimator of their tensor lasso algorithm is able to achieve the desirable

optimal statistical rates. In particular, their estimator Ω̂d satisfies

∥∥Ω̂d −Ω∗d
∥∥
F

= OP

(√
pd(pd + sd) log pd

np

)
;
∥∥Ω̂d −Ω∗d

∥∥
∞ = OP

(√
pd log pd
np

)
.

where p =
∏D

d=1 pd and the sparsity parameter sd is the number of nonzero entries in the

off-diagonal component of Ω∗d. The above error bound implies that when the mode D ≥ 3,

the estimator from the tensor lasso algorithm can achieve estimation consistency even if

we only have access to one observation, i.e., n = 1. This is because the estimation of the

dth precision matrix takes advantage of the information from all other modes of the tensor

data. This phenomenon only exists in tensor graphical model when D ≥ 3, which reveals an

interesting blessing of dimensionality phenomenon. Moreover, this rate is minimax-optimal

since it is the best rate one can obtain even when Ω∗j (j 6= d) were known.

As a follow-up, Lyu et al. (2019) further proposed a de-biased statistical inference procedure

for testing hypotheses on the true support of the sparse precision matrices, and employed it

for testing a growing number of hypothesis with false discovery rate (FDR) control. They

also established the asymptotic normality of the test statistic and the consistency of the FDR

controlled multiple testing procedure.

Variation in the Kronecker structure: In addition to the Kronecker product structure

considered in (12), Greenewald et al. (2019) considered a Kronecker sum structure of Ω =

Ψ1 ⊕Ψ2 = (Ψ1 ⊗ I) + (Ψ2 ⊗ I). They showed that the new structure on the precision matrix

leads to a non-separable covariance matrix that provides a richer model than the Kronecker

product structure. Alternatively, Wang et al. (2020) proposed a Sylvester-structured graphical

model to estimate precision matrices associated with tensor data, and used a Kronecker sum

model for the square root factor of the precision matrix.

Future directions: All the existing works have assumed that the tensor data follows a

tensor normal distribution. A natural future direction is to relax this normal distribution

requirement, extend to the higher-order nonparanormal distribution (Liu et al., 2009), and

utilize a robust rank-based likelihood estimation. When the order of the tensor is D = 2, it

reduces to the semiparametric bigraphical model considered in Ning and Liu (2013).

5 Tensor Reinforcement Learning

The third topic we review is tensor reinforcement learning. Reinforcement learning (RL) is

an area of machine learning that focuses on how an agent interacts with and takes actions

in an environment in order to maximize the notion of cumulative rewards. It is a fast
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growing field; see Sutton and Barto (2018) for a review and the references therein. We

highlight two topics that involve tensor learning in RL: stochastic low-rank tensor bandit, and

learning Markov decision process via tensor decomposition. In both cases, tensor methods

serve as a powerful dimension reduction tool, which efficiently reduces the complexity of the

reinforcement learning problems.

5.1 Stochastic Low-rank Tensor Bandit

Motivating examples: The growing availability of tensor data provides an unique oppor-

tunity for decision-makers to efficiently develop multi-dimensional decisions for individuals

(Ge et al., 2016; Frolov and Oseledets, 2017; Bi et al., 2018; Song et al., 2019). For instance,

consider a marketer who wants to design an advertising campaign for products with promotion

offers across different marketing channels and user segments. This marketer needs to estimate

the probability of user i clicking offer j in channel k for any (i, j, k) combination so that

the most relevant users will be targeted for a chosen product and channel. Figure 6 gives a

graphic illustration.

Figure 6: The tensor formulation of multi-dimensional advertising decisions.

Traditional static recommendation systems using tensor methods (Frolov and Oseledets,

2017; Bi et al., 2018; Song et al., 2019) do not interact with the environment to update the

estimation. Besides, they usually suffer from cold-start in the absence of information from

new customers, new products, or new contexts. An interactive recommendation system for

multi-dimensional decisions is urgently needed.

Reinforcement learning offers a dynamic and interactive policy of recommendations. One

of the fundamental problems in RL is the exploration-exploitation trade-off, in the sense

that the agent must balance between exploiting existing information to accrue immediate

reward, while investing in exploratory behavior that may increase future reward. Multi-armed

bandit (Lattimore and Szepesvári, 2020) can be viewed as a simplified version of RL that
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exemplifies this exploration-exploitation trade-off, and itself has plenty of applications in

online advertising and operations research (Li et al., 2010). We review the problem of

stochastic low-rank tensor bandit, a class of bandits whose mean reward can be represented

as a low-rank tensor.

Low-rank tensor bandit problem formulation: We begin with a brief introduction

of basic notations and concepts of multi-armed bandit. For more details, we refer to

Lattimore and Szepesvári (2020). In the vanilla K-armed bandit, the agent interacts with

the environment for n rounds. At round t ∈ [n], the agent faces a multi-dimensional decision

set A ⊆ Rp1×...×pd , and the cardinality of A can be either finite or infinite. The agent pulls

an arm It ∈ [K], and observes its reward yIt , which is drawn from a distribution associated

with the arm It, denoted by PIt with an mean reward µIt . It is important to point out in

multi-armed bandit problems, the objective is to minimize the expected cumulative regret,

which is defined as

Rn = nmax
k∈[K]

µk − E

[
n∑
t=1

yt

]
, (15)

where the expectation is with respect to the randomness in the environment and policy.

Next, we introduce the low-rank tensor bandit. The classical vanilla multi-armed bandit

can be treated as a special case of tensor bandit where the order of the tensor is one, and the

action set A only consists of canonical basis vectors, e.g., ei that has 1 on its ith coordinate

and 0 anywhere else. At round t ∈ [n], based on historical information, the agent selects an

action At from A and observes a noisy reward yt, which can be written as

yt = 〈X ,At〉+ εt, (16)

where X is an unknown tensor parameter that admits a low-rank structure, and εt is a random

noise. Model (16) can be viewed as a special case of the so-called stochastic linear bandit

(Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010; Chu et al., 2011; Abbasi-Yadkori

et al., 2011), where the mean reward can be parametrized into a linear form. However,

naively implementing the existing linear bandit algorithms is to suffer high regret, since none

of them utilizes the intrinsic low-rank structure of X .

At a glance, the tensor bandit model (16) looks similar to the tensor predictor regression

model (3) in tensor supervised learning. However, the two have some fundamental distinctions.

First, (16) considers a sequential setting, in the sense that At has to be sequentially collected

by the agent rather than given ahead. Consequently, At and At−1 may be highly dependent,

and the dependency structure is extremely difficult to characterize. By contrast, (3) can be

viewed as corresponding to the offline setting where At is fully observed. Second, instead of

minimizing the mean square error as in tensor supervised learning, the objective in tensor
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bandit is to minimize the cumulative regret,

Rn =
n∑
t=1

〈X ,A∗〉 −
n∑
t=1

〈X ,At〉, (17)

where A∗ = argmaxA〈A,X 〉. As commonly observed in the bandit literature, even though

A∗ may not be optimally estimated, the optimal regret is still achievable.

Rank-one bandit: Several existing RL methods can be categorized into the framework of

(16), and they differ in terms of the structure of the action set A and the assumptions placed

on X . Particularly, Katariya et al. (2017b,a); Trinh et al. (2020) considered stochastic rank-1

matrix bandit, where X is a rank-1 matrix and vec(At) is a basis vector. The rank-1 structure

greatly alleviates the difficulty of the problem, since one only needs to identify the largest

values of the left-singular and right-singular vectors to find the largest entry of a non-negative

rank-1 matrix. Alternatively, Katariya et al. (2017b,a) proposed special elimination-based

algorithms, and Trinh et al. (2020) viewed rank-1 bandit as a special instance of unimodal

bandit (Combes and Proutiere, 2014). However, neither of these solutions is applicable for

general-rank matrices.

General-rank bandit: Kveton et al. (2017); Lu et al. (2018) studied the extension of

stochastic general low-rank matrix bandit, and Hao et al. (2020) further generalized to

stochastic low-rank tensor bandit. In particular, Kveton et al. (2017) relied on a strong

hot-topic assumption on the mean reward matrix, and their algorithm was computationally

expensive. Lu et al. (2018) utilized the ensemble sampling for low-rank matrix bandit, but did

not provide any regret guarantee due to the theoretical challenges in handling sampling-based

exploration. Hao et al. (2020) proposed a version of epoch-greedy algorithm (Langford

and Zhang, 2008) and a tensor elimination algorithm to handle both data-poor regime and

data-rich regime. The corresponding worse-case regret bounds were derived, though it is

unclear if those bounds are optimal. In addition, Jun et al. (2019); Lu et al. (2020) studied

stochastic contextual low-rank matrix bandit, where vec(At) can be an arbitrary feature

vector, and Hamidi et al. (2019) considered linear contextual bandit with a low-rank structure.

Future directions: The key principle to design an algorithm for low-rank tensor bandit is

to efficiently utilize the low-rank information while balancing the exploration-exploitation

trade-off. Unfortunately, there is no consensus about what types of algorithm can explore the

low-rank information in both a provable and practical fashion. Actually, there is no direct

upper confidence bound or Thompson sampling type algorithm for low-rank tensor bandit

that is justified both empirically and theoretically for different structured bandit problems.

The challenge is to construct a valid confidence bound, or the posterior distribution of a

non-convex estimator in the sequential setting. In theory, although several regret upper
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bounds have been derived (Jun et al., 2019; Hao et al., 2020; Lu et al., 2020), the minimax

lower bound of low-rank tensor bandit remains unestablished.

5.2 Learning Markov Decision Process via Tensor Decomposition

Motivating examples: We next turn to full reinforcement learning of how an agent takes

actions in an environment. A classical application is robotics, where a robot is to autonomously

discover an optimal behavior through trial-and-error interactions with its environment; see

(Kober et al., 2013) for a survey of reinforcement learning in robotics. In particularly,

(Kober et al., 2013) noted that a key challenge facing robotics RL is the high dimensionality

of both the action space and the state space, due to many degrees of freedom of modern

anthropomorphic robots. Tensor methods again offer useful dimension reduction tools.

Dimension reduction of Markov decision process: Markov decision process (MDP) is

a fundamental model in RL that characterizes the interactions between an agent and an

environment. We first briefly introduce some basic notations about MDP. For more details, we

refer to Puterman (2014). An instance of MDP M can be specified by a tuple (S,A,P ,R),

where S and A are the state and action spaces, P ∈ R|S|×|A|×|S| is the transition probability

tensor, R ∈ R|S|×|A| is a matrix whose entries represent the reward after taking a certain

action under a certain state. A policy π ∈ R|S|×|A| is a set of probability distributions on

actions conditioned on each state. In addition, |S| = p, |A| = q.

In most applications, e.g., the robotics, the exact transition probability tensor of the MDP

is unknown, and only a batch of empirical transition trajectories are available to the learner.

Then one of the key tasks is to efficiently estimate the MDP transition tensor from the batch

data. A challenge, however, is the scale of the data, which makes both model estimation and

policy optimization intractable (Sutton and Barto, 2018).

Dimension reduction of MDP through matrix or tensor decompositions appears in a variety

of RL solutions, including the Markov decision process with rich observations (Azizzadenesheli

et al., 2016), the state aggregation model (Bertsekas et al., 2005; Zhang and Wang, 2019;

Duan et al., 2019), the hidden Markov model (Hsu et al., 2012), among others.

Maximum likelihood estimation and Tucker decomposition: Ni and Wang (2019)

proposed a joint dimension reduction method for both the action and state spaces of the

MDP transition tensor through the Tucker decomposition (2),

P = JP̃ ;U1,U2,U3K,

where P̃ ∈ Rr1×r2×r3 is the core tensor, and U1 ∈ Rp×r1 ,U2 ∈ Rq×r2 ,U3 ∈ Rp×r3 are the

factor matrices. The Tucker rank (r1, r2, r3) can be viewed as the intrinsic dimension of the

MDP. When q = 1, the MDP reduces to a Markov chain and the Tucker decomposition
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reduces to the spectral decomposition of the Markov chain (Li et al., 2018a; Zhang and

Wang, 2019). The factor matrices provide natural features for representing functions and

operators on the action and state spaces, which can be applied together with feature-based

reinforcement learning methods (Ernst et al., 2005).

A natural way to estimate the low-rank MDP transition tensor from the batch data

is through maximum likelihood estimation. Suppose there are n independent state-action

transition triplets {(sk, ak, s′k)}k∈[n]. For 1 ≤ s, s′ ≤ p, 1 ≤ a ≤ q, Define the empirical count

as nsas′ =
∑n

k=1 1{sk=s,ak=a,s′k=s′}. Given a fixed policy π, the negative log-likelihood based

on the state-action transition triples {(sk, ak, s′k)}k∈[n] is

L(P ) = −
p∑
s=1

q∑
a=1

p∑
s′=1

nsas′ log(P(s,a,s′)) + C,

where C is some constant unrelated with P . To estimate the MDP from sample transitions, Ni

and Wang (2019) proposed the following Tucker-constrained maximum likelihood estimator,

minimize L(Q), such that Q(·,a,·)1p = 1p, Tuker-rank(Q) ≤ (r1, r2, r3), and a ∈ A.

Theoretically, Ni and Wang (2019) showed that the maximum likelihood estimator P̂ satisfies

the following bound with a high probability,

‖P̂ −P‖2
F .

(
p̃2r̃2

n
+ q

√
log(p̃)

n

)
, (18)

where p̃ = max(p, q), r̃ = max(r1, r2, r3). The bound in (18) suggests that the estimation

error is largely determined by the Tucker rank of the MDP instead of its actual dimension.

This makes model compression possible with a limited number of data observations.

Future directions: Many questions in MDP remain open. For instance, it is unclear if the

error bound (18) is minimax optimal. After obtaining the low-rnak representations of the

MDP, it remains unclear how to embed them into the existing RL planning algorithms, and

how the approximation error would affect the planning phase.

6 Tensor Deep Learning

The last topic we review is tensor deep learning. Deep learning represents a broad family of

machine learning methods based on artificial neural networks (LeCun et al., 2015). It has

received enormous attention in recent years thanks to its remarkable successes in a large

variety of applications, including but not limited to image classification (Krizhevsky et al.,

2012), speech recognition (Hinton et al., 2012), and game playing (Silver et al., 2016). We

review two topics that connect tensors with deep learning: tensor-based compression of deep

neural networks, and deep learning theory through tensor representation.
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6.1 Tensor-based Deep Neural Network Compression

Motivating examples: Convolutional neural network (CNN) is perhaps the most common

network structure in deep learning. It typically consists of a large number of convolutional

layers, followed by a few fully-connected layers. Therefore, it often requires a vast number of

parameters, and an enormous amount of training time even on the modern GPU clusters.

For instance, the well-known VGG-19 network architecture (Simonyan and Zisserman,

2015) contains 108 parameters and requires over 15G floating-point operations to classify

a single image. On the other hand, there is a growing interest to deploy CNNs on mobile

devices, e.g., smartphones and self-driving cars, to implement real-time image recognition and

conversational system. Unfortunately, the expensive computational cost, in both time and

memory, of the standard CNN architectures prohibits their deployments on such devices. For

that reason, there have recently emerged some promising works to speed up CNNs through

tensor-based dimension reduction.

Recurrent neural network (RNN) is another common network structure in deep learning

(Hochreiter and Schmidhuber, 1997). It is particularly suitable for modeling temporal

dynamics, and has demonstrated excellent performance in sequential prediction tasks, e.g.,

speech recognition (Graves et al., 2013) and traffic forecasting (Li et al., 2018c). Despite of

their effectiveness for smooth and short-term dynamics, however, it is difficult to generalize

RNN to capture nonlinear dynamics and long-term temporal dependency. Moreover, the

standard version of RNN and its memory-based extension such as the long short-term memory

(LSTM) network suffer from an excessive number of parameters, making it difficult to train

and also susceptible to overfitting.

Compression of convolutional layers of CNN : Denton et al. (2014); Lebedev et al.

(2015); Tai et al. (2016) proposed low-rank approximations for the convolutional layers

of CNN. Particularly, Lebedev et al. (2015) applied the CP decomposition (1) for the

convolutional layers, while Kim et al. (2016) applied the Tucker decomposition (2) on the

convolutional kernel tensors of a pre-trained network, then fine-tuned the resulting network.

Meanwhile, which decomposition is better depends on the application domains, tasks, network

architectures, and hardware constraints. Recognizing this issue, Hayashi et al. (2019) proposed

to characterize a decomposition class specific to CNNs, by adopting a flexible hyper-graphical

notion in tensor networks. This class includes modern light-weight CNN layers, such as the

bottleneck layers in ResNet (He et al., 2016), the depth-wise separable layers in Mobilenet V1

(Howard et al., 2017), the inverted bottleneck layers in Mobilenet V2 (Sandler et al., 2018),

among others. Moreover, this class can also deal with nonlinear activations by combining

neural architecture search with the LeNet and ResNet architectures. Furthermore, Kossaifi

et al. (2020b) introduced a tensor factorization framework for efficient multi-dimensional
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convolutions of higher-order CNNs, with applications to spatiotemporal emotion estimation.

Compression of fully-connected layers of CNN : In a standard CNN architecture, the

activation tensors of convolutional layers are first flattened, then connected to the outputs

through fully connected layers. This step introduces a large number of parameters, and the

flattening operation may also lose multimodal information. As an example, in the VGG-19

network architecture, about 80% of its parameters come from the fully-connected layers

(Simonyan and Zisserman, 2015). Motivated by these observations, Novikov et al. (2015)

applied the tensor-train decomposition, Ye et al. (2020) applied the block-term decomposition,

and Kossaifi et al. (2020a) applied the Tucker decomposition, all focusing on reducing the

number of parameters in the fully-connected layers.

Figure 7 provides an outline of the tensor-based CNN compression strategy from Kossaifi

et al. (2020a). Built upon a standard CNN architecture, it consists of two new layers, a tensor

contraction layer and a tensor regression layer, as the end-to-end trainable components of

deep neural networks. After the standard convolutional layer and activation step, the tensor

contraction layer reduces the dimensionality of the original activation tensor X i via a Tucker

decomposition to obtain a core tensor X ′i. The tensor regression layer then directly associates

X ′i with the response yi via a low-rank Tucker structure on the coefficient B, which helps

avoid the flattening operation in the traditional fully-connected layer. All the parameters

can be efficiently learned via end-to-end back-propagation.

Figure 7: Illustration of the tensor-based CNN compression from Kossaifi et al. (2020a).

Compression of all layers of CNN: In addition to compression of the convolutional layers

and fully-connected layers separately, there is the third category of compression methods

targeting all layers. This enables to learn the correlations between different tensor dimensions.

Moreover, the low-rank structure on the weight tensor acts as an implicit regularization,

and can substantially reduce the number of parameters. Specifically, Kasiviswanathan et al.

(2018) incorporated the randomized tensor sketching technique and developed a unified

framework to approximate the operations of both the convolutional and fully connected layers
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in CNNs. Kossaifi et al. (2019) proposed to fully parametrize all layers of CNNs with a single

high-order low-rank tensor, where the modes of the tensor represent the architectural design

parameters of the network, including the number of convolutional blocks, depth, number of

stacks, and input features.

Compression of RNN: Yang et al. (2017); Yu et al. (2019); Su et al. (2020) utilized the

tensor-train decomposition to efficiently learn the nonlinear dynamics of RNNs, by directly

using high-order moments and high-order state transition functions. In addition, Ye et al.

(2018) proposed a compact and flexible structure called the Block-Term tensor decomposition

for dimension reduction in RNNs, and showed that it is not only more concise but also able

to attain a better approximation to the original RNNs with much fewer parameters.

Future directions: Although the tensor-based DNN compression methods have shown great

empirical success, the theoretical properties are still not yet fully understood. Moreover,

the existing solutions have been focusing on the low-rank structure for dimension reduction.

It is potentially useful to consider the additional sparsity structure, e.g., the sparse tensor

factorization (Sun et al., 2017), to further reduce the number of parameters and to improve

the interpretability of the tensor layers in CNNs or RNNs.

6.2 Deep Learning Theory through Tensor Methods

Motivating examples: Despite the wide empirical success of deep neural networks models,

their theoretical properties are much less understood. Next, we review a few works that use

tensor representations to facilitate the understanding of the expressive power, compressibility,

generalizability, and other properties of deep neural networks.

Expressive power, compressibility and generalizability: Cohen et al. (2016) used

tensor as an analytical tool to study the expressive power of deep neural networks, where the

expressive power refers to the representation ability of a neural network architecture. They

established an equivalence between the neural network and hierarchical tensor factorization,

and showed that a shallow network corresponds to a rank-1 CP decomposition, whereas a

deep network corresponds to a hierarchical Tucker decomposition. Through this connection,

they further proved that, other than a measure zero negligible set, all functions that can

be implemented by a deep network of the polynomial order would require an exponential

order shallow network to realize. Built on this general tensor tool, various recent works

have extended the study of expressive power to the overlapping architecture of deep learning

(Sharir and Shashua, 2018), RNNs with multiplicative recurrent cells (Khrulkov et al., 2018),

and RNNs with rectifier nonlinearities (Khrulkov et al., 2019).

Li et al. (2020) employed tensor analysis to derive a set of data dependent and easily

measurable properties that tightly characterize the compressibility and generalizability of
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neural networks. Specifically, the compressibility measures how much the original network

can be compressed without compromising the performance on a training dataset more than

a certain range. The generalizability measures the performance of a neural network on

the unseen testing data. Compared to the generalization bounds via compression scheme

(Arora et al., 2018), Li et al. (2020) provided a much tighter bound for the layer-wise error

propagation, by exploiting the additional structures in the weight tensor of a neural network.

Additional connections: There are other connections between deep learning theory and

tensors. Janzamin et al. (2015) provided a polynomial-time algorithm based on tensor

decomposition for learning one-hidden-layer neural networks with twice-differential activation

function and known input distributions. Moreover, Ge et al. (2018) considered learning a

one-hidden-layer neural network and proved that the population risk of the standard squared

loss implicitly attempts to decompose a sequence of low-rank tensors simultaneously. Mondelli

and Montanari (2019) also established connections between tensor decomposition and the

problem of learning a one-hidden-layer neural network with activation functions given by

low-degree polynomials. They provided evidence that in certain regimes, and for certain data

distributions the one-hidden-layer neural network cannot be learnt in polynomial time. So

similar to Ge et al. (2018), they also considered the case when the data distribution is normal.

Future directions: Aforementioned works (Janzamin et al., 2015; Ge et al., 2018; Mondelli

and Montanari, 2019) provide theoretical foundations for the connection between tensor

decomposition and learning one-hidden-layer neural network. It is of interest to study how

such a connection can be extended to more general deep neural network architectures and

more general data distributions. It is also of interest to investigate if the theoretical results

of Li et al. (2020) can be extended to study the compressibility and generalizability of more

deep neural network architectures.
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